Realistic modeling of materials with strongly correlated electrons: LDA+DMFT and beyond

Korrelationstage 2005; Dresden, March 1, 2005

Dieter Vollhardt

Supported by Deutsche Forschungsgemeinschaft through SFB 484
Correlated electron materials: Sensitivity to small changes in control parameters (T, P, H, n, ...)

- large resistivity changes
- huge volume changes
- high T_c superconductivity
- strong thermoelectric response
- colossal magnetoresistance
- gigantic non-linear optical effects

⇒ Technological applications:
 - catalyzers
 - sensors
 - cables
 - spintronics
 - magnets/magnetic storage,...
Outline:

- LDA+DMFT
- V-3d¹ system: (Sr,Ca)VO₃
 \(k \)-integrated + ARPES spectra
- V-3d² system: V₂O₃
 \(k \)-integrated spectra, Mott gap
- Full-orbital, self-consistent LDA+DMFT scheme
Computational scheme for correlated electron materials:

Material specific electronic structure
(Density functional theory: \textbf{LDA}, \textbf{GW}, ...)

+ Electronic correlations
(Many-body theory: \textbf{DMFT})

\textbf{LDA+DMFT}

Anisimov, Poteryaev, Korotin, Anokhin, Kotliar (1997)
Lichtenstein, Katsnelson (1998)
Nekrasov, Held, Blümer, Poteryaev, Anisimov, Vollhardt (2000)

Computational scheme for correlated electron materials:

Material specific electronic structure (Density functional theory: LDA, GW, ...)

+ Electronic correlations (Many-body theory: DMFT)
1) Calculate LDA band structure: \(\varepsilon_{lml'm'}(k) \rightarrow \hat{H}_{LDA} \)

2) Supplement LDA by local Coulomb interaction (only for correlated bands)

\[
\hat{\mathcal{H}} = \sum_{klm,l'm'} \varepsilon_{lml'm'}(k) \hat{c}_{klm\sigma}^\dagger \hat{c}_{kl'm'\sigma} - \sum_{i=d, m\sigma} \sum_{l=l_d} \Delta \varepsilon_{d} \hat{n}_{ilm\sigma} \\
\text{LDA} \\
\text{double counting correction} \\
+ \sum_{i=i_d, m\sigma, m'\sigma'} U_{mm'} \frac{1}{2} \hat{n}_{ilm\sigma} \hat{n}_{ilm'\sigma'} \\
\text{local Coulomb interaction} \\
- \sum_{i=i_d, m\sigma, m'\sigma'} \sum_{l=l_d} J_{mm'} \hat{c}_{ilm\sigma}^\dagger \hat{c}_{ilm'\sigma'}^\dagger \hat{c}_{ilm'\sigma} \hat{c}_{ilm\sigma'} \\
\text{Hund's rule coupling}
3) Solve model by DMFT with, e.g., QMC: LDA+DMFT(QMC)

Solve self-consistently:

(i) Effective single impurity part

\[G = -\frac{1}{Z} \int \mathcal{D}[\psi \psi^*] \psi \psi^* e^{\psi^* [G^{-1} + \Sigma]} \psi - U \psi^* \psi \psi^* \psi + J \psi^* \psi \psi^* \psi \]

(ii) \(k \)-integrated Dyson equ.

\[G_{mm'}^\sigma(\omega) = \frac{1}{V_B} \int d^3k \left[(\omega - \Sigma^\sigma(\omega)) \delta_{m,m'} - \left(H_{LDA}^0 \text{eff}(k) \right)_{m,m'} \right]^{-1} \]
3) Solve model by DMFT with, e.g., QMC: LDA+DMFT(QMC)

Solve self-consistently:

(i) Effective single impurity part

\[G = -\frac{1}{Z} \int D[\psi \psi^*] \psi \psi^* \epsilon \psi^* [G^{-1} + \Sigma] \psi - U \psi^* \psi \psi^* \psi + J \psi^* \psi \psi^* \psi \]

(ii) \(k \)-integrated Dyson equ. (orbital degeneracy)

\[G(\omega) = \int d\epsilon \frac{N^0_{\text{LDA}}(\epsilon)}{\omega - \Sigma(\omega) - \epsilon} \]
Application of LDA+DMFT to specific materials
Augsburg
G. Keller
M. Kollar
I. Leonov
X. Ren
V. Eyert
DV

K. Held (MPI Stuttgart)
T. Pruschke (Göttingen)

Ekaterinburg
V. I. Anisimov
I. A. Nekrasov,
...

Osaka
S. Suga et al.

Ann Arbor
J. W. Allen et al.
3d1 system: (Sr,Ca)VO$_3$

Photoemission spectroscopy (PES)

Inoue et al., PRL (1995)
Experiment

Photoemission spectra at high photon energies

 Comparison of SrVO$_3$ spectra for different photon energies. All curves are normalized to 1. (Sekiyama et al. 0206471)

 Comparison of CaVO$_3$ spectra for different photon energies. All curves are normalized to 1. (Sekiyama et al. 0206471)

 SrVO$_3$

 CaVO$_3$

Spectra after subtraction of estimated surface contribution:

Theory

Electronic structure

Crystal structure

SrVO$_3$: $\angle 123 = 180^\circ$

↓

orthorhombic distortion

↓

CaVO$_3$: $\angle 123 \approx 162^\circ$

10% reduction in V-O-V angle

Band scheme

isotropic cubic

3d1

t$_{2g}$

e$_g$

LDA density of states

SrVO$_3$

\(V-3d(t_{2g}) \)

CaVO$_3$

\(V-3d(t_{2g}) \)

\(V-3d(e_g) \)

\(V-3d(e_g) \)

SrVO$_3$ \(\rightarrow \) CaVO$_3$

only 4% bandwidth reduction
LDA+DMFT results

k-integrated spectral function

\[A(\omega) = -\frac{1}{\pi} \text{Im} \, G(\omega) \]

constrained LDA:
\[U = 5.55 \text{ eV}, \; J = 1.0 \text{ eV} \]

SrVO$_3$ and CaVO$_3$

- Stronger correlations in CaVO$_3$

Comparison with experiment

- (i) bulk-sensitive high-resolution photoemission spectra (PES)
- (ii) 1s x-ray absorption spectra (XAS)

Measurement at O K-edge:
no symmetry breaking of V 2p shell in final state (XAS ≈ IPES)
40 years „Kondo effect“

Single-impurity Anderson model

One-band Hubbard model (DMFT) (Bulla, 1999)

(Ca,Sr)VO₃: Experiment and theory (LDA+DMFT)

Bulk system
k- resolved spectra (ARPES) in DMFT

\[
LDA + \text{DMFT} \xrightarrow{QMC} \Sigma(i\omega), G(i\omega) \xrightarrow{\text{MEM}} \text{Im } G(\omega) \xrightarrow{k.-K.} G(\omega) \xrightarrow{} \Sigma(\omega)
\]

\[
\rightarrow G(k, \omega) = [\omega - \Sigma(\omega) - H_{LDA}^0(k)]^{-1}
\]

matrices in orbital space

\[
\rightarrow \text{ } k\text{-resolved spectral function}
\]

\[
A(k, \omega) = -\frac{1}{\pi} \text{Im } Tr G(k, \omega)
\]
NMTO downfolded vs. LDA+DMFT bands

Ekaterinburg - Augsburg - O. K. Andersen - collaboration

LMTO: N=1

Renormalization of LDA bands by LDA+DMFT self-energy; 1/Z=m*/m=1.9
ARPES from LDA+DMFT

Quasiparticle bands/ARPES spectra

Finite lifetime due to correlations
3d² system: V₂O₃

Paramagnetic

Metal

Antiferromagnetic

Insulator

Pressure

T(K)

Interaction U

3d

e_{\sigma}
e_{g}
t_{2g}
a_{1g}

isotropic cubic trigonal
V_2O_3: LDA Spectra

metallic:

insulating:

U=5.0 eV, J=0.93 eV
V_2O_3: LDA+DMFT Spectra

Metallic V_2O_3: Photoemission Spectra

Ann Arbor - Osaka - Augsburg - Ekaterinburg collaboration; Mo et al., PRL (2003)
Insulating V_2O_3: Small Mott gap due to Hund’s rule splitting

$U=5.5 \text{ eV}, J=0.93 \text{ eV}, V=U-2J=3.6 \text{ eV}$

Keller, Held, Eyert, Vollhardt, and Anisimov; PRB (2004)
Insulating V_2O_3: Filling of the Mott gap

Filling of the gap with increasing temperature \rightarrow genuine feature of Mott-Hubbard MIT

$Mo\ et\ al.,\ PRL\ (2004)$
$Held\ et\ al.\ (2004)$

\rightarrow Poster K. Held
Full-orbital, self-consistent LDA+DMFT scheme

Ekaterinburg - Augsburg - Ann Arbor - Osaka - collaboration, cond-mat/ 0407359 [PRB, (2005)]

LDA: LMTO basis
- large band width
- long tails
- non-integer electron number

Unfavorable for DMFT
Wannier functions more suitable:

- Localized, site-centered, atomic-like orbitals
- Can reproduce partially filled bands
- Permits projection of H, Σ etc. from/to full/few-orbital space without loss of information
- Makes self-consistent merging of LDA and DMFT possible
Full-orbital DMFT scheme with Wannier functions

Ekaterinburg - Augsburg - Ann Arbor - Osaka - collaboration,
cond-mat/ 0407359 [PRB (2005)]

LDA+DMFT(QMC) with full-orbital self-energy (O-2p + V-3d states)
Conclusion

Application of LDA+DMFT(QMC) to

1. V-3d1 system: (Sr,Ca)VO\textsubscript{3}
 k-integrated and ARPES spectra

2. V-3d2 system: V\textsubscript{2}O\textsubscript{3}
 Spectra, filling of Mott gap, orbital structure, spin state

3. Wannier function formalism for DMFT
 Full-orbital, self-consistent LDA+DMFT scheme
ab initio, self-consistent Wannier function for LDA+DMFT

\[|W_{n\kappa}\rangle = \sum_\mu \phi_{\mu n}^k \phi_{\mu}^k \]

\(\mu, \nu\): full-orbital basis; \(n, n'\): few-orbital basis
LDA+DMFT for NiO

FIG. 1. XPS and BIS spectra of NiO showing the 4.3-eV band gap. Both were collected with a photon energy of 1486.6 eV.