Electronic correlations in models and materials

Dieter Vollhardt

DPG Spring Meeting; Regensburg; March 25, 2010
Outline:

- Electronic correlations
- A short history of the limit $d \to \infty$ and dynamical mean-field theory (DMFT)
- Mott-Hubbard metal-insulator transition
- LDA+DMFT for correlated electron materials
- Recent developments

Supported by DFG SFB 484 (2000-2009) TRR 80 (Augsburg-Munich)
Correlations

• finite when $\langle \rho(\mathbf{r})\rho(\mathbf{r}') \rangle \neq \langle \rho(\mathbf{r}) \rangle \langle \rho(\mathbf{r}') \rangle$

• go beyond static mean-field theories (e.g., Hartree-Fock)

Correlations in everyday life

Time/space average insufficient
Electronic Correlations in Solids

Partially filled d-orbitals

Partially filled f-orbitals

Narrow d,f-orbitals/bands → strong electronic correlations
Correlated electron materials

Fascinating topics for fundamental research

- large resistivity changes
- gigantic volume changes
- high-T_c superconductivity
- strong thermoelectric response
- colossal magnetoresistance
- huge ferroelectric effects

Technological applications:
- sensors, switches
- magnetic storage
- refrigerators
- functional materials, ...
Electronic Correlations: Models
The Hubbard model is a quantum mechanical model used in solid-state physics to describe the behavior of electrons in a lattice. It was introduced by John Hubbard in 1963. The Hamiltonian of the Hubbard model is given by:

$$H = -t \sum_{\langle i,j \rangle, \sigma} c_{i\sigma}^\dagger c_{j\sigma} + U \sum_i n_{i\uparrow} n_{i\downarrow}$$

where:
- H is the Hamiltonian of the system.
- t is the hopping parameter, representing the energy cost for an electron to hop from one site to another.
- $c_{i\sigma}^\dagger$ and $c_{i\sigma}$ are the creation and annihilation operators for an electron of spin σ at site i.
- U is the on-site repulsion energy, describing the energy cost of having two electrons in the same site.
- $n_{i\uparrow}$ and $n_{i\downarrow}$ are the occupation numbers of the up and down spin states at site i.

Gutzwiller, 1963
Hubbard, 1963
Kanamori, 1963
$H = -t \sum_{\langle i,j \rangle, \sigma} c_{i\sigma}^\dagger c_{j\sigma} + U \sum_i n_{i\uparrow} n_{i\downarrow}$
Hubbard model

\[H = -t \sum_{\langle i,j \rangle, \sigma} c_{i\sigma}^\dagger c_{j\sigma} + U \sum_i n_{i\uparrow} n_{i\downarrow} \]

Local Hubbard physics:
Local Hubbard physics:

$$H = -t \sum_{\langle i,j \rangle, \sigma} c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_i n_{i\uparrow} n_{i\downarrow}$$

Static (Hartree-Fock) mean-field theories generally insufficient.
\[H = \sum_{i,j,\sigma} t_{ij} c_{i\sigma}^\dagger c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow} \]

- Gutzwiller variational wave function

\[\left| \psi_G \right\rangle = e^{-\lambda D} \left| \psi_0 \right\rangle \]

One-particle wave function
(Hartree-Fock, BCS, etc.)

- Gutzwiller approximation

= semi-classical approximation of expectation values

Gutzwiller (1963/65)
Hubbard (1963)
Kanamori (1963)
Gutzwiller-Brinkman-Rice theory

\[
\frac{1}{L} \left\langle \psi_G \middle| H \middle| \psi_G \right\rangle \bigg|_{\langle H \rangle = E} = q(d)\varepsilon_0 + U \frac{d}{d}, \quad \frac{\partial E}{\partial d} = 0
\]

Conditions for ferromagnetism?

Brinkman, Rice (1970)

\[
m^{*} = q^{-1} \xrightarrow{U \to U_c} \infty
\]

describes metal-insulator ("Mott") transition \(\xrightarrow{} V_2O_3 \)

Gutzwiller (1963/65)

\[
d = \frac{1}{4} \left(1 - \frac{U}{U_c}\right)
\]

\[
U_c = 8\varepsilon_0
\]

\[
q = 1 - \left(\frac{U}{U_c}\right)^2
\]

\[
E_g = -L\varepsilon_0 \left(1 - \frac{U}{U_c}\right)^2
\]
Gutzwiller-Brinkman-Rice theory: Application to normal liquid 3He

Liquid 3He: "almost localized Fermi liquid" (near Mott transition)

Gutzwiller approximation ↔ Landau Fermi liquid theory

$F_0^a = \frac{3}{4} p$, $p \approx 1$

Gutzwiller approximation is remarkably good: Systematic derivation possible?
Gutzwiller wave function

Exact analytic evaluation of $E_G = \frac{\langle \psi_G | H | \psi_G \rangle}{\langle \psi_G | \psi_G \rangle}$ in $d=1$

Metzner, DV (1987/88)

Diagrams for the kinetic energy

Analytic calculation of all diagrams possible

Numerical check by Monte-Carlo integration

$\frac{v(d)}{v(1)}$

$\frac{3}{4} n$

Great simplifications for $d \to \infty$

Diagrams for the Hubbard interaction
Gutzwiller wave function in $d \to \infty$

$$|\psi_G\rangle = e^{-\lambda H_U} |\psi_0\rangle$$

$$E_G = \frac{\langle \psi_G | H | \psi_G \rangle}{\langle \psi_G | \psi_G \rangle}$$

Gutzwiller approximation becomes **exact** in $d \to \infty$

Metzner, DV (1989)

$d \to \infty$: Evaluation of E_G for arbitrary $|\psi_0\rangle$

Gebhard (1990)

Multi-band generalization:

„Gutzwiller DFT“

Ferromagnetic Ni: Cut of Fermi surface

Bünemann, Gebhard, Ohm, Weiser, Weber (2005)
Correlated lattice fermions in $d \to \infty$
\[H = J \sum_{\langle i,j \rangle} S_i S_j \quad \xrightarrow{\text{Scaling, } Z \text{ or } d \to \infty} \quad H_{MF} = h_{MF} \sum_i S_i \]

Scaling: \[J = \frac{J^*}{Z} \]

Local (single-site) mean-field theory

Comprehensive MFT valid for all input parameters
Hubbard model

\[H = -t \sum_{\langle i,j \rangle, \sigma} c_{i\sigma}^\dagger c_{j\sigma} + U \sum_i n_{i\uparrow} n_{i\downarrow} \]

- non-local

\[\text{Scaling} \quad ? \]

\[Z \text{ or } d \to \infty \]

Local (single-site) mean-field theory

Hubbard model

\[\langle H_{\text{kin}} \rangle_0 = -t \sum_{i,\sigma} \sum_{j(\text{NN} \ i)} \left(\sum_z \right) \langle c_{i\sigma}^\dagger c_{j\sigma} \rangle_0 \]

Amplitude for hopping \(j \rightarrow \text{NN} \ i \)

\[\left| \text{Amplitude for hopping } j \rightarrow \text{NN} \ i \right|^2 = \text{Probability for hopping } j \rightarrow \text{NN} \ i = \frac{1}{Z} \]
Hubbard model

\[\langle H_{\text{kin}} \rangle_0 = -t \sum_{i,\sigma} \frac{1}{\sqrt{Z}} \sum_{j(\text{NN} \ i)} \left\langle C_{i\sigma}^\dagger C_{j\sigma} \right\rangle_0 \]

Quantum rescaling \(t = \frac{t^*}{\sqrt{Z}} \)

Collapse of all connected, irreducible diagrams in position space

⇒ great simplifications

Metzner, DV (1989)
Hubbard model

\[\langle H_{kin} \rangle_0 = -t \sum_{i,j} \sum_{\sigma} \langle C_i^{\dagger} C_j \rangle_0 \]

\[Z \text{ or } d \to \infty \]

\[\frac{1}{\sqrt{Z}} \]

\[\frac{1}{\sqrt{Z}} \]

Quantum rescaling

\[t = \frac{t^*}{\sqrt{Z}} \]

Metzner, DV (1989)

Collapse of all connected, irreducible diagrams in position space

\[\Rightarrow \text{great simplifications} \]

e.g., correlation energy \(E_2 \)

\[\frac{E_2}{U^2} \propto e_2 \]

\(d = \infty \): excellent approximation for \(d = 3 \)
Correlated Lattice Fermions in $d = \infty$ Dimensions

Walter Metzner and Dieter Vollhardt

Institut für Theoretische Physik C, Technische Hochschule Aachen, Sommerfeldstrasse 26/28, D-5100 Aachen, Federal Republic of Germany

(Received 28 September 1988)

Correlated fermions on a lattice in high dimensions

E. Müller-Hartmann

Institut für Theoretische Physik, Universität zu Köln, Federal Republic of Germany

Received October 12, 1988

• $\Sigma(\mathbf{k}, \omega)$

• Only Hubbard interaction remains dynamical

SECOND ORDER U-PERTURBATION APPROACH TO THE ANDERSON LATTICE MODEL IN HIGH DIMENSIONS

H. Schweitzer* and G. Czycholl**,***

* Institut für Physik, Universität Dortmund, D-4400 Dortmund 50, Federal Rep
** Institut für Theoretische Physik C, RWTH Aachen, D-5100 Aachen, Federal Rep

(Received 4 November 1988 by B. Mühlschlegel)
Falicov-Kimball model in $d \to \infty$

= Hubbard model with immobile
 e.g., $\downarrow = \text{proton}$, $\uparrow = \text{electron}$

\Rightarrow exact solution

Brandt, Mielsch (1989)

\Rightarrow exact solution

van Dongen, DV (1990)

\Rightarrow exact solution

$d \to \infty$: mean-field theory for fermionic lattice models
$d \to \infty$ mean-field theory: Hubbard model

Generalization of the “Coherent Potential Approximation“
to interacting systems in $d \to \infty$

Janiš (1991); Janiš, DV (1992)

Dynamical (single-site) mean-field theory
$d \to \infty$ mean-field theory: Hubbard model

Georges, Kotliar (1992)

Single-impurity Anderson model + self-consistency

QMC solution: Jarrell (1992)
DMFT self-consistency equations

(i) Effective single-site/impurity problem: “local propagator“

\[G = -\frac{1}{Z} \int D[\psi, \psi^*] \psi \psi^* e^{\psi^* [G^{-1} + \Sigma] \psi - U \psi^* \psi \psi^* \psi} \]

single-site ("impurity") action \(\mathcal{A} \)

(ii) \(k \)-integrated Dyson equation ("lattice Green function“: lattice enters)

\[G(\omega) = \int d\varepsilon \frac{N^0(\varepsilon)}{\omega - \Sigma(\omega) - \varepsilon} = G^0(\omega - \Sigma(\omega)) \]

→ free electrons in a dynamic potential \(\Sigma(\omega) \)

“Impurity solver“

QMC Hirsch-Fye (1986)
ED Caffarel, Krauth (1994), Si et al. (1994)
NRG Bulla (1999)
Dynamical mean-field theory (DMFT) of correlated electrons

DMFT: local theory with full many-body dynamics

Kotliar, DV (2004)

Mott-Hubbard metal-insulator transition
Metal-insulator transition in the one-band Hubbard model (DMFT)

Rozenberg, Kotliar, Zhang (1994)

Blümer (2002)
Metal-insulator transition in the one-band Hubbard model (DMFT)

Kotliar, DV (2004)

$S = \gamma T$

$S = k_B \ln 2$

Introduction of spin fluctuations via E-DMFT
Si (1996)

Park, Haule, Kotliar (2008)

4-site cluster-DMFT
LDA+DMFT for Correlated Electron Materials
<table>
<thead>
<tr>
<th></th>
<th>DFT/LDA</th>
<th>Model Hamiltonians</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>material specific: “ab initio”</td>
<td>− input parameters unknown</td>
</tr>
<tr>
<td>−</td>
<td>fails for strong correlations</td>
<td>+ systematic many-body approach</td>
</tr>
<tr>
<td>+</td>
<td>fast code packages</td>
<td>− computationally expensive</td>
</tr>
</tbody>
</table>

How to combine?

Held (2004)

Held (2004)
Computational scheme for correlated electron materials:

Material specific electronic structure
(Density functional theory: LDA, GGA, ...)

+ Local electronic correlations
(Many-body theory: DMFT)

\[\text{LDA+DMFT} \]

Anisimov, Poteryaev, Korotin, Anokhin, Kotliar (1997)
Lichtenstein, Katsnelson (1998)
Nekrasov, Held, Blümer, Poteryaev, Anisimov, DV (2000)
Computational scheme for correlated electron materials:

Material specific electronic structure
(Density functional theory: LDA, GGA, ...)

+

Local electronic correlations
(Many-body theory: DMFT)

Held, Nekrasov, Keller, Eyert, Blümer, McMahan, Scalettar, Pruschke, Anisimov, DV (Psi-k 2003)
LDA+DMFT (simplest version)

1) Calculate LDA band structure: \(\epsilon_{lm'm'}(k) \rightarrow \hat{H}_{LDA} \)

2) Supplement LDA by local Coulomb interaction (only for correlated bands)

\[
\hat{\mathcal{H}} = \sum_{klm,m'\sigma} \epsilon_{lm'm'}(k) \hat{c}_{klm\sigma}^\dagger \hat{c}_{kl'm'\sigma} - \sum_{i=i_d, m\sigma} \sum_{\ell=l_d} \Delta \epsilon_d \hat{n}_{ilm\sigma} \\
\text{LDA} \\
\text{double counting correction}
\]

\[
+ \sum_{i=i_d, m\sigma} \sum_{\ell=l_d}^\prime \frac{U^\sigma\sigma'}{2} \hat{n}_{ilm\sigma} \hat{n}_{ilm'\sigma'} - \sum_{i=i_d, m\sigma,m'\sigma'} \sum_{\ell=l_d}^\prime J_{mm'} \hat{c}_{ilm\sigma}^\dagger \hat{c}_{ilm'\sigma'}^\dagger \hat{c}_{ilm'\sigma'} \hat{c}_{ilm\sigma'} \\
\text{local Coulomb interaction} \\
\text{Hund’s rule coupling}
\]

3) Solve self-consistently with an impurity solver
Applications of LDA+DMFT
Spectral function ("interacting DOS") in DMFT

k-integrated spectral function
→ PES

\[A(\omega) = -\frac{1}{\pi} \text{Im} G(\omega) \]

k-resolved spectral function
→ ARPES

\[G(k, \omega) = \left[\omega - \Sigma(\omega) - H_{LDA}^0(k) \right]^{-1} \]

\[A(k, \omega) = -\frac{1}{\pi} \text{Im} \, Tr \, G(k, \omega) \]
1. Application: $(\text{Sr,Ca})\text{VO}_3$

Crystal structure

SrVO_3: $\angle V - O - V = 180^\circ$

CaVO_3: $\angle V - O - V \approx 162^\circ$

LDA density of states

No correlation effects/spectral transfer
LDA+DMFT results

Constrained LDA:

\[U=5.55 \text{ eV}, \quad J=1.0 \text{ eV} \]

SrVO$_3$ and CaVO$_3$;

Osaka - Augsburg - Ekaterinburg collaboration:

Comparison with experiment

- (i) bulk-sensitive high-resolution photoemission spectra (PES)
- (ii) 1s x-ray absorption spectra (XAS) \(\rightarrow \) unoccupied states

3-peak structure in bulk material confirmed
Kinks in strongly correlated electron systems

Kinks due to electronic interaction in high-T_c cuprates (non-phononic)

Coupling of quasiparticles to spin fluctuations

Manske, Eremin, Bennemann (2001)
Randeria, Paramekanti, Trivedi (2004)
Kordyuk et al. (2004)
Kakehashi, Fulde (2005)

k-dependence of self-energy $\Sigma(k, \omega)$ essential

Origin of kinks?

Kinks at $|\omega_c| \approx 0.24$ eV

Nekrasov, Held, Keller, Kondakov, Pruschke, Kollar, Andersen, Anisimov, DV (2006)
SrVO$_3$ and CaVO$_3$

Byczuk, Kollar, Held, Yang, Nekrasov, Pruschke, DV (2007)

Kinks in the quasiparticle dispersion E_k at $\pm \omega_*$

- Generic features of strongly correlated electrons
- No coupling to other excitations required

local spin/charge fluctuations \rightarrow Raas, Grete, Uhrig (2009)
Kinks in the quasiparticle dispersion E_k at $\pm \omega_*$

$\omega_* = Z_{FL} D_{LDA}$

Kinks in high-resolution ARPES of Ni(110)

2. Application: Mott-Hubbard vs. charge-transfer insulators

- Charge-transfer gap clearly seen
- Valence band: p-d character
- Conduction band: d-character

E.g., NiO:
include correlated Ni-3d + O-2p states ("p-d hybridization")

Kuneš, Anisimov, Lukoyanov, DV (2007)

3. Application: Correlation induced structural transformations

KCuF₃: Prototypical Jahn-Teller system

Kugel, Khomskii (1982)

T > Tₑ ≈ 38 K: Correlated paramagnetic insulator with strong cooperative JT distortion

GGA+DMFT implementation with plane-wave pseudo-potentials

Leonov, Binggeli, Korotin, Anisimov, Stojić, DV (2008)

- paramagnetic insulator
- δ_{JT}^{opt} = 4.1%

→ Structural transformation caused by electronic correlations

Orbital order

Pavarini, Koch, Lichtenstein (2008)
Other recent developments
1. Inhomogeneous systems: Layers, surfaces, interfaces

Mott-insulator-band-insulator heterostructure: Charge density profile

Okamoto, Millis (2004)

Potthoff, Nolting (1999)

1. Inhomogeneous systems: Optical lattices and traps

- Fermionic atoms in a $3d$ potential trap
 Helmes, Costi, Rosch (2008)

- $2d$ square lattice with harmonic confinement
 Snoek, Titvinidze, Töke, Byczuk, Hofstetter (2008)

R-DMFT: Real-space magnetization (AF) profiles
2. Non-equilibrium DMFT

Hamiltonian $H(t) \rightarrow$ Green function $G(t,t')$

Quench in Hubbard model from $U=0$ to $U>0$

- Discontinuity at Fermi surface
 - Möckel, Kehrein (2008)
 - Uhrig (2009)

- Momentum distribution $(U=3.3)$
 - Möckel, Kehrein (2008)
 - Uhrig (2009)

- Prethermalization
 - Möckel, Kehrein (2008)

- Thermalization
 - Möckel, Kehrein (2008)

Schmidt, Monien (2002)
Freericks, Turkowski (2006)
Eckstein, Kollar (2008)
Application: Pump-probe spectroscopy

1st light pulse: Pumps into non-equilibrium state
2nd light pulse: Probes to study relaxation

Time-resolved photoemission spectroscopy

Mott insulator (FK model, $U=10$)
photo-excited into metallic state ($U=1$):

- Kin. energy of emitted electrons
- Time after pump [$\hbar/W \sim 10\text{fs}$]

- Initial metallic state
- UHB
- LHB

Pulse duration δ

\leftrightarrow

Energy resolution

$\Delta E \approx \hbar/\delta$

Freericks, Krishnamurthy, Pruschke (2008)

Eckstein, Kollar (2008)
Beyond single-site DMFT

Cluster Extensions

- Dynamical cluster approx. (DCA) Hettler et al. (1998, 2000)
- Cluster DMFT (CDMFT) Kotliar et al. (2001)

Dynamical vertex approximation (DΓA) Toschi, Katanin, Held (2006)

Local + non-local self-energy diagrams from local irreducible vertex

Dual fermion approach Rubtsov, Katsnelson, Lichtenstein (2008)
Conclusions and outlook

- DMFT is the canonical mean-field theory for correlated electrons
- Provides insights into their characteristic properties
- **Goal:** Develop LDA+DMFT into a comprehensive computational tool with **predictive power** for complex correlated materials
I am very grateful to the members of my group for our collaboration and coauthorship:

Walter Metzner Karsten Held
Florian Gebhard Marcus Kollar
Peter van Dongen Nils Blümer
Paul Schmit Walter Hofstetter
Vaclav Janiš Thomas Pruschke
Ruud Vlaming Igor Nekrasov
Rainer Strack Ralf Bulla
Zsolt Gulacsi Theo Costi
Götz Uhrig Georg Keller
Martin Ulmke Krzysztof Byczuk
Avinash Singh Xinguo Ren
Jan Schlipf Martin Eckstein
Joachim Wahle Ivan Leonov
Nikhil Chandra Jan Kuneš
Stefan Kehrein Unjong Yu
Markus Greger