ac-driven quantum systems: cold atom ratchets and beyond

ac-driven quantum systems: cold atom ratchets and beyond

Theory

S. Denisov, A. Ponomarev, S. Kohler & P. Hänggi S. Flach, F. Renzoni, L. Morales - Molina, Y. Zolotaryuk, O. Yevtushenko

Experiments

Ratchet Idea

ac-driven quantum systems: cold atom ratchets and beyond

- driving force of zero mean
- nonlinearity
- asymmetry

The model

$$m\ddot{x}=\dot{p}=\sin(x)+E(t)$$

$$E(t+T)=E(t), \quad \langle E(t) \rangle_T=0$$

Mixed phase space

quantum systems: cold atom ratchets and bevond

Symmetries

quantum systems: cold atom ratchets and beyond

$$m\ddot{x} = \dot{p} = \sin(x) + E(t), \quad J = \lim_{t \to \infty} x(t)/t = \frac{1}{m} \langle p(t) \rangle$$

$$S_1: (x, p, t) \rightarrow (x, -p, -t)$$

 $E(-t) = E(t)$

 $S_2: (x, p, t) \to (-x, -p, t + T/2)$ E(t + T/2) = -E(t)

S. Flach, O. Yevtushenko, & Y. Zolotaryuk, PRL 84, 2358 (2000)
S. Denisov, *et al.*, PRE 66, 041104 (2002)

ac-driven quantum systems: cold atom ratchets and beyond

$$E(t) = E_1 \cos(\omega t) + E_2 \cos(2\omega t + \theta)$$

$$J(\theta) = -J(-\theta) = -J(\theta + \pi), \ \ J(\theta) \sim \sin(\theta)$$

Ratchet with cold atoms

M. Schiavoni, L. Sanchez-Palencia, & F. Renzoni, PRL 90, 094101 (2003)

ac-driven quantum systems: cold atom ratchets and beyond

Peculiar driving: experiment with cold atoms $E(t) = \omega_2 \sin(\omega_2 t) [a \sin(\omega_1 t) + b \sin(2\omega_1 t)]$

 $+\omega_1\cos(\omega_2 t)[a\cos(\omega_1 t)+2b\cos(2\omega_1 t)]$

 $\omega_2 = (p/q)\omega_1$: E(t) = -E(t + T/2) if q is even and p is odd R. Gommers, S. Denisov, & F. Renzoni, PRL 96, 240604 (2006)

ac-driven quantum systems: cold atom ratchets and beyond

Schrödinger equation

$$i\hbar \frac{\partial}{\partial t} |\psi(t)\rangle = H(x, \hat{p}, t; t_0) |\psi(t)\rangle$$
$$H(x, \hat{p}, t; t_0) = \frac{\hat{p}^2}{2} + U_0(1 + \cos(x)) - xE(t; t_0)$$
$$E(t; t_0) = E(t), \quad \text{if} \quad t \ge t_0, \quad E(t; t_0) = 0 \quad \text{otherwise}$$
Floquet states

$$ert \phi_{lpha}(x, t_{0} + T)
angle = e^{-iE_{lpha}T/\hbar} ert \phi_{lpha}(x, t_{0})
angle, \quad lpha = 1, 2, 3, ...$$

 $ert \psi(x, t_{0})
angle = \sum_{lpha} C_{lpha}(t_{0}) ert \phi_{lpha}(x, t_{0})
angle$

S. Denisov, L. Morales-Molina, S. Flach, & P. Hänggi, PRA 75, 063424 (2007)

Floquet state polarization

$$\theta = 0$$
 $\theta \approx \pi/2$

T. Salger et al., Science 326, 1241 (2009)

ac-driven quantum systems: cold atom ratchets anc beyond

Classical ratchet

Quantum ratchet

$$J = J_{chaotic}$$
 $J = \sum_{lpha} C_{lpha}(t_0) \cdot v_{lpha}$

P. Hänggi and S. Denisov, Physik Journal 9, 18 (2010)

ac-driven quantum systems: cold atom ratchets anc beyond

Flashing ratchet $U(x, t) = E(t) \cdot \tilde{U}(x)$ $E(t) = E_0(1 + \epsilon_1 \cos(\omega t) + \epsilon_2 \cos(2\omega t + \theta))$ $\tilde{U}(x) = U_1 \cos(x) + U_2 \cos(2x + \psi)$

S. Denisov, L. Morales-Molina, S. Flach, & P. Hänggi, PRA 75, 063424 (2007)

Quantum Ratchets with Utracold Atoms

ac-driven quantum systems: cold atom ratchets and beyond

Ratchet current

T. Salger et al., Science 326, 1241 (2009)

Quantum Ratchets with Utracold Atoms

Quantum features

modulation periods

T. Salger et al., Science 326, 1241 (2009)

Density matrix instead of wave function

$$egin{aligned} \dot{arrho}_{lphaeta} &= -rac{\mathrm{i}}{\hbar}(\epsilon_{lpha}-\epsilon_{eta})arrho_{lphaeta}+\sum_{lpha'eta'}\mathcal{L}_{lphaeta,lpha'eta'}\,arrho_{lpha'eta'}, \ &J &= \sum_{lphaeta}arrho_{lphaeta}ar{p}_{lphaeta}; \quad ar{p}_{lphaeta} &= \langle\langle\phi_{lpha}(t)|\hat{p}|\phi_{eta}(t)
angle
angle_{ au}. \end{aligned}$$

S. Denisov, S. Kohler, & P. Hänggi, EPL 85, 40003 (2009)

ac-driven quantum systems: cold atom ratchets and beyond

ac-driven quantum systems: cold atom ratchets and beyond

Strong decoherence

Underdamped ratchets

O. Yevtushenko *et al.*, EPL 54, 141 (2001)

- S. Denisov, S. Kohler, & P. Hänggi, EPL 85, 40003 (2009)
- R. Gommers, S. Bergamini, F. Renzoni, PRL 95, 073003 (2005)

Weak decoherence

S. Denisov, S. Kohler, & P. Hänggi, EPL 85, 40003 (2009)

$$J = \sum_{lphaeta} arrho_{lphaeta}^{*} ar{p}_{lphaeta}; \quad ar{p}_{lphaeta} = \langle \langle \phi_{lpha}(t) | \hat{
ho} | \phi_{eta}(t)
angle
angle_{ au}.$$

S. Denisov, S. Kohler, & P. Hänggi, EPL 85, 40003 (2009)

... and beyond

2d ratchets

ac-driven quantum systems: cold atom ratchets and beyond

S. Denisov, Y. Zolotaryuk, S. Flach, & O. Yevtushenko, PRL 100, 224102 (2008)

... and beyond

2d ratchets with cold atoms

ac-driven quantum systems: cold atom ratchets and beyond

V. Lebedev & F. Renzoni, PRA 80, 023422 (2009)

Creation of 2d vortices

ac-driven quantum systems: cold atom ratchets and beyond

S. Denisov, Y. Zolotaryuk, S. Flach, & O. Yevtushenko, PRL 100, 224102 (2008)

Trends & Perspectives

ac-driven quantum systems: cold atom ratchets and beyond

Many-body/nonlinearity effects:

BEC: nonlinear effects

D. Poletti, G. Benenti, G. Casati, P. Hänggi, & B. Li, PRL 102, 130604 (2009)

BEC: matter-wave solitions

D. Poletti et al., PRL 101, 150403 (2008)

Trends & Perspectives

ac-driven quantum systems: cold atom ratchets and beyond

Many (so far, two)-body ratchets

A. Ponomarev, S. Denisov, & P. Hänggi, PRL 102, 230601 (2009)

Trends & Perspectives

ac-driven quantum systems: cold atom ratchets and beyond

Quantum ratchets in 2d & 3d

Quantum Ratchet Performance Under Constant Load

Ultracold atom ratchet + bias

0

quantum systems: cold atom ratchets and beyond