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A particle’s motion in crowded environments often exhibits anomalous diffusion, whose nature

depends on the situation at hand and is formalized within different physical models. Thus, such

environments may contain traps, labyrinthine paths or macromolecular structures, which the particles

may be attached to. Physical assumptions are translated into mathematical models which often come

with nice mathematical instruments for their description, e.g. fractional diffusion equations. The beauty

of the instrument sometimes seduces an investigator to use it without any connection to the physical

model. The author hopes that the present discussion will reduce the danger of such inappropriate use.
1 Motivation

The progress in understanding the molecular nature of intracel-

lular processes in the last years is astonishing, and is due to tight

collaborations of physicists, biologists and mathematicians, all

working in the same direction and using specific methods of their

sciences. Experiments on particle motion in living cells and in

biological and artificial membranes aimed on understanding of

the effects of molecular crowding1 have shown that the diffusion

in such environments is often anomalous, i.e. it does not corre-

spond to the particle’s mean squared displacement growing

linearly in time, x2(t) f t, as predicted by Fick’s theory of

diffusion, but follows another power–law pattern x2(t)f ta, with
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a s 1.2 Typically, the values of a are significantly smaller that

unity, i.e. the observation unveils subdiffusion,3–12 see ref. 13 for

a review of earlier work. Both experimental and theoretical effort

were put into understanding the nature of this subdiffusion. On

the experimental part, this effort was put in getting microscopic

hints towards the nature of the process, while the work by

theoretical physicists was aimed at providing simple models able

to describe this anomaly and using them for explaining and

predicting other properties of the systems: the kinetics of

biochemical reactions, the efficiency of searching for the corre-

sponding genes and their transcription, etc.One has also to stress

important contributions of mathematical groups aimed at elab-

oration of statistical tests able to reliably distinguish between the

predictions of different models when fitted to experimental data.

This review concentrates on the basic properties of different

theoretical models of anomalous subdiffusion, and discusses the

main physical and mathematical assumptions behind them. Deep

understanding of these assumptions is extremely valuable both

for theorists and for experimentalists when building theories and

analyzing the results. The main line of the discussion is therefore:

what are the possible physical assumptions done to explain

a particular situation (i.e. what is the physical model of the

situation), how do these assumptions translate into a mathe-

matical model, what are the mathematical instruments used for

its implementation, and what are the results which allow us to

corroborate or falsify our initial physical assumptions.
2 Normal diffusion

The phenomenological description of diffusion was pioneered by

A. Fick in 1855 and was motivated by biological applications

(transport through membranes).14 Starting from what we would

call now a linear response theory (Fick’s first law) and from the

conservation law for the total particle number, he derived the

diffusion equation (Fick’s second law) for the concentration of

diffusing species
Soft Matter, 2012, 8, 9043–9052 | 9043
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v

vt
nðx; tÞ ¼ D

v2

vx2
nðx; tÞ; (1)

(we put it here in one dimension) with D being the diffusion

coefficient. Fick also solved eqn (1) for several geometries of the

system. The same equation holds for the probability density

function (PDF) p(x,t) to find a particle at position x at time t,

with trivial replacement of n by p. The PDF of the positions of

particles starting from a concentrated droplet in an unbounded

medium is Gaussian with variance 2Dt. Translated into the

language of single particles, this means that the particle’s mean

squared displacement (MSD) in the x-direction grows propor-

tional to time, hx2i ¼ 2Dt, and the coefficient of this pro-

portionality is given by twice the diffusion coefficient D. The

same is true for other coordinates, so that the total mean squared

displacement grows as hr2i ¼ 2dDt where d is the dimension of

space. In the present review we will hardly discuss any other

properties of motion than this MSD.

It was not until A. Einstein’s work in 1905 (ref. 15) that the

microscopic, molecular nature of diffusion was understood.

Einstein’s approach was essentially a randomwalk one. It started

from sampling particle positions at discrete instants of time

separated by intervals of duration s0. The experimental realiza-

tion of the quantitative stroboscopic measurements of displace-

ments of Brownian particles performed by J. Perrin in 1908–1909

(ref. 16) and by Seddig in 1908 (ref. 17), see ref. 18 for a critical

historical overview, corresponded exactly to this situation.

Assuming displacements si during different s0-intervals
(‘‘steps’’) to be independent random variables, Einstein gave the

microscopic derivation of the diffusion equation and further

connected the diffusion coefficient with other properties of the

system. A year later, M. Smoluchowski gave a consistent math-

ematical picture of a random walk based on combinatorial

arguments.19

Let us discuss how the known MSD behavior in diffusion

emerges from such a model. The particle’s displacement (in the

x-direction) is given by the sum of the corresponding steps:

xðtÞ ¼
XNðtÞ

i¼1

si; (2)

where N(t) is the total number of steps performed up to the time

t. From this picture we get

�
x2ðtÞ� ¼

* XNðtÞ

i¼1

si

!2+
¼
XNðtÞ

i;j¼1

�
sisj
� ¼XNðtÞ

i¼1

�
s2i
�þ XNðtÞ

i; j¼1

isj

�
sisj
�

(3)

expressing the MSD in terms of the step–step correlation func-

tion Cij ¼ hsisji. This is a discrete analogue of the Taylor20 (or

Green–Kubo21,22) formula discussed below. Since the steps are

assumed to be independent (and thus uncorrelated) and

symmetrically distributed around zero, the last term in eqn (3)

vanishes. The mean squared displacement in one step is hsi2i ¼ a2

and thus
�
x2ðtÞ� ¼PNðtÞ

j¼1

�
s2i
� ¼ NðtÞa2. Since in our case each

step takes time s0 for its completion we getD
x2ðtÞ

E
¼ a2

s0
t; (4)
9044 | Soft Matter, 2012, 8, 9043–9052
so that the diffusion coefficient is D ¼ a2/2s0, where we further

can identify 1/s0 ¼ k as a rate of steps, i.e. the mean number of

steps per unit time.

Another approach was taken by P. Langevin in 1908.23 This

picture is seemingly very different from the previous one (but

essentially is closely related to the former) and assumes that the

particle moving in a fluid medium follows Newtonian mechanics

under the influence of external forces and friction, where the

impacts of thermal motion of the molecules of the surrounding

medium are modeled via an additional random force term

(‘‘noise’’). The equation for an instantaneous particle’s velocity in

the x-direction reads

m _v ¼ �gv + f + x(t) (5)

where m is the particle’s mass, g is the friction coefficient and x(t)

is the random force discussed above. The deterministic external

force f is added to describe possible other interactions and will be

put to zero in what follows. From this equation Langevin was

able to get the mean squared displacement of the particle

presumably not using any additional information except for the

equipartition theorem giving the mean squared velocity of the

particle via mhv2i/2 ¼ (1/2)kBT (with kB being the Boltzmann

constant and T the temperature of the system). Using an over-

damped variant of this equation (i.e. neglecting the inertial term)

may lead to simpler theories applicable in strong friction

regimes.24 This regime corresponds to low Reynolds numbers

characterizing the particles’ motion in the fluid, and is typical for

small objects at the cellular and subcellular scale, see e.g. the

discussion in ref. 25.

To come from velocities to positions, we do not follow

the initial approach by Langevin, which can hardly be general-

ized to anomalous situation, but an alternative one by

Taylor,20 leading to the Taylor (or Green–Kubo) formula for the

diffusion coefficient. Since the particle’s displacement during

time t is given by the integral xðtÞ ¼ Ð t
0
vðt0 Þdt0 (a continuous

analogue of eqn (2)), its squared displacement follows from

a double integral x2ðtÞ ¼
� Ð t

0
vðt0 Þdt0

�2
¼ Ð t

0

Ð t
0
vðt0Þvðt00Þdt0 dt00.

Averaging this over realizations of the process (i.e. over

the ensemble of different diffusing particles) we get�
x2ðtÞ� ¼ D� Ð t

0
vðt0 Þdt0 �2E ¼ Ð t

0

Ð t
0
hvðt0 Þvðdt00Þidt0 dt00. This is the

analogue of eqn (3). The averaged value of the product of

velocities at two times Cvv(t
0,t00) ¼ hv(t0)v(t0 0)i is the velocity–

velocity correlation function. Evidently, it is a symmetric

function of its arguments Cvv(t
0,t0 0) ¼ Cvv(t

0 0,t0), and moreover

Cvv(t,t)¼ hv2(t)i is equal to the (ensemble) mean squared velocity

of the particle at time t. Due to symmetry we can restrict

integration to the domain t0 0 > t0 and double the result:�
x2ðtÞ� ¼ 2

Ð t
0

Ð t
t
0 Cvvðt0 ; t00Þdt00dt0 . We now change integration

variable t00 to time lag s ¼ t0 0 � t0:

�
x2ðtÞ� ¼ 2

ðt
0

dt0
ðt�t0

0

Cvvðt0 ; sÞds: (6)

In the case when the velocity is given by the Langevin

equation, Cvv(t
0,t00) can be evaluated (see e.g. ref. 26)

and reads Cvvðt0 ; t00Þ ¼
�
v2
�
exp
h
� g

m
ðt� t00Þ

i
so that
This journal is ª The Royal Society of Chemistry 2012
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Fig. 1 Panels (a) and (b) illustrate two variants of trapping models in

one dimension: a Havlin–Weiss comb model with infinitely long teeth,

and the model with traps corresponding to potential wells. Note that the

standard situation in (a) corresponds to the case when a particle starts on

a spine of the comb. In the course of time particles find their way deeper

and deeper into the teeth, and the system ages. In (b) aging corresponds to

finding a deeper and deeper trap in the course of time. Panel (c) represents

the Kutner–Kehr model, corresponding to the randomwalk on a random

walk (RWRW). The model gives rise to exactly the same distribution of

the particle’s displacements as the comb one (i.e. is its ‘‘twin’’), but differs

in many other respects. The system, for example, does not age: the

behavior is on the average the same wherever (and therefore—whenever)

one starts.
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Cvv(t
0;s) ¼ hv2iexp[�(g/m)s] is a function only of s and not of t0,

which is characteristic for processes with stationary increments.

For t [ scorr ¼ m/g the internal integral converges toÐ t
0
Cvvðt0 ; sÞds ¼

�
v2
�
scorr, so that hx2(t)i ¼ 2hv2iscorrt, which

allows us to identify D.

3 Models of anomalous diffusion

The classical models by Einstein, Smoluchowski and Langevin

correspond to the motion of a particle in a homogeneous,

quiescent fluid, i.e. in a rather simple environment. The interior

of the cell is however crowded, i.e. full of obstacles, binding sites,

moving parts, active pumps and other intracellular machinery.

Physicists, however, replace this complicated order by a simpler

one or (if this doesn’t work) by a disorder (i.e. by some kind of

randomness) formulating a roughest possible (‘‘minimal’’) model

still reasonably describing the behavior found in experiment. We

start from listing the most popular of these models always

borrowed from other domains of physics where their applica-

bility is well-established, see ref. 27.

3.1 Trap models and CTRW

One of the most popular mathematical models corresponds to

continuous time random walks (CTRW), which are discussed in

detail in a recent book.28 In the previous picture byEinstein (and in

experiments by Perrin closely following the scheme) the step

duration s0 was not an intrinsic property of the process but either

was introduced to simplify theoretical description or was a prop-

erty of the data acquisition procedure. Inmany cases, however, the

steps are real. For example if themotion is governed by a sequence

of binding–unbinding events,29 and the time spent in bound states

is much larger than the one spent in the free motion, the step times

are practically given by the sojourn times in the bound states

(‘‘traps’’). Each step is now characterized by the corresponding

waiting time and by the displacement in space preceding the next

binding event. Assuming the steps in space still to be independent

and taking different times si for their completion gives rise to

CTRW models, which are highly relevant for modeling many

kinds of biological diffusion. In such schemes times si follows some

probability density j(s). One often assumes different si to be

independent, and describes the whole process as a renewal one.28

Even in the case when the renewal structure of the whole process is

violated (as it is the case in one-dimensional random trap models,

see the discussion in ref. 27 and 30 as a newer work), the non-

correlated nature of increments in the corresponding process still

plays a role, and the main properties of such processes are close to

ones of CTRW, although the details may differ. If thewaiting time

density possesses the first moment s0 ¼
ÐN
0

sjðsÞds, we still have
on the average hN(t)i¼ t/s0 andour equation for themean squared

displacement, eqn (4), still holds. If this moment diverges, as it is

the case for power–lawdistributionsj(s)f s�1�awith 0<a<1,we

have hN(t)ix (t/tc)
a, where tc is some characteristic time, and the

whole process is slower than diffusion, hx2(t)i ¼ a2hN(t)if a2ta/tc
a,

i.e. is subdiffusive.28,31,32 The rate of steps, which was constant in

normal diffusion, decays now as k(t)x ta�1/tc
a.

To obtain the mean number of steps, one can note that�
NðtÞ� ¼PN

n¼0 ncnðtÞ where cn(t) is the probability to make

exactly n steps up to the time t. The probability to make no steps
This journal is ª The Royal Society of Chemistry 2012
is given by c0 ¼ 1� Ð t
0
jðsÞds, and all other cn(t) are obtained

iteratively by cnðtÞ ¼
Ð t
0
jðsÞcn�1ðt� sÞds. The easiest way to

perform the calculations is to pass to the Laplace domain.28

We note that the number of stepsN(t) may be considered as an

internal, operational time of a walker, and this is a random but

non-decaying function of the clock time t. In this situation the

mathematicians speak about subordination of random

processes.28 The traps leading to binding events can have an

energetic (binding sites) or geometrical nature: a nice exactly

solvable conceptual model is given by a comb,33 see Fig. 1. If the

motion along the comb’s spine (i.e. along the x-direction) is

considered, the walk in a dangling end (tooth of the comb)

corresponds to trapping: the trapping event finishes when the

particle returns to the spine’s site. This geometrical trapping is

exactly of a kind which is relevant e.g. for the description of

particle transport in Purkinje cells:34–36 here the realistic models

are only slightly more complex. Since in many cases traps can be

identified in independent experiments, trapping models (and

CTRW as their mathematical counterpart) are reasonable

candidates for explanation of diffusion anomalies. We also note

that processes more complex than a CTRW (a simple random

walk interrupted by rests), e.g. L�evy flights interrupted by rests,

L�evy walks etc., were considered in detail and applied to different

situations, especially the ones showing superdiffusion, see ref. 28

and references therein.

An additional appealing property of CTRWs is the existence

of an elegant mathematical tool for its description within the

fractional diffusion equations32,37 (FDEs), e.g. of the type

va

vta
p ¼ Da

v2

vx2
p; (7)

i.e. the equations where the first-order temporal derivative in

eqn (1) is changed for an appropriately defined non-integral
Soft Matter, 2012, 8, 9043–9052 | 9045
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order one, an integro-differential operator with nice mathemat-

ical properties, with Da being the generalized diffusion

coefficient.

Let us note that the regime of the anomalous diffusion persists

indefinitely (in an unbounded medium) only if the mean waiting

time for a step diverges, i.e. when the corresponding waiting

times are not bounded from above. In our initial models this

implies an infinite hierarchy of binding energies8 or a presence of

indefinitely long dangling ends. In the case of finite hierarchies

(as it is always the case in real systems) the final regime will be

normal diffusion8 with the diffusion coefficient governed by the

sojourn time in the deepest traps, and the anomalous regime

appears as a transient describing the crossover between the short-

time behavior and the long-time diffusion with small enough

terminal diffusion coefficient.38 If this regime is long enough one

may speak about an intermediate asymptotic behavior over

a finite time domain;39 in our models we abstract from this fact,

and consider the regime as a true asymptotic behavior. Experi-

mentally it is however not always easy to distinguish between the

intermediate asymptotic regime of anomalous diffusion and

crossovers appearing for other reasons, especially if the data

cover only a couple of orders of magnitude in time. Such

a distinction may be achieved by performing different, inde-

pendent experiments aimed at elucidation of the nature of

behavior, as discussed in.40 The same reservation has to be made

in the cases corresponding to other models of anomalous

diffusion.41
3.2 Labyrinthine environments

Another class of models corresponds to motion in labyrinthine

environments.† Imagine that the crowded interior of the cell only

left narrow, tortuous channels, in which the motion is possible.

One of the examples of such a structure is an incipient percola-

tion cluster.42 A labyrinthine model does not have to be perco-

lation at all, and can be another fractal system, i.e. the one

showing scale invariance and no translational symmetry. The

nature of anomalous diffusion in percolation systems is well

understood, and is common for many other labyrinthine

models42 which can be quite realistic in many cases.12,43–45

Labyrinthine models are often invoked for explanation of

anomalous diffusion in crowded systems and are eagerly simu-

lated. Relatively low popularity of such models among ‘‘pure’’

theorists working on cellular diffusion is due to the fact that there

are no closed equations which allow for the back-of-an-envelope

exact solution. A rare example of an exactly solvable labyrinthine

model is a random walk on a random walk (RWRW) by Kutner

and Kehr,46 Fig. 1, playing in this case the same role of a simply

understandable conceptual model that the comb one plays for

trapping. The interesting property of RWRW and of a comb is

that they are ‘‘twins’’, i.e. share the same PDF in an unbounded

domain (which stresses the fact that the PDF is the least inter-

esting property of the process), but are different in many other

respects.47 Thus, while the PDF in the RWRW model in an

unbounded domain may be considered as given by the same FDE

as for a comb, the solutions to FDE in bounded domains, which
† The expression ‘‘labyrinthine environment’’ stems form Katja
Lindenberg.

9046 | Soft Matter, 2012, 8, 9043–9052
give correct first passage times and other characteristics for

a comb model, fail to reproduce the RWRW behavior.
3.3 Viscoelastic systems

The first two classes of models correspond to a single particle

which moves in a fixed potential landscape which is either rough

(in genuine trap models with energetic disorder) or consists of flat

valleys surrounded by high ridges (in labyrinthine ones). Another

class of models corresponds to the case when the tagged particle

is part of a complex interacting system showing viscoelastic

behavior,48,49 so that the motion of the system’s parts has to take

place in a concerted way, as it is the case when the particle

considered is part of a polymer molecule or of a polymer

network. The corresponding situation physically seems to be

much more involved than previously considered two classes, but

it is often simpler to describe. In many cases the adequate

description is given by a mathematical model called fractional

Brownian motion (fBm), which we discuss in Section 5,

a Gaussian process whose correlation properties are chosen to

mimic the situation at hand.

An instrument of choice here are the generalized Langevin

equations (GLEs) where the friction term now contains an

integral expression describing intrinsic memory of the environ-

ment, for example,50 see also ref. 51 and 52 where the instrument

is used to describe subdiffusion within a single protein molecule

(as an alternative to trapping assumptions53,54),

m _v ¼ �g

ðt
0

Gðt� t0Þvðt0Þdt0 þ f þ xðtÞ (8)

with the power–law kernelG(t)f t�b, andwith theGaussian noise

x(t) which may or may not (depending on the exact setting) satisfy

thefluctuation–dissipation theorem hx(t)x(t0)i¼ kBTG(t� t0). Such
equations appear quite naturally when reducing the Markovian

multiparticle dynamics of a complex system to the behavior of few

relevant coordinates,26 but often are simply postulated as

a reasonable phenomenological description. The exact relation

between the memory exponent b and the one of the anomalous

diffusion a depends on our assumptions about the noise. Also

overdamped variants of such equations are in use: these ones

follow closely the fBm model, which otherwise appears only as

a long time limit of the GLE, c.f. ref. 50. Interestingly enough,

multiparticle viscoelastic models share many common properties

with labyrinthine ones, and indeed the Rouse model of a polymer

(or a single-file diffusion model) is a close relative of the RWRW,

which was introduced as a quenched model thereof, see Fig. 2.

Both these classes have much more in common than each of them

has with trap models.
3.4 Time-dependent diffusion coefficient

Yet another popular model has to be mentioned; this is essen-

tially not a physical model but a fitting means. It has to be taken

seriously because it is often used. If the experimental curves, e.g.

the ones from FRAP (fluorescence recovery after photo-

bleaching), cannot be fitted by expressions obtained by solving

a diffusion equation with a constant diffusion coefficient D, one

assumes that the effective diffusion coefficient depends on the
This journal is ª The Royal Society of Chemistry 2012
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Fig. 2 Upper panel: the kink–jump (Orwoll–Stockmeyer) lattice model

of polymer dynamics, here in one dimension. The allowed motions

correspond to jumps (in 1d: flipping) of the kinks of the chain bringing

the monomer performing the move to one of the allowed sites on the

lattice. The monomers at the ends can always jump. A kink allowed to

move is chosen at random at each time step. The monomer at a position

corresponding to a long rectilinear segment without kinks cannot move.

The configurations resulting from flipping are shown by dotted lines. At

longer times the model leads to Rouse dynamics. Note that the RWRW

model (c) in Fig. 1 corresponds to a situation when only one kink is

allowed to move, while the rest of the configuration is frozen. Lower

panel: a lattice model of a single file diffusion. At each time step,

a particle, chosen at random, can move to a neighboring site, if it is

empty. The model is equivalent to the previous one (but the observable

differs: note that the coordinate z of the particle corresponds to the

contour length variable l, not to the coordinate x of a monomer). To see

the equivalence, associate the empty site in the lower picture with the

bond showing down in the upper picture. The site occupied by a particle

corresponds to a bond showing up. Allowed moves (shown by arrows)

are associated with flipping the kinks or moving the end monomers.
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time scale, and tries to fit the data using essentially the same

expressions now containing a time-dependent diffusion coeffi-

cient D(t) instead.45 One often finds that at longer times D(t)

decays as a power–law D(t) f ta�1. Although the displacement

PDF in this model is exactly the same as in the fBm (which it is

often and erroneously used as a model of), the models have little

in common except for this PDF,55 i.e. the two models are also

‘‘twins’’. Essentially, the D(t)-model (‘‘scaled Brownian motion’’,

sBm) is a close relative of CTRW.
4 Normal and anomalous diffusion

The discussion pertinent to this section can be conducted using

the discrete-time random walk picture, or the CTRW picture,

both based on steps, or using continuous picture based on

velocities (parallel to the Langevin’s). The details of the discus-

sion differ depending on what of three pictures is accepted, but

the results are the same, and the translation between the pictures

is possible at any time. In the discrete random walk description

we start from eqn (3); now however we do not assume steps to be

independent anymore. The CTRW case can either be translated

into the discrete time picture, where the s0-intervals in which no

displacement takes place are assigned si ¼ 0, and only the

intervals containing jumps are assigned nonzero jump lengths, or

considered as it is, i.e. with independent steps following at

random times. Note that although in the first picture the

displacements in different steps for the CTRW with power–law

waiting times are no more independent (it is easy to show that the
This journal is ª The Royal Society of Chemistry 2012
zero displacement follows with the higher probability after

another zero one) they are still uncorrelated, hsisji ¼ 0 for i s j.

The continuous (Taylor–Kubo) description follows when

considering the limiting case of the step description for

s0 / 0 (and abandoning the request that different steps have to

be independent). In our discussion here we adopt the velocity

description of the motion which is always a correct microscopic

description, and translate the results into the language of steps at

the end of the section. We restart from our eqn (6):

�
x2ðtÞ� ¼ 2

ðt
0

dt0
ðt�t

0

0

Cvvðt0 ; sÞds: (9)

For a particle in a contact with equilibrium bath, like discussed

in Section 2, and for other processes with stationary increments

Cvv(t;s) depends only on the time lag and not on the initial time t0,
since the properties of the system do not change. If the depen-

dence on t does not vanish, there are some physical changes in the

system (e.g. aging). Then the velocity is given by a non-stationary

random process and the coordinate is not a process with

stationary increments.

Let us now consider the integral Iðt� t
0
; t

0 Þ ¼ Ðt�t
0

0

Cvvðt0 ; sÞds.
In processes with stationary increments the dependence of

Cvv(t
0;s) on t0 is suppressed so that IðtÞ ¼ Ð t

0
CvvðsÞds depends

only on the upper limit of integration. If this integral tends to

a finite value D ¼ limt/NI(t), then

�
x2ðtÞ� ¼ 2

ðt
0

dt0 Iðt� t0 Þ/2Dt; (10)

and we have to do with normal diffusion with D ¼ ÐN
0

CvvðsÞds.
If we takeCvv (s)¼ hv2if(s) (where f(s)¼Cvv(s)/Cvv(0)hCvv(s)/hv2i)
then D ¼ hv2iscorr where scorr ¼

ÐN
0

f ðsÞds is the correlation time

of the process. If the corresponding limt/NI(t) diverges (i.e.

hx2(t)i grows faster than the first power of time), one has to do

with superdiffusion. Since this corresponds to scorr / N, the

process is strongly persistent. Such persistence56 leads for

example to the fact that diffusion behavior in model two-

dimensional fluids differs strongly from the prediction of the

Einstein’s and Langevin’s approaches, as first observed in ref. 57

and 58. If the corresponding limit vanishes, we have to do with

subdiffusion. Note that since Cvv(0) ¼ hv2i > 0 and since Cvv(s) is
typically a continuous function of s, it has to change sign at

least once in order to get the integral vanishing. This means

that a period of motion, say, with positive velocity is typically

followed by a period of motion with negative velocity, and the

motion is antipersistent.59,60 We note that Cvv is amenable to

direct measurements.9 Both the motion of a monomer in a poly-

mer chain, and the motion of a particle in a labyrinth are anti-

persistent, albeit on different reasons: in the first case, the

monomer trying to go too far is pulled back by its neighbors, in

the other case, the particle encountering a wall has to return, and

makes a step in the opposite direction.

Although one can formally define the time-dependent diffu-

sion coefficient to match the behavior of hx2(t)i in eqn (10) by

taking DðtÞ ¼ d

dt

�
x2ðtÞ�, the usefulness of such a quantity is

quite restricted on the reasons discussed at the end of Section 6.1.
Soft Matter, 2012, 8, 9043–9052 | 9047
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Let us now consider the case when the velocity process is

not stationary, and Cvv(t
0;s) depends on its both arguments.

It can happen, that the limit t / N of the integral

Dðt0 Þ ¼ Ð t
0
Cvvðt0 ; sÞds converges for any particular t0, but

depends on this t0. In this case we may have to do with a truly

time-dependent diffusion coefficient D(t0), and our eqn (10) now

is changed for
�
x2ðtÞ� ¼ 2

Ð t
0
Dðt0 Þdt0 (note that the process

doesn’t yet have to be a simple Fickian diffusion). Vanishing of

the corresponding D(t) at long times leads to subdiffusion, its

divergence to a superdiffusive behavior. The nature of these sub-

and superdiffusive processes is however vastly different from the

ones previously discussed.

The translation between the continuous picture and fixed-time

random walk follows by changing integrals for corresponding

sums and velocity–velocity correlation functions for step–step

ones. We see that for antipersistent random walks the steps in

one direction are typically followed by the steps in the opposite

one, while in CTRW-like situations steps are uncorrelated, and

either the mean squared step length, or stepping rate, or both,

change with time.
5 Position–position correlation function

Let us now concentrate on the particle’s position. TheMSD from

the initial position gives us only the minimum of information on

the diffusive properties. More information is given by the posi-

tion–position correlation function at two different times t and s:

f (t,s) ¼ hx(t)x(s)i (11)

with hx2(t)i ¼ f (t,t). From this the MSD during some time

interval follows:

h[x(t) � x(s)]2i ¼ hx2(t)i + hx2(s)i � 2f (t,s). (12)

Thus, the position–position correlation function contains

information on MSD during time intervals not starting at t ¼ 0.

For processes with stationary increments h[x(t) � x(s)]2i ¼
hx2(t � s)i and therefore

fðt; sÞ ¼ 1

2

h�
x2ðtÞ�þ �x2ðsÞ�� �x2ðt� sÞ�i: (13)

If the corresponding process belongs to the class of anomalous

diffusions, then

h[x(t) � x(s)]2i ¼ hx2(t � s)i ¼ K(t � s)a (14)

with K being some constant (we assume t > s). The celebrated

fractional Brownian motion (fBm) model ofMandelbrot and van

Ness61 (essentially introduced by Kolmogorov in 1940 (ref. 62))

is exactly the model of this class. Taking hx2(t)i ¼ Kta and

h[x(t) � x(s)]2i as given by eqn (14) we get

fðt; sÞ ¼ K

2

�
ta þ sa � jt� sja�: (15)

In addition the model assumes that the PDF of displacements

is Gaussian. There are at least two physical models generating

such kind of behavior: the single file diffusion and the Rouse

model of a polymer chain,63 both corresponding to a ¼ 1/2. Of

course, as always in physical systems, the behavior is bounded to
9048 | Soft Matter, 2012, 8, 9043–9052
a finite time domain which (in the case of the polymer) stretches

between the time of the order of the time a monomer needs to

diffuse over the Kuhn’s length of the chain and the time the chain

as a whole needs to diffuse over its own size. Since these two are

separated by a factor of the order ofN2 (whereN is the number of

monomers in the chain) this time domain can be very large. We

note that single file diffusion (self-diffusion of particles organized

in one-dimensional arrays, where individual particles are not

allowed to change the order of their arrangement) is a relevant

model for description of experimental findings in zeolites64 and

other nanoporous systems and as such has also found much

theoretical attention, see e.g. ref. 65–67. The single-file models

may explain some properties of conductivity in ion channels.68,69

The behavior of subdiffusion as an intermediate asymptotic

regime in single file systems is discussed in:70 the crossover time to

terminal normal diffusion grows proportionally to the square of

the channel’s length.

The popularity of Gaussian models in the physical community

is partly due to the fact that Gaussian distributions appear

universally when considering fluctuations of extensive thermo-

dynamical variables in situations close to equilibrium. In the case

of diffusion, the variable we are looking at is not an extensive

thermodynamical one, there is no special reason for it to be

Gaussian, and realistic situations can be quite involved, see e.g.

ref. 71 and 72 for the simulation of the intramolecular diffusion

in peptides. However, the exact form of the PDF (i.e. higher

moments) seldom plays a role in applications, and a Gaussian

approximation (i.e. using fBm as a model) can be quite safe.

Let us now consider a process whose increments in the forth-

coming time intervals are not correlated with ones at previous

ones (as it is the case in CTRW). Taking t > s we can put

f (t,s)¼ hx(t)x(s)i ¼ h[x(s) + Dx(s,t� s)]x(s)i where Dx(s,t� s) is

the displacement of particle during the time interval of duration

t � s starting at s. The mean hDx(s,t � s)x(s)i vanishes because
the increments at times which are larger than s are symmetrically

distributed and uncorrelated with those comprising x(s), so that

f (t,s) ¼ hx(t)x(s)i ¼ hx2(s)i and therefore

h[x(t) � x(s)]2i ¼ hx2(t)i + hx2(s)i � 2hx2(s)i ¼ hx2(t)i � hx2(s)i.
(16)

For hx2(t)i ¼ Kta we get

h[x(t) � x(s)]2i ¼ K(ta � sa). (17)

Note that the only case when two equations, eqn (14) and (17),

are fulfilled simultaneously corresponds to a ¼ 1, i.e. to normal

diffusion.
6 Aging and ergodicity breaking

6.1 Aging

Let us assume that our system was prepared in its present state at

some time t0, while our measurement started at some later instant

of time. For example, in the experiments on dispersive transport

in disordered semiconductors which served as a motivation for

formulating the CTRW scheme with power–law waiting times,73

charge carriers were absent in the system before they were created

by the light flash, and therefore the time t0 was well-defined.
This journal is ª The Royal Society of Chemistry 2012
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Whenever we start our measurement on a process with

stationary increments, the result of this measurement only

depends on the time-lag between the measurement points. There

is no chance, performing a measurement in a time interval

between t1 and t2 to tell, what was the time instant t0 when the

system was prepared:

h[x(t2 � t0) � x(t1 � t0)]
2i ¼ hx2(t2 � t0 � t1 + t0)i ¼ K(t2 � t1)

a.

(18)

Therefore our process possesses no age (and, respectively, does

not age). In the case of a process with uncorrelated increments

different from simple diffusion the situation is vastly different.

Let our measurement start at time t1 and monitor the mean

squared displacement for different t2:

h[x(t2 � t0) � x(t2 � t0)]
2i ¼ K[(t2 � t0)

a � (t1 � t0)
a]. (19)

If enough data points are collected, we can estimate all

parameters of the motion including t0, (as long as as 1, in which

case the dependence on t0 cancels out), i.e. obtain the age of the

system. In this case, the process possesses age and continuously

ages.

The corresponding behavior can be expressed as a function of

the age of the system at the beginning of observation ta ¼ t1 � t0
and of the observation time tobs ¼ t2 � ta:

�
x2ðtobs; taÞ

� ¼ K
h
ðtobs þ t1Þa�ta

a
i
¼ Kta

a

"�
tobs

ta
þ 1

	a

�1

#
:

(20)

The dependence on tobs (for fixed ta) is described by the

dimensionless scaled variable q ¼ tobs/ta and corresponds to

a pure, or full aging. Also more complicated forms of aging

are known (in different models, e.g. for a one-dimensional

trap model76,77): if one can represent the data as a function of

q ¼ tobs/ta
m with m s 1 one speaks about subaging if m < 1 and

about superaging if m > 1.

Note that if tobs� ta, we can expand the expression in brackets

in eqn (20), and see that in this case

hx2(tobs,ta)i z Kata
a�1tobs, (21)

i.e. it grows proportionally to the observation time and therefore

exhibits apparently normal diffusion with an age-dependent

diffusion coefficient.74,75
6.2 Moving time averages

The linear growth of the mean squared displacement at obser-

vation times smaller than aging time leads to another property of

systems exhibiting ongoing aging: the discrepancy between the

ensemble means and the moving-time averages over a single long

trajectory given by

�
x2ðtÞ�

MTA
¼ 1

T � t

ðT�t

0



xðt0 þ tÞ � xðt0 Þ�2dt0 : (22)

Since in CTRW and related models such an average still may

not converge to a sharp value even for T/N (which in fact will
This journal is ª The Royal Society of Chemistry 2012
be discussed in Section 6.4), theoretically it is easier to discuss

a double average over the time and over the ensemble of different

trajectories,

D�
x2ðtÞ�E ¼ 1

T � t

ðT�t

0

D

xðt0 þ tÞ � xðt0 Þ�2dt0 E; (23)

which then goes as

hhx2(t)ii f Ta�1t, (24)

i.e. again shows normal diffusion.78,79 The strong discrepancy

between the ensemble and moving time averages (implying non-

ergodicity of such systems) may serve as a test which allows us to

distinguish between the trap models and models with stationary

increments, as labyrinthine and viscoelastic ones.80 Other tests of

ergodicity,81 or tests for temporal homogeneity (like the p-vari-

ation test82) can also reliably serve the purpose on the single

trajectory level.83,84 In ref. 85 the p-variation test reliably distin-

guished between the predictions of CTRW and fBm, but was not

able to discriminate between the fBm and GLE models fitted

to data.

One can also have to do with more complex situations, e.g.

when a particle moves in a percolation structure, or in a tortuous

channel, or is a part of the large molecule, and may get trapped.

Such situations lead to subdiffusion of mixed origins,86 which

are indeed observed experimentally.87–89 In this case the MSD in

aged diffusion or in the moving-time (or double) average does

not have to follow a normal diffusion pattern, but there are still

large discrepancies between the behavior of the ‘‘young’’ and the

aged system or between the ensemble and the moving-time

averages, and the test based on the comparison of the both is

still decisive.

Note, that if we take seriously a model of diffusion with time-

dependent diffusion coefficient, D(t) f (t � t0)
a�1,with

vp

vt
¼ DðtÞ v

2p

vt2
(25)

and calculate the mean squared displacement in the interval

between t1 and t2, we get exactly eqn (17), and both its conse-

quences, eqn (21) and (24) still hold. This is a reason why using

the time-dependent diffusion coefficient may give an adequate

description for a process with uncorrelated increments, but is not

safe for the one with stationary ones. Indeed, the model based on

the diffusion equation with time dependent diffusion coefficient,

eqn (25) is a close relative of CTRW but not of fBm or of

diffusion on a percolation cluster. It can be considered as

a Gaussian approximation for CTRW, and its nature as a mean-

field CTRWmodel gets evident, if we consider a cloud of random

walkers performing traditional CTRW, and concentrate on the

behavior of its center of mass (i.e. on the average position over

many walkers starting all in the same place but having different

step times and directions): this one is exactly described by eqn

(25). We note that both CTRW and sBm models can be

considered as models subordinated to normal Brownian motion

(i.e. obtained via time transformation of such a motion). In

CTRW this time transformation is random, while in sBm it is

given by a deterministic function, which describes the decaying

rate of steps.
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6.3 Aging and equilibration

So far we discussed the mathematical roots of aging. Let us

discuss physics behind it. A single particle (a point mass with

three degrees of freedom) can neither be in nor out of equilibrium

with its environment constituting a heat bath: the notion of

thermodynamical equilibrium implies a large system or an

ensemble of small ones. In the last case it is a statistical distri-

bution in the ensemble which may (or may not) be in equilibrium

with the bath. The situation is the same if the state of the bath is

not an equilibrium but a stationary one (with the only unpleasant

difference that we often do not know, what set of macroscopic

variables is sufficient to characterize it).

With this respect, two kinds of experiments on diffusion have

to be distinguished. An experiment of the first type starts at t¼ t0
with placing a particle into the system, and then following it with

our measurement appliance. Another experiment corresponds to

a different situation: the system was prepared long ago, and we

tag particles already preexisting in the system. In this case the

initial particle positions are sampled with probabilities they

would have in an equilibrium (or stationary) or at least in

a strongly aged state. While this second situation corresponds to

the behavior in the vicinity of equilibrium (or stationary) state,

the first one may or may not be close to equilibrium (or

stationary) depending on how far the equilibrium distribution in

the system is from the one corresponding to the (typically only

poorly controlled) initial one.

Physical models showing aging start far from equilibrium or

stationarity: in the potential trap model the homogeneous

distribution of initial positions does not correspond to the

Boltzmann distribution over traps of different depth which is an

equilibrium one. In the diffusion on a comb, starting on a spine

(as is assumed in the standard model) does not correspond to

equilibrium, in which case most of the particles sit in the teeth.

After equilibration, the anomalous diffusion in the system either

comes to a halt (all particles sitting in deepest traps, or getting

lost in the teeth) or crosses over to the normal one (if the depth of

the traps is bounded, or the length of the teeth is finite). On the

contrary, considering the particle’s diffusion on the infinite

cluster of the percolation system, we see that its initial homoge-

neous distribution over the cluster corresponds to the equilib-

rium distribution, and no aging is possible. This physical reason

for aging as resulting from starting extremely far from the

equilibrium is not obvious when only considering reduced

models (e.g. renewal CTRW, where it is mirrored by the deviance

of the waiting time distribution for the first step from all other

waiting time densities28), but can be easily understood when

redoing the corresponding derivations (e.g. starting from the

time-dependent rate model of ref. 90 or ref. 91) leading from the

physical to the mathematical model.

If our system is close to equilibrium or stationarity, i.e. if we

have waited long enough before starting the measurement, or

have censored a considerable part of our numerical trajectory, it

is highly improbable that the diffusion anomalies are solely due

to traps and can be adequately captured by CTRW models.

Using fractional diffusion equations for data fitting in this case is

not physically motivated. The reason for anomaly in the case

must lay in the existence of some underlying (subordinated)

process with stationary increments (diffusion on a fractal,
9050 | Soft Matter, 2012, 8, 9043–9052
viscoelastic motion, etc.), although its properties might be

modified by the existence of traps, leading to the subdiffusion of

mixed origins.
6.4 Lack of self-averaging

There is another consequence of the (weak) ergodicity breaking

in CTRW-like systems connected with their time-inhomoge-

neity.92 A single (however long) trajectory of a CTRW even

confined to a small domain does not fill this domain homoge-

neously; the homogeneity only appears on the average. Here

situations in which CTRW is an exact model (like for a comb)

and in which CTRW appear when averaging over many reali-

zations of the random potential, differ. In the last case this

inhomogeneous distribution essentially mimics the strongly

inhomogeneous Boltzmann distributions in different realizations

of traps.93 CTRWs in finite domains possess many other quite

peculiar properties, see e.g. ref. 95 and 96 which we do not

consider here in detail.

If not confined, each of the trajectories leads to its own value of

the effective diffusion coefficient obtained via a moving-time

averaging procedure, eqn (22), and these values do not converge

to a single, sharp value even in the limit of infinitely long

trajectories78,79 (as also observed experimentally94), but the

probability distribution of diffusivities tends to a universal form.

Therefore, CTRWmodels exhibit universal fluctuation behavior.

A similar lack of self-averaging and strong fluctuations (now not

connected with non-stationarity, i.e. lack of translational

invariance in time, but with the lack of translational invariance in

space) can be observed in labyrinthine systems:45 here different

realizations of the structure (or behaviors of trajectories starting

at distant points of the same structure) may be strongly different;

also more involved situations are observed.97 On the other hand,

the fBm and the sBm models do not lead to large and universal

fluctuations (although in the fBm case the convergence can be

rather slow98). Fractional Brownian motion is not a good

candidate model if experiments hint towards strong inhomoge-

neity of data.
7 Summary

Let us summarize our discussion. A particle’s motion in crowded

cellular environments often exhibits anomalous diffusion. The

nature of this anomaly can differ for different types of particles

and cells, and for different experimental conditions. The

assumptions on this nature give rise to different physical models:

thus the environments in which the motion takes place may

contain trapping sites, labyrinthine paths, or maybe viscoelastic

structures which the particles observed are attached to. Each of

these physical assumptions can be translated into a mathematical

model by assuming some additional details, abstracting from

some other ones, or by releasing some physical restrictions (e.g.

assuming that a process which is observed in a confined time

window may proceed indefinitely). Thus, trapping under corre-

sponding conditions can be mapped on continuous time random

walks, a general labyrinthine structure can be modeled by Ber-

noulli percolation, and the motion of a monomer in a polymer

chain be approximated by a fractional Brownian motion. Some

mathematical models come with nice mathematical instruments
This journal is ª The Royal Society of Chemistry 2012
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for their description (CTRW with fractional diffusion equations,

fBm with fractional Langevin ones). The beauty of the instru-

ment sometimes seduces an investigator to use it without any

connection to the corresponding mathematical model, let alone

the physical one. The author hopes that a discussion above will

reduce the danger of such inappropriate use.
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