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1905: (Special) Relativity 
✓ unifies Maxwell’s theory & mechanics
✓ inertial observers equivalent
✓ c=const  for inertial observers
✓ v<c for massive particles
✓ Lorentz transformation
✓ energy-mass-momentum relation

✓ length contraction
✓ time dilatation

➡ What about thermodynamic quantities?
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moving bodies 
appear cooler
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moving bodies 
appear hotter
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ρ = ρ0 : φJ ∝ exp(−βp0) ⇔ f(t→∞) (4)

ρ ∝ 1
p0

: φMJ ∝
exp(−βp0)

p0
⇔ f̂(τ →∞) (5)

Temperature

T ′(w) = T (1− w2)α/2 α =






+1 Planck, Einstein
0 Landsberg, van Kampen
−1 Ott

(6)

1D Jüttner

φJ(p) ∝ exp[β(p2 + M2)1/2] (7)

Ansatz 3D Jüttner

f(t, x,p) = ϕ(x,p) = '(x) φJ(p), (8a)

with Jüttner momentum distribution [20, 21]

φJ(p) = Z−1 exp(−βp0), β > 0 (8b)

Z = 4πm3 K2(βm)/(βm) is the normalization constant, Kn(z) the nth modified Bessel function of the second kind [22],
and p0 = (m2 + p2)1/2 the particle energy.

f(t, x,p) = '(x) exp(−βp0) (8c)

Four vector currents

sµ(t, x) = −N

∫
d3p

p0
pµ f ln(h3f) ⇒ ∂νsν ≡ 0 (8d)

jµ(t, x) = N

∫
d3p

p0
f pµ ⇒ ∂νjν ≡ 0 (8e)

θµν(t, x) = N

∫
d3p

p0
f pµpν ⇒ ∂µθµi (≡0 (8f)

N[H] :=
∫

H
dσν jν = N[H′] (8g)

S[H] :=
∫

H
dσν sν = S[H′] (8h)

Uν [H] :=
∫

H
dσµ θµν (= Uν [H′] (8i)

Explicitly

N[{t = ξ0}] =
∫

t=ξ0

dσ0 j0 =
∫

t=ξ0
d3x j0 = N (8j)

S[{t = ξ0}] =
∫

t=ξ0
dσ0 s0 =

∫

t=ξ0
d3x s0 = N ln(V Z/h3) + βN

〈
p0

〉
(8k)

Identities

N[H] = N′[H] = N′[H′] = N[H′] (8l)

S[H] = S′[H] = S′[H′] = S[H′] (8m)
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“Temperature” problem 
in RTD?

moving bodies 
appear cooler

T=T’

.. hotter!

maybe ... not

1907/08

1940s

1966-69

1923/1963

CK Yuen, Amer. J. Phys. 38:246 (1970)
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Warm-up:   1D two-component gas model

PRL 99: 170601(2007)

t

x

rest frame
Stationarity, ergodicity and entropy in relativity

Numerical simulations. – In order to understand
how ensemble-averaged and time-averaged PDFs are
related to each other, we consider the fully relativistic
(1+1)-dimensional two-component gas model studied
in [35]. In this model, the gas consists of classical,
impenetrable point-particles (N1 light particles of rest
mass m1, and N2 heavy particles of rest mass m2 >m1).
Neighboring particles may exchange momentum and
energy in elastic binary collisions, governed by the
relativistic energy-momentum conservation laws,

ε(mA, pA)+ ε(mB , pB) = ε(mA, p̃A)+ ε(mB , p̃B),

pA+ pB = p̃A+ p̃B , (7)

where A, B ∈ {1, 2}, ε(m, p) = (m2+ p2)1/2, p=mvγ(v),
and tilde-symbols indicate quantities after the collision.
Interactions with the boundaries are elastic, i.e., p→−p
in the lab frame Σ0, defined as the rest frame of
the boundaries. The dynamics of this system can be
exactly integrated numerically, and the total energy
E0 =

∑N1
i=1 ε(m1, pi)+

∑N2
j=1 ε(m2, pj) is conserved in the

lab frame Σ0. We distinguish four types of measurements:

(a) t-ensemble average: After a period of equilibration, we
simultaneously measure the velocities of all particles
in Σ0 at a given instant of time t. This procedure is
repeated for energetically equivalent random initial
conditions mimicking a micro-canonical ensemble at
energy E0 [35].

(b) t-trajectory average: We choose a specific particle of
either species and measure their velocities at several
equidistant instants of time t(1), . . . , t(n).

(c) τ -ensemble average: We compute the proper time τi
for each particle during the simulation and measure
their velocities at a fixed proper-time value τ1 = . . .=
τN1+N2 = τ . Again, this procedure is repeated for
energetically equivalent random initial conditions.

(d) τ -trajectory average: We choose a specific particle of
either species and measure their velocities at several
equidistant instants of proper time τ (1), . . . , τ (n).

Results. – Figure 1 depicts the equilibrium distri-
butions computed from one-dimensional simulations as
described above. In the case of the ensemble measure-
ments (a) and (c) we averaged over 50 different, ener-
getically equivalent initial conditions. The single-particle
time averages (b) and (c) were determined by measuring
velocities at 5 · 105 instants using time intervals∆t=∆τ =
4 · 10−4 L/c, where L is the system’s spatial extension.
Let us first compare the distribution functions obtained

by the two t-averaging methods (a) and (b), respectively.
As evident from the (blue) diamonds and (magenta) cross-
symbols in fig. 1, the two different procedures both yield
a Jüttner distribution with same parameter β for either
species, i.e.,

f∞(v) = fJ(v). (8a)
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Fig. 1: (Color online) Numerically measured one-particle veloc-
ity PDFs using lab time and proper-time parameterizations,
respectively. Symbols/methods: (a) t-ensemble average: blue !;
(b) t-trajectory average: magenta ×; (c) τ -ensemble average:
red !; and (d) τ -trajectory average: green +. The results
are based on simulations with N1 = 5000 light particles of
mass m1 and N2 = 5000 heavy particles with mass m2 = 2m1.
The solid curves correspond to Jüttner functions (6) with
β = 0.709 (m1c

2)−1, but different particle masses, respectively.
The dashed lines show the corresponding modified Jüttner
distribution, eq. (8b), with the same parameter β. As the
distributions are symmetric with respect to the origin, only
the positive velocity axis is shown.

Similarly, upon comparing the histograms obtained by
(c) τ -ensemble averaging, see red triangles, and (d)
τ -trajectory averaging, green plus symbols, we find
that both methods give the same distribution. But this
proper-time equilibrium PDF differs from the Jüttner
function by a factor 1/ε, i.e.,

f̂∞(v) = α
−1fJ(v)/γ(v) =: fMJ(v). (8b)

Thus, on the one hand, our simulations confirm the
validity of eq. (5) for the one-dimensional two-component
gas model. One the other hand, eqs. (8) provide two
“soft” ergodicity statements on the level of the one-
particle velocity distributions (we adopt the term “soft”
rather than “weak”, which is already commonly used
in a different context [8]). Evidently, it is necessary to
distinguish different time parameters when discussing
ergodicity in relativistic systems.
The “τ -stationary” modified Jüttner function (8b) was

derived earlier in ref. [45] from a simple collision invariance
criterion. Yet another derivation, based on symmetry and
entropy arguments, was given in ref. [14]. However, at that
time it was not understood that the two distributions fJ
and fMJ refer to different time parameters, respectively.
In fact, combining the above results with the arguments
given in [14] reveals an interesting relation between time
parameters and (relative) entropy in special relativity.

Maximum (relative) entropy principle. – To
establish a connection between t, τ and entropy, let us

30005-p3
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Σ , and can be described by a Σ -time-independent, normalized
one-particle phase-space probability density function (PDF)

f (t ,x,p)= ϕ(x,p)= "(x)φJ(p) (3a)

with Jüttner momentum distribution20,21

φJ(p)=Z−1exp(−βp0), β > 0 (3b)

Z = 4πm3K2(βm)/(βm) is the normalization constant, Kn(z)
is the nth modified Bessel function of the second kind22 and
p0 = (m2 +p2)1/2 is the particle energy. Later, the distribution pa-
rameter β will be identified with the inverse thermodynamic (rest)
temperature of the gas. The exact functional form of the spatial
density " in equation (3a) is irrelevant, as long as " is normalizable
(that is, restricted to a finite spatial volume set V⊂R3 in Σ ). For
simplicity, we may consider a spatially homogeneous gas enclosed
in a stationary cubic boxV=[−L/2,L/2]3 inΣ , corresponding to

"(x)=
{
V −1, if x∈V
0, if x $∈V (3c)

Here,V =L3 is theΣ -simultaneously measured (Lebesgue) volume
of V in Σ .

The phase-space PDF f is a Lorentz scalar23. Thus, the current
density jµ and energy–momentum tensor θµν can be constructed
from f by:

jµ(t ,x)=N
∫

d3p
p0

f pµ (4a)

θµν(t ,x)=N
∫

d3p
p0

f pµpν (4b)

where d3p/p0 is the Lorentz-invariant integration measure in
relativistic momentum space. Concretely, for equation (3) we
have (jα)= (",0) and

θµν =N "

{ 〈p0〉, µ = ν = 0
β−1, µ = ν = 1,2,3
0, µ $= ν

(5)

where 〈p0〉=3β−1+mK1(βm)/K2(βm) is themean energy per par-
ticle. One readily verifies that ∂α jα ≡ 0, whereas ∂µθµi =β−1∂i" $= 0
at the boundary ofV, in agreement with equation (1). Confinement
generates stress—the importance of this seemingly trivial statement
shall be seen immediately.

Isochronous state variables
The traditional versions of relativistic thermodynamics7–12,14 are re-
covered from equations (3)–(5) by inserting isochronous spacetime
hypersurfaces into equation (2). To see this, consider an inertial
frame Σ ′, moving at velocity w along the x1-axis of the lab-frame
Σ . An event E with coordinates (ξ 0,ξ) in Σ and (ξ ′0,ξ′) in
Σ ′ defines isochronous hyperplanes I(ξ 0) and I ′(ξ ′0) in Σ and
Σ ′, respectively, by

I(ξ 0) := { (t ,x) | t = ξ 0 } (6a)

I ′(ξ ′0) := { (t ′,x′) | t ′ = ξ ′0 } (6b)

If Σ and Σ ′ are in relative motion, these hyperplanes differ from
each other, I(ξ 0) $= I ′(ξ ′0), see Fig. 1. Inserting H = I(ξ 0) into

x

t

P1 P2

t = ξ0

t’ = ξ’0

Figure 1 |Non-local thermodynamic quantities depend on the underlying
hypersurface in Minkowski spacetime.When particles ‘P1’ and ‘P2’
interact with each other or with a confining structure (grey) they change
their momentum. Hence, different hyperplanes sample different
many-particle momentum states. Traditional formulations of relativistic
thermodynamics introduce global state variables as integrals over
isochronous hyperplanes (dotted), whereas a photograph taken at the
spacetime event E or E ′ records the state of the system along the
corresponding backward-lightcone C(E ) or C(E ′).

equation (2), we obtain the lab-isochronous energy–momentum
vector U µ[I] in Σ :

(U µ[I])=N (〈p0〉,0) (7)

On the other hand, choosing H = I ′[ξ ′0] yields theΣ ′-isochronous
energy–momentum vectorU ′µ[I ′] inΣ ′:

(
U ′µ[I ′]

)
=N

{
γ (〈p0〉+w2β−1), µ = 0
−γw(〈p0〉+β−1), µ = 1
0, µ > 1

(8)

where γ := (1 − w2)−1/2. Applying a Lorentz transformation
with −w to equation (8), we find the corresponding energy–
momentum in Σ

(U µ[I ′])=N (〈p0〉,−wβ−1,0,0)

Hence, the energy–momentum vectors equations (7) and (8) are
not related by a Lorentz transformation. In fact, U µ[I] and
U µ[I ′] are connected by

(U µ[I ′])= (U µ[I])+Nβ−1(0,−w,0,0)

reflecting the underlying hypersurface and observer velocity. As
mentioned earlier, the difference between U µ[I] and U µ[I ′] arises
because the energy–momentum tensor of a spatially confined gas
is not conserved. It is also a reason for the existence of various
temperature Lorentz transformation laws.

Entropy
Having at hand the state variables ‘energy’ U 0 and ‘momen-
tum’ U, one still needs ‘entropy’. For a Jüttner gas, one can
define the entropy density four-current24,25 by (h = Planck’s con-
stant, units kB = 1)

sµ(t ,x)= −N
∫

d3p
p0

pµf ln(h3f ) (9)

The specific shape of equation (9) is tightly linked to the ex-
ponential form of the Jüttner distribution equation (3). In fact,
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Non-local observables and lightcone-averaging in
relativistic thermodynamics
Jörn Dunkel1*, Peter Hänggi2 and Stefan Hilbert3

The unification of relativity and thermodynamics has been a subject of considerable debate over the past 100 years.
The reasons for this are twofold. First, thermodynamic variables are non-local quantities and therefore single out a
preferred class of hyperplanes in spacetime. Second, there exist different ways of defining heat and work in relativistic
systems and all of them seem equally plausible. These ambiguities have led, for example, to various proposals for the
Lorentz-transformation law of temperature. However, traditional ‘isochronous’ formulations of relativistic thermodynamics are
neither theoretically satisfactory nor experimentally feasible. Here, we demonstrate how these deficiencies can be resolved by
defining thermodynamic quantities with respect to the backward-lightcone of an observation event. This approach yields new
predictions that are, in principle, testable and allows for a straightforward extension of thermodynamics to general relativity.
Our theoretical considerations are illustrated through three-dimensional relativistic many-body simulations.

Thermodynamics, in the traditional sense, aims at describing
the state of a macroscopic system by means of a few
characteristic parameters {Ai} (refs 1–4). Typical candidates

for thermodynamic state variables {Ai} are either conserved
(extensive) quantities, for example, the particle number N and
internal energy U , or external control parameters that quantify
the breaking of symmetries1. Examples of the last of these
include the volume V of a confining vessel, indicating the
violation of translational invariance, or external magnetic fields,
which may break the spatial isotropy. Each extensive state
variable is accompanied by an intensive quantity ai = ∂S/Ai,
derived from a suitably defined entropy function(al) S({Ai}).
Representing an abstract mathematical theory of differential
forms4, thermodynamic concepts have been successfully applied
to vastly different areas, ranging from microscopic many-particle
systems2,3,5, where S is usually interpreted as an information
measure (canonical ensemble) or integrated phase-space volume
(microcanonical ensemble), to exotic objects such as black holes6,
where S is related to the black hole’s surface area.

As a coarse-grained macroscopic theory, thermodynamics is
inherently non-local in that it considers only certain global,
or averaged, properties of a physical system2,3. This is rather
unproblematic within non-relativistic Newtonian physics, where
statements such as ‘the total energy of a system at time t ’ are
unambiguously defined for arbitrary observers. In contrast—owing
to the absence of a universal time parameter—the non-local
character of thermodynamics has caused considerable confusion7–15

within Einstein’s theory of relativity16–19.
To illustrate the conceptual difficulties in relativistic thermo-

dynamics, consider a confined gas described by a particle current
density jµ(t ,x) and an energy–momentum tensor density θµν(t ,x).
If the gas is stationary in some inertial frameΣ , then jµ is conserved,
that is, ∂µjµ ≡ 0, but the divergence of θµν does not identically
vanish (owing to the pressure arising from the spatial confinement,
see the example below):

∂µθµi "≡ 0, i= 1,2,3 (1)

1Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, UK, 2Institut für Physik, Universität Augsburg,
Universitätsstraße 1, D-86135 Augsburg, Germany, 3Argelander-Institut für Astronomie, Universität Bonn, Auf dem Hügel 71, D-53121 Bonn, Germany.
*e-mail: jorn.dunkel@physics.ox.ac.uk.

This means that space-like surface integrals over jµ are independent
of the underlying three-dimensional hypersurface H in (1+ 3)-
dimensional Minkowski spacetimeM4, whereas those over θµν do
depend on H. The latter fact is problematic because thermodynamic
state variables such as energy U 0 or momentum U= (U 1,U 2,U 3)
are usually defined as surface integrals over the energy–momentum
tensor (see theMethods section)16, that is,

U ν[H] :=
∫

H
dσµ θµν, µ,ν = 0,1,2,3 (2)

where, for a finite thermodynamic system, θµν is assumed to vanish
outside a bounded spatial region. Hence, the first task in relativistic
thermodynamics is to identify those hypersurfaces {H} that are
suitable for defining state variables. Subsequently, one still needs to
settle for appropriate definitions of entropy, heat and so on.

We shall begin by reviewing how these problems are tackled
in the most popular, competing versions of relativistic thermody-
namics, originally proposed by Planck7 and Einstein8, and Ott10
and Van Kampen9, respectively. A careful analysis shows that the
traditional approaches are neither conceptually satisfactory nor
experimentally feasible. The deficiencies can be cured by defining
thermodynamic quantities in terms of lightcone integrals. To clarify
these aspects, we consider a weakly interacting relativistic gas20.
Notwithstanding, the main conclusions apply to any confined
system that can be described by tensor densities jµ,θαβ,.... In the
second part, we shall discuss observable consequences such as the
apparent drift of distant objects that are, in fact, at rest relative to
the observer. This surprising effect—which should be accounted
for when estimating the velocities of very hot astrophysical ob-
jects from photographic data—will be illustrated by relativistic
many-particle simulations.

Model (Jüttner gas)
We consider an enclosed, dilute gas consisting ofN relativistic par-
ticles (rest massm; velocity v; momentum p=mv(1−v2)−1/2; speed
of light c =1). Let us assume the gas is stationary in the (‘lab’-)frame

NATURE PHYSICS | ADVANCE ONLINE PUBLICATION | www.nature.com/naturephysics 1
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d-dimensional t-parametrized standard Wiener process
!29–31"; i.e., B#t$ has continuous paths. For s! t the incre-
ments are normally distributed,

P%B#s$ − B#t$ ! !u,u + du"& =
e−'u'2/!2#s−t$"

!2"#s − t$"d/2ddu , #2$

and independent for nonoverlapping time intervals.1

Upon naively dividing Eq. #1b$ by dt, we see that Ai can
be interpreted as a deterministic force component, while
Cj

idBj#t$ /dt represents random “noise.” However, for the
Wiener process the derivatives dBj#t$ /dt are not well defined
mathematically, so the differential representation #1$ is in
fact shorthand for a stochastic integral equation !29,31" with
Cj

idBj signifying an infinitesimal increment of the Itô integral
!32,33". Like a deterministic integral, stochastic integrals can
be approximated by Riemann-Stieltjes sums, but the coeffi-
cient functions need to be evaluated at the left end point t of
any time interval !t , t+dt" in the Itô discretization.2 In con-
trast to other discretization rules !1,29,31,34,35", the Itô dis-
cretization implies that the mean value of the noise vanishes;
i.e., (Cj

idBj#t$)=0 with (·) indicating an average over all re-
alizations of the Wiener process B#t$. In other words, Itô
integrals with respect to B#t$ are #local$ martingales !29".
Upon applying Itô’s formula !29,31" to the mass-shell con-
dition P0#t$= #M2+P2$1/2, one can derive from Eq. #1b$ the
following equation for the relativistic energy:

dP0#t$ = A0dt + Cr
0dBr#t$ ,

A0 ª AiP
i

P0 +
Dij

2
* #ij

P0 −
PiPj

#P0$3+, Cj
0 ª PiCij

P0 , #3$

where AiªAi, DijªDij =,rCr
iCr

j, and CirªCi
r.

Equations #1$ define a straightforward relativistic gener-
alization !13–15" of the classical Ornstein-Uhlenbeck pro-
cess !36", representing a standard model of Brownian motion
theory.3 The structure of Eq. #1a$ ensures that the velocity
remains bounded, 'V'$1, even if the momentum P were to
become infinitely large. When studying SDEs of the type #1$,
one is typically interested in the probability f#t ,x ,p$ddx ddp
of finding the particle at time t in the infinitesimal phase-
space interval !x ,x+dx"% !p ,p+dp". Given Eqs. #1$, the
non-negative, normalized probability density f#t ,x ,p$ is
governed by the Fokker-Planck equation #FPE$

- !

!t
+

pi

p0

!

!xi. f =
!

!pi*− Aif +
1
2

!

!pk #Dikf$+ , #4$

where f is a Lorentz scalar !37" and p0= #M2+p2$1/2.4 Deter-
ministic initial data X#0$=x0 and P#0$=p0 translate into the
localized initial condition f#0,x ,p$=##x−x0$##p−p0$.
Physical constraints on the coefficients Ai#t ,x ,p$ and
Cr

i#t ,x ,p$ may arise from symmetries and/or thermostatisti-
cal considerations. For example, neglecting additional exter-
nal force fields and considering a heat bath that is stationary,
isotropic, and position independent in &, one is led to the
ansatz

Ai = − '#p0$pi, Cj
i = !2D#p0$"1/2# j

i , #5a$

where the friction and noise coefficients ' and D depend on
the energy p0 only. Moreover, if the stationary momentum
distribution is expected to be a thermal Jüttner function
!38,39"—i.e., if f(ª limt→(f )exp#−*p0$ in &—then ' and
D must satisfy the fluctuation-dissipation condition !13,14"

0 / '#p0$p0 + dD#p0$/dp0 − *D#p0$ . #5b$

In this case, one still has the freedom to adapt one of the two
functions ' or D.

In the remainder of this paper, we shall discuss how the
process #1$ can be reparametrized in terms of its proper time
+ and how it transforms under the proper Lorentz group !28".

The stochastic proper-time differential d+#t$
= #1−V2$1/2dt may be expressed as

d+#t$ = #M/P0$dt . #6a$

The inverse of the function + is denoted by X̂0#+$= t#+$ and
represents the time coordinate of the particle in the inertial
frame &, parametrized by the proper time +. Our goal is to
find SDEs for the reparametrized processes X̂'#+$
ªX'(t#+$) and P̂'#+$= P'(t#+$) in &. The heuristic derivation
is based on the relation

dBj#t$ 0 1dt = - P̂0

M
.1/2

1d+ 0 - P̂0

M
.1/2

dB̂j#+$ , #6b$

where B̂j#+$ is a standard Wiener process with time param-
eter +. The rigorous justification of Eq. #6b$ is given below.
Inserting Eqs. #6a$ and #6b$ into Eqs. #1$, one finds

dX̂'#+$ = #P̂'/M$d+ , #7a$

dP̂i#+$ = Âid+ + Ĉj
idB̂j#+$ , #7b$

where Âiª #P̂0 /M$Ai#X̂0 , X̂ , P̂$ and Ĉj
i

ª #P̂0 /M$1/2Cj
i#X̂0 , X̂ , P̂$. The FPE for the associated prob-

ability density f̂#+ ,x0 ,x ,p$ reads

1For simplicity, we have assumed that B#t$ is d dimensional, im-
plying that Cj

i is a square matrix. However, all results still hold if
B#t$ has a different dimension.

2One could also consider other discretization rules
!1,29,31,34,35", but then the rules of stochastic differential calculus
must be adapted.

3In the nonrelativistic limit c→(, P0→M in Eq. #1a$.

4Equation #4$ is not covariant, because we are considering here
the “true” phase-space density f#t ,x ,p$ rather than the “extended”
phase-space density f̃#t ,x , p0 ,p$.
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Measure one-particle phase space PDFs ... but how?

a. histogram over all particles at

 constant t
 constant τ 

b. time average over single particle
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 constant ∆τ

Stationarity, ergodicity and entropy in relativity

Numerical simulations. – In order to understand
how ensemble-averaged and time-averaged PDFs are
related to each other, we consider the fully relativistic
(1+1)-dimensional two-component gas model studied
in [35]. In this model, the gas consists of classical,
impenetrable point-particles (N1 light particles of rest
mass m1, and N2 heavy particles of rest mass m2 >m1).
Neighboring particles may exchange momentum and
energy in elastic binary collisions, governed by the
relativistic energy-momentum conservation laws,

ε(mA, pA)+ ε(mB , pB) = ε(mA, p̃A)+ ε(mB , p̃B),

pA+ pB = p̃A+ p̃B , (7)

where A, B ∈ {1, 2}, ε(m, p) = (m2+ p2)1/2, p=mvγ(v),
and tilde-symbols indicate quantities after the collision.
Interactions with the boundaries are elastic, i.e., p→−p
in the lab frame Σ0, defined as the rest frame of
the boundaries. The dynamics of this system can be
exactly integrated numerically, and the total energy
E0 =

∑N1
i=1 ε(m1, pi)+

∑N2
j=1 ε(m2, pj) is conserved in the

lab frame Σ0. We distinguish four types of measurements:

(a) t-ensemble average: After a period of equilibration, we
simultaneously measure the velocities of all particles
in Σ0 at a given instant of time t. This procedure is
repeated for energetically equivalent random initial
conditions mimicking a micro-canonical ensemble at
energy E0 [35].

(b) t-trajectory average: We choose a specific particle of
either species and measure their velocities at several
equidistant instants of time t(1), . . . , t(n).

(c) τ -ensemble average: We compute the proper time τi
for each particle during the simulation and measure
their velocities at a fixed proper-time value τ1 = . . .=
τN1+N2 = τ . Again, this procedure is repeated for
energetically equivalent random initial conditions.

(d) τ -trajectory average: We choose a specific particle of
either species and measure their velocities at several
equidistant instants of proper time τ (1), . . . , τ (n).

Results. – Figure 1 depicts the equilibrium distri-
butions computed from one-dimensional simulations as
described above. In the case of the ensemble measure-
ments (a) and (c) we averaged over 50 different, ener-
getically equivalent initial conditions. The single-particle
time averages (b) and (c) were determined by measuring
velocities at 5 · 105 instants using time intervals∆t=∆τ =
4 · 10−4 L/c, where L is the system’s spatial extension.
Let us first compare the distribution functions obtained

by the two t-averaging methods (a) and (b), respectively.
As evident from the (blue) diamonds and (magenta) cross-
symbols in fig. 1, the two different procedures both yield
a Jüttner distribution with same parameter β for either
species, i.e.,

f∞(v) = fJ(v). (8a)
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Fig. 1: (Color online) Numerically measured one-particle veloc-
ity PDFs using lab time and proper-time parameterizations,
respectively. Symbols/methods: (a) t-ensemble average: blue !;
(b) t-trajectory average: magenta ×; (c) τ -ensemble average:
red !; and (d) τ -trajectory average: green +. The results
are based on simulations with N1 = 5000 light particles of
mass m1 and N2 = 5000 heavy particles with mass m2 = 2m1.
The solid curves correspond to Jüttner functions (6) with
β = 0.709 (m1c

2)−1, but different particle masses, respectively.
The dashed lines show the corresponding modified Jüttner
distribution, eq. (8b), with the same parameter β. As the
distributions are symmetric with respect to the origin, only
the positive velocity axis is shown.

Similarly, upon comparing the histograms obtained by
(c) τ -ensemble averaging, see red triangles, and (d)
τ -trajectory averaging, green plus symbols, we find
that both methods give the same distribution. But this
proper-time equilibrium PDF differs from the Jüttner
function by a factor 1/ε, i.e.,

f̂∞(v) = α
−1fJ(v)/γ(v) =: fMJ(v). (8b)

Thus, on the one hand, our simulations confirm the
validity of eq. (5) for the one-dimensional two-component
gas model. One the other hand, eqs. (8) provide two
“soft” ergodicity statements on the level of the one-
particle velocity distributions (we adopt the term “soft”
rather than “weak”, which is already commonly used
in a different context [8]). Evidently, it is necessary to
distinguish different time parameters when discussing
ergodicity in relativistic systems.
The “τ -stationary” modified Jüttner function (8b) was

derived earlier in ref. [45] from a simple collision invariance
criterion. Yet another derivation, based on symmetry and
entropy arguments, was given in ref. [14]. However, at that
time it was not understood that the two distributions fJ
and fMJ refer to different time parameters, respectively.
In fact, combining the above results with the arguments
given in [14] reveals an interesting relation between time
parameters and (relative) entropy in special relativity.

Maximum (relative) entropy principle. – To
establish a connection between t, τ and entropy, let us

30005-p3
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Σ , and can be described by a Σ -time-independent, normalized
one-particle phase-space probability density function (PDF)

f (t ,x,p)= ϕ(x,p)= "(x)φJ(p) (3a)

with Jüttner momentum distribution20,21

φJ(p)=Z−1exp(−βp0), β > 0 (3b)

Z = 4πm3K2(βm)/(βm) is the normalization constant, Kn(z)
is the nth modified Bessel function of the second kind22 and
p0 = (m2 +p2)1/2 is the particle energy. Later, the distribution pa-
rameter β will be identified with the inverse thermodynamic (rest)
temperature of the gas. The exact functional form of the spatial
density " in equation (3a) is irrelevant, as long as " is normalizable
(that is, restricted to a finite spatial volume set V⊂R3 in Σ ). For
simplicity, we may consider a spatially homogeneous gas enclosed
in a stationary cubic boxV=[−L/2,L/2]3 inΣ , corresponding to

"(x)=
{
V −1, if x∈V
0, if x $∈V (3c)

Here,V =L3 is theΣ -simultaneously measured (Lebesgue) volume
of V in Σ .

The phase-space PDF f is a Lorentz scalar23. Thus, the current
density jµ and energy–momentum tensor θµν can be constructed
from f by:

jµ(t ,x)=N
∫

d3p
p0

f pµ (4a)

θµν(t ,x)=N
∫

d3p
p0

f pµpν (4b)

where d3p/p0 is the Lorentz-invariant integration measure in
relativistic momentum space. Concretely, for equation (3) we
have (jα)= (",0) and

θµν =N "

{ 〈p0〉, µ = ν = 0
β−1, µ = ν = 1,2,3
0, µ $= ν

(5)

where 〈p0〉=3β−1+mK1(βm)/K2(βm) is themean energy per par-
ticle. One readily verifies that ∂α jα ≡ 0, whereas ∂µθµi =β−1∂i" $= 0
at the boundary ofV, in agreement with equation (1). Confinement
generates stress—the importance of this seemingly trivial statement
shall be seen immediately.

Isochronous state variables
The traditional versions of relativistic thermodynamics7–12,14 are re-
covered from equations (3)–(5) by inserting isochronous spacetime
hypersurfaces into equation (2). To see this, consider an inertial
frame Σ ′, moving at velocity w along the x1-axis of the lab-frame
Σ . An event E with coordinates (ξ 0,ξ) in Σ and (ξ ′0,ξ′) in
Σ ′ defines isochronous hyperplanes I(ξ 0) and I ′(ξ ′0) in Σ and
Σ ′, respectively, by

I(ξ 0) := { (t ,x) | t = ξ 0 } (6a)

I ′(ξ ′0) := { (t ′,x′) | t ′ = ξ ′0 } (6b)

If Σ and Σ ′ are in relative motion, these hyperplanes differ from
each other, I(ξ 0) $= I ′(ξ ′0), see Fig. 1. Inserting H = I(ξ 0) into

x

t

P1 P2

t = ξ0

t’ = ξ’0

Figure 1 |Non-local thermodynamic quantities depend on the underlying
hypersurface in Minkowski spacetime.When particles ‘P1’ and ‘P2’
interact with each other or with a confining structure (grey) they change
their momentum. Hence, different hyperplanes sample different
many-particle momentum states. Traditional formulations of relativistic
thermodynamics introduce global state variables as integrals over
isochronous hyperplanes (dotted), whereas a photograph taken at the
spacetime event E or E ′ records the state of the system along the
corresponding backward-lightcone C(E ) or C(E ′).

equation (2), we obtain the lab-isochronous energy–momentum
vector U µ[I] in Σ :

(U µ[I])=N (〈p0〉,0) (7)

On the other hand, choosing H = I ′[ξ ′0] yields theΣ ′-isochronous
energy–momentum vectorU ′µ[I ′] inΣ ′:

(
U ′µ[I ′]

)
=N

{
γ (〈p0〉+w2β−1), µ = 0
−γw(〈p0〉+β−1), µ = 1
0, µ > 1

(8)

where γ := (1 − w2)−1/2. Applying a Lorentz transformation
with −w to equation (8), we find the corresponding energy–
momentum in Σ

(U µ[I ′])=N (〈p0〉,−wβ−1,0,0)

Hence, the energy–momentum vectors equations (7) and (8) are
not related by a Lorentz transformation. In fact, U µ[I] and
U µ[I ′] are connected by

(U µ[I ′])= (U µ[I])+Nβ−1(0,−w,0,0)

reflecting the underlying hypersurface and observer velocity. As
mentioned earlier, the difference between U µ[I] and U µ[I ′] arises
because the energy–momentum tensor of a spatially confined gas
is not conserved. It is also a reason for the existence of various
temperature Lorentz transformation laws.

Entropy
Having at hand the state variables ‘energy’ U 0 and ‘momen-
tum’ U, one still needs ‘entropy’. For a Jüttner gas, one can
define the entropy density four-current24,25 by (h = Planck’s con-
stant, units kB = 1)

sµ(t ,x)= −N
∫

d3p
p0

pµf ln(h3f ) (9)

The specific shape of equation (9) is tightly linked to the ex-
ponential form of the Jüttner distribution equation (3). In fact,
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with Jüttner momentum distribution20,21

φJ(p)=Z−1exp(−βp0), β > 0 (3b)

Z = 4πm3K2(βm)/(βm) is the normalization constant, Kn(z)
is the nth modified Bessel function of the second kind22 and
p0 = (m2 +p2)1/2 is the particle energy. Later, the distribution pa-
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temperature of the gas. The exact functional form of the spatial
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"(x)=
{
V −1, if x∈V
0, if x $∈V (3c)
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of V in Σ .

The phase-space PDF f is a Lorentz scalar23. Thus, the current
density jµ and energy–momentum tensor θµν can be constructed
from f by:

jµ(t ,x)=N
∫

d3p
p0

f pµ (4a)
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generates stress—the importance of this seemingly trivial statement
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equation (2), we obtain the lab-isochronous energy–momentum
vector U µ[I] in Σ :

(U µ[I])=N (〈p0〉,0) (7)

On the other hand, choosing H = I ′[ξ ′0] yields theΣ ′-isochronous
energy–momentum vectorU ′µ[I ′] inΣ ′:

(
U ′µ[I ′]

)
=N

{
γ (〈p0〉+w2β−1), µ = 0
−γw(〈p0〉+β−1), µ = 1
0, µ > 1

(8)

where γ := (1 − w2)−1/2. Applying a Lorentz transformation
with −w to equation (8), we find the corresponding energy–
momentum in Σ

(U µ[I ′])=N (〈p0〉,−wβ−1,0,0)

Hence, the energy–momentum vectors equations (7) and (8) are
not related by a Lorentz transformation. In fact, U µ[I] and
U µ[I ′] are connected by

(U µ[I ′])= (U µ[I])+Nβ−1(0,−w,0,0)

reflecting the underlying hypersurface and observer velocity. As
mentioned earlier, the difference between U µ[I] and U µ[I ′] arises
because the energy–momentum tensor of a spatially confined gas
is not conserved. It is also a reason for the existence of various
temperature Lorentz transformation laws.

Entropy
Having at hand the state variables ‘energy’ U 0 and ‘momen-
tum’ U, one still needs ‘entropy’. For a Jüttner gas, one can
define the entropy density four-current24,25 by (h = Planck’s con-
stant, units kB = 1)

sµ(t ,x)= −N
∫

d3p
p0

pµf ln(h3f ) (9)

The specific shape of equation (9) is tightly linked to the ex-
ponential form of the Jüttner distribution equation (3). In fact,
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ρ = ρ0 : φJ ∝ exp(−βp0) ⇔ f(t→∞) (4)

ρ ∝ 1
p0

: φMJ ∝
exp(−βp0)

p0
⇔ f̂(τ →∞) (5)

Temperature

T ′(w) = T (1− w2)α/2 α =






+1 Planck, Einstein
0 Landsberg, van Kampen
−1 Ott

(6)

1D Jüttner

φJ(p) ∝ exp[β(p2 + M2)1/2] (7)

Ansatz 3D Jüttner

f(t, x,p) = ϕ(x,p) = '(x) φJ(p), (8a)

with Jüttner momentum distribution [20, 21]

φJ(p) = Z−1 exp(−βp0), β > 0 (8b)

Z = 4πm3 K2(βm)/(βm) is the normalization constant, Kn(z) the nth modified Bessel function of the second kind [22],
and p0 = (m2 + p2)1/2 the particle energy.

f(t, x,p) = '(x) exp(−βp0) (8c)

Four vector currents

sµ(t, x) = −N

∫
d3p

p0
pµ f ln(h3f) ⇒ ∂νsν ≡ 0 (8d)

jµ(t, x) = N

∫
d3p

p0
f pµ ⇒ ∂νjν ≡ 0 (8e)

θµν(t, x) = N

∫
d3p

p0
f pµpν ⇒ ∂µθµi (≡0 (8f)

N[H] :=
∫

H
dσν jν = N[H′] (8g)

S[H] :=
∫

H
dσν sν = S[H′] (8h)

Uν [H] :=
∫

H
dσµ θµν (= Uν [H′] (8i)

Explicitly

N[{t = ξ0}] =
∫

t=ξ0

dσ0 j0 =
∫

t=ξ0
d3x j0 = N (8j)

S[{t = ξ0}] =
∫

t=ξ0
dσ0 s0 =

∫

t=ξ0
d3x s0 = N ln(V Z/h3) + βN

〈
p0

〉
(8k)

Identities

N[H] = N′[H] = N′[H′] = N[H′] (8l)

S[H] = S′[H] = S′[H′] = S[H′] (8m)

same    

3

Λν
µUµ[H] = U′ν [H] != U′ν [H′] = Λν

µUµ[H′] (8n)

H = I H = I′ H = C (8o)

H = I(ξ0) := { (t, x) | t = ξ0 } I′(ξ′0) := { (t′,x′) | t′ = ξ′0 } (8p)

Gas enclosed in a stationary cubic box V = [−L/2, L/2]3 in Σ, corresponding to

"(x) =

{
V −1 if x ∈ V
0 if x !∈ V

V = [−L/2, L/2]3 (8q)

V = L3 is the Σ-simultaneously measured (Lebesgue) volume of V ⊂ R3 in Σ. Explicit

sµ(t, x) = N"

{
ln(V Z/h3) + β

〈
p0

〉
ν = 0

0 ν = 1, 2, 3
(9)

jα =

{
" ν = 0
0 ν = 1, 2, 3

(10)

θµν = N "






〈
p0

〉
µ = ν = 0

β−1 µ = ν = 1, 2, 3
0 µ != ν

(11)

where
〈
p0

〉
= 3β−1 + m

K1(βm)
K2(βm)

(12)

Isochronous state variables.– Consider an inertial frame Σ′, moving at velocity w along the x1-axis of the lab-frame
Σ. An event E with coordinates (ξ0, ξ) in Σ and (ξ′0, ξ′) in Σ′ defines isochronous hyperplanes I(ξ0) and I′(ξ′0) in Σ
and Σ′, respectively, by

If Σ and Σ′ are in relative motion, these hyperplanes differ from each other, I(ξ0) != I′(ξ′0), see Fig. 1. Inserting
H = I[ξ0] into Eq. (8g), we obtain the lab-isochronous energy-momentum vector Uµ[I] in Σ:

Uµ[I] = N

{〈
p0

〉
µ = 0

0 µ = 1, 2, 3
(13)

On the other hand, choosing H = I′[ξ′0] yields the Σ′-isochronous energy-momentum vector U′µ[I′] in Σ′:

U′µ[I′] = N






γ(
〈
p0

〉
+ w2β−1) µ = 0

−γw(
〈
p0

〉
+ β−1) µ = 1

0 µ > 1
(14a)

where γ := (1 − w2)−1/2. Applying a Lorentz transformation with −w to Eq. (14a), we find the corresponding
energy-momentum in Σ

Uµ[I′] = N(
〈
p0

〉
,−wβ−1, 0, 0) (14b)

Hence, the energy-momentum vectors (13) and (14a) are not related by a Lorentz transformation. In fact, Uµ[I] and
Uµ[I′] are connected by

(Uµ[I′]) = (Uµ[I]) + Nβ−1(0,−w, 0, 0) (14c)

reflecting the underlying hypersurface and observer velocity. As mentioned earlier, the difference between U′µ[I′] and
Uµ[I′] arises because the energy-momentum tensor of a spatially confined gas is not conserved. It is also a reason for
the existence of various temperature Lorentz transformation laws.
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Stationarity, ‘soft’ ergodicity, and entropy in relativistic systems
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Recent molecular dynamics simulations show that a dilute relativistic gas equilibrates to a Jüttner
velocity distribution if ensemble velocities are measured simultaneously in the observer frame. The
analysis of relativistic Brownian motion processes, on the other hand, implies that stationary one-
particle distributions can differ depending on the underlying time-parameterizations. Using molec-
ular dynamics simulations, we demonstrate how this relativistic phenomenon can be understood
within a deterministic model system. We show that, depending on the time-parameterization, one
can distinguish different types of ‘soft’ ergodicity on the level of the one-particle distributions. Our
analysis further reveals a close connection between time parameters and entropy in special relativ-
ity. These aspects can be relevant for future applications, e.g., when simulating thermalization and
particle creation, annihilation, or decay processes by Monte Carlo methods.

PACS numbers: 02.70.Ns, 05.70.-a, 03.30.+p

Introduction.– Understanding the relation between
ensemble and time averages poses one of the most fun-
damental problems in statistical physics. Ergodicity –
the equivalence of the two averaging procedures – is a
commonly employed assumption in statistical mechan-
ics [1], albeit difficult to prove for realistic systems. Dur-
ing the past decades, the ergodicity hypothesis was in-
tensely examined for nonrelativistic classical [2–5] and
quantum models [6–8]. However, much less is known
about its meaning and validity in relativistic settings [9],
when even more basic concepts like ‘stationarity’ may
become ambigous as time becomes relative [10–12]. A
clear conception of the interplay between time parame-
ters and thermostatistical concepts, like entropy [13–15],
is crucial, e.g., if one wishes to generalize non-equilibrium
fluctuation theorems to a relativistic framework [16, 17].
Given the rapidly increasing number of applications in
high-energy physics [18, 19] and astrophysics [20, 21], a
firm conceptual foundation is desirable not only from a
theoretical, but also from a practical perspective.

Here, we will demonstrate that even a relatively sim-
ple, relativistic model system [22] may provide new in-
sights into basic questions, such as: How are observer-
time and proper-time averages of single-particle trajec-
tories related to each other? How are the resulting time-
averaged distributions linked to stationary distributions
obtained from simultaneous ensemble measurements? Is
it possible to establish a connection between time param-
eters and entropy? We shall see that the answers do not
only shed light on recent results [12] in the theory of rela-
tivistic Brownian motion processes [10, 23–26] – they are
also helpful in addressing practically relevant questions,
e.g., regarding the typical energy distribution at the end
of a particle’s life-time. As outlined in the latter part of
this Letter, this may lead to new Monte-Carlo simulation
schemes [27] in the future.

Time-averaged single-particle distributions.– We
start by considering the motion of a specific particle
in an inertial frame Σ0. The velocity V := dX/dt
of the particle can be parameterized in terms of the
Σ-coordinate-time t, denoted by V (t), or, alternatively,
by the particle’s proper-time (units such that the speed
of light c = 1)

τ(t) =
∫ t

0
dt′

√
1− V (t′)2, (1)

corresponding to a function V̂ (τ) that satisfies V (t) =
V̂ (τ(t)). We may then define the t-averaged velocity
probability density function (PDF) of the particle by

ft(v) =
1
t

∫ t

0
dt′ δ[v − V (t′)], (2a)

and, similarly, the associated τ -averaged PDF by

f̂τ (v) =
1
τ

∫ τ

0
dτ ′ δ[v − V̂ (τ ′)]. (2b)

We would like to understand how the two PDFs ft and
f̂τ are related to each other as t, τ → ∞. To this end,
we change the integration variable in Eq. (2b) to the lab
time, yielding

f̂τ (v) =
t

τ
(1− v2)1/2 ft(v) =

t

τ

ft(v)
γ(v)

, (3)

where γ(v) = (1−v2)−1/2 is the Lorentz factor. We now
define stationary distributions

f∞(v) = lim
t→∞

ft(v), f̂∞(v) = lim
τ→∞

f̂τ (v). (4a)
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Recent molecular dynamics simulations show that a dilute relativistic gas equilibrates to a Jüttner
velocity distribution if ensemble velocities are measured simultaneously in the observer frame. The
analysis of relativistic Brownian motion processes, on the other hand, implies that stationary one-
particle distributions can differ depending on the underlying time-parameterizations. Using molec-
ular dynamics simulations, we demonstrate how this relativistic phenomenon can be understood
within a deterministic model system. We show that, depending on the time-parameterization, one
can distinguish different types of ‘soft’ ergodicity on the level of the one-particle distributions. Our
analysis further reveals a close connection between time parameters and entropy in special relativ-
ity. These aspects can be relevant for future applications, e.g., when simulating thermalization and
particle creation, annihilation, or decay processes by Monte Carlo methods.
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Introduction.– Understanding the relation between
ensemble and time averages poses one of the most fun-
damental problems in statistical physics. Ergodicity –
the equivalence of the two averaging procedures – is a
commonly employed assumption in statistical mechan-
ics [1], albeit difficult to prove for realistic systems. Dur-
ing the past decades, the ergodicity hypothesis was in-
tensely examined for nonrelativistic classical [2–5] and
quantum models [6–8]. However, much less is known
about its meaning and validity in relativistic settings [9],
when even more basic concepts like ‘stationarity’ may
become ambigous as time becomes relative [10–12]. A
clear conception of the interplay between time parame-
ters and thermostatistical concepts, like entropy [13–15],
is crucial, e.g., if one wishes to generalize non-equilibrium
fluctuation theorems to a relativistic framework [16, 17].
Given the rapidly increasing number of applications in
high-energy physics [18, 19] and astrophysics [20, 21], a
firm conceptual foundation is desirable not only from a
theoretical, but also from a practical perspective.

Here, we will demonstrate that even a relatively sim-
ple, relativistic model system [22] may provide new in-
sights into basic questions, such as: How are observer-
time and proper-time averages of single-particle trajec-
tories related to each other? How are the resulting time-
averaged distributions linked to stationary distributions
obtained from simultaneous ensemble measurements? Is
it possible to establish a connection between time param-
eters and entropy? We shall see that the answers do not
only shed light on recent results [12] in the theory of rela-
tivistic Brownian motion processes [10, 23–26] – they are
also helpful in addressing practically relevant questions,
e.g., regarding the typical energy distribution at the end
of a particle’s life-time. As outlined in the latter part of
this Letter, this may lead to new Monte-Carlo simulation
schemes [27] in the future.

Time-averaged single-particle distributions.– We
start by considering the motion of a specific particle
in an inertial frame Σ0. The velocity V := dX/dt
of the particle can be parameterized in terms of the
Σ-coordinate-time t, denoted by V (t), or, alternatively,
by the particle’s proper-time (units such that the speed
of light c = 1)

τ(t) =
∫ t

0
dt′

√
1− V (t′)2, (1)

corresponding to a function V̂ (τ) that satisfies V (t) =
V̂ (τ(t)). We may then define the t-averaged velocity
probability density function (PDF) of the particle by

ft(v) =
1
t

∫ t

0
dt′ δ[v − V (t′)], (2a)

and, similarly, the associated τ -averaged PDF by

f̂τ (v) =
1
τ

∫ τ

0
dτ ′ δ[v − V̂ (τ ′)]. (2b)

We would like to understand how the two PDFs ft and
f̂τ are related to each other as t, τ → ∞. To this end,
we change the integration variable in Eq. (2b) to the lab
time, yielding

f̂τ (v) =
t

τ
(1− v2)1/2 ft(v) =

t

τ

ft(v)
γ(v)

, (3)

where γ(v) = (1−v2)−1/2 is the Lorentz factor. We now
define stationary distributions

f∞(v) = lim
t→∞

ft(v), f̂∞(v) = lim
τ→∞

f̂τ (v). (4a)
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= N"

{
1, µ = 0
0, µ > 0

S[φ|ρ] =
∫

ddp φ(p) ln
[
φ(p)
ρ(p)

]
(1)

ερ =
∫

ddp φ(p) p0 (2)

1 =
∫

ddp φ(p) (3)

∗Electronic address: jorn.dunkel@physics.ox.ac.uk

Stationarity, ergodicity and entropy in relativity

Numerical simulations. – In order to understand
how ensemble-averaged and time-averaged PDFs are
related to each other, we consider the fully relativistic
(1+1)-dimensional two-component gas model studied
in [35]. In this model, the gas consists of classical,
impenetrable point-particles (N1 light particles of rest
mass m1, and N2 heavy particles of rest mass m2 >m1).
Neighboring particles may exchange momentum and
energy in elastic binary collisions, governed by the
relativistic energy-momentum conservation laws,

ε(mA, pA)+ ε(mB , pB) = ε(mA, p̃A)+ ε(mB , p̃B),

pA+ pB = p̃A+ p̃B , (7)

where A, B ∈ {1, 2}, ε(m, p) = (m2+ p2)1/2, p=mvγ(v),
and tilde-symbols indicate quantities after the collision.
Interactions with the boundaries are elastic, i.e., p→−p
in the lab frame Σ0, defined as the rest frame of
the boundaries. The dynamics of this system can be
exactly integrated numerically, and the total energy
E0 =

∑N1
i=1 ε(m1, pi)+

∑N2
j=1 ε(m2, pj) is conserved in the

lab frame Σ0. We distinguish four types of measurements:

(a) t-ensemble average: After a period of equilibration, we
simultaneously measure the velocities of all particles
in Σ0 at a given instant of time t. This procedure is
repeated for energetically equivalent random initial
conditions mimicking a micro-canonical ensemble at
energy E0 [35].

(b) t-trajectory average: We choose a specific particle of
either species and measure their velocities at several
equidistant instants of time t(1), . . . , t(n).

(c) τ -ensemble average: We compute the proper time τi
for each particle during the simulation and measure
their velocities at a fixed proper-time value τ1 = . . .=
τN1+N2 = τ . Again, this procedure is repeated for
energetically equivalent random initial conditions.

(d) τ -trajectory average: We choose a specific particle of
either species and measure their velocities at several
equidistant instants of proper time τ (1), . . . , τ (n).

Results. – Figure 1 depicts the equilibrium distri-
butions computed from one-dimensional simulations as
described above. In the case of the ensemble measure-
ments (a) and (c) we averaged over 50 different, ener-
getically equivalent initial conditions. The single-particle
time averages (b) and (c) were determined by measuring
velocities at 5 · 105 instants using time intervals∆t=∆τ =
4 · 10−4 L/c, where L is the system’s spatial extension.
Let us first compare the distribution functions obtained

by the two t-averaging methods (a) and (b), respectively.
As evident from the (blue) diamonds and (magenta) cross-
symbols in fig. 1, the two different procedures both yield
a Jüttner distribution with same parameter β for either
species, i.e.,

f∞(v) = fJ(v). (8a)
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Fig. 1: (Color online) Numerically measured one-particle veloc-
ity PDFs using lab time and proper-time parameterizations,
respectively. Symbols/methods: (a) t-ensemble average: blue !;
(b) t-trajectory average: magenta ×; (c) τ -ensemble average:
red !; and (d) τ -trajectory average: green +. The results
are based on simulations with N1 = 5000 light particles of
mass m1 and N2 = 5000 heavy particles with mass m2 = 2m1.
The solid curves correspond to Jüttner functions (6) with
β = 0.709 (m1c

2)−1, but different particle masses, respectively.
The dashed lines show the corresponding modified Jüttner
distribution, eq. (8b), with the same parameter β. As the
distributions are symmetric with respect to the origin, only
the positive velocity axis is shown.

Similarly, upon comparing the histograms obtained by
(c) τ -ensemble averaging, see red triangles, and (d)
τ -trajectory averaging, green plus symbols, we find
that both methods give the same distribution. But this
proper-time equilibrium PDF differs from the Jüttner
function by a factor 1/ε, i.e.,

f̂∞(v) = α
−1fJ(v)/γ(v) =: fMJ(v). (8b)

Thus, on the one hand, our simulations confirm the
validity of eq. (5) for the one-dimensional two-component
gas model. One the other hand, eqs. (8) provide two
“soft” ergodicity statements on the level of the one-
particle velocity distributions (we adopt the term “soft”
rather than “weak”, which is already commonly used
in a different context [8]). Evidently, it is necessary to
distinguish different time parameters when discussing
ergodicity in relativistic systems.
The “τ -stationary” modified Jüttner function (8b) was

derived earlier in ref. [45] from a simple collision invariance
criterion. Yet another derivation, based on symmetry and
entropy arguments, was given in ref. [14]. However, at that
time it was not understood that the two distributions fJ
and fMJ refer to different time parameters, respectively.
In fact, combining the above results with the arguments
given in [14] reveals an interesting relation between time
parameters and (relative) entropy in special relativity.

Maximum (relative) entropy principle. – To
establish a connection between t, τ and entropy, let us
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Stefan Hilbert
Argelander-Institut für Astronomie, Universität Bonn, Auf dem Hügel 71, D-53121 Bonn, Germany
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S[φ|ρ] =
∫

ddp φ(p) ln
[
φ(p)
ρ(p)

]
(1)

ε =
∫

ddp φ(p) p0 (2)

1 =
∫

ddp φ(p) (3)

ρ = ρ0 : φJ ∝ exp(−βp0) ⇔ f(t→∞) (4)

ρ ∝ 1
p0

: φMJ ∝
exp(−βp0)

p0
⇔ f̂(τ →∞) (5)

Temperature

T ′(w) = T (1− w2)α/2 α =






+1 Planck, Einstein
0 Landsberg, van Kampen
−1 Ott

(6)

1D Jüttner

φJ(p) ∝ exp[β(p2 + M2)1/2] (7)

Ansatz 3D Jüttner

f(t, x,p) = ϕ(x,p) = ((x) φJ(p), (8a)

with Jüttner momentum distribution [20, 21]

φJ(p) = Z−1 exp(−βp0), β > 0 (8b)
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Summary (part 1)

Simple gas model

✓ thermostatistical equilibrium (in rest frame)

✓ “ergodicity” for different time parameters

✓ Hamiltonian system ⇒ microcanonical equipartition theorem

✓ relative entropy principle:   (modified) Juettner distribution

✓ time parameter ⇔ symmetry of reference measure 

x
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Part 2: Relativistic thermodynamics

What “is” thermodynamics?

“Good” vs ”bad” starting points in relativistic thermodynamics?

Origin of different temperature transformation laws?

How can (or should) one define thermodynamic observables in 
relativity?
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What “is” thermodynamics? 

... attempt to efficiently describe an extended physical system 
    by means of a few macroscopic control parameters
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What “is” thermodynamics? 

... attempt to efficiently describe an extended physical system 
    by means of a few macroscopic control parameters

... more precisely

 mathematical theory of differential forms 

 theory of symmetry (breaking)

‣ Energy  E             ⇔   time translation invariance

‣ Volume V             ⇔   breaking of spatial translation invariance

‣ Magnetic field B   ⇔   breaking of spatial isotropy

 non-local description 

 

Herbert B Callen
(1920-1993)
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Starting points in RTD?

“BAD”      macroscopic variables  

 ambiguous definition

 non-local character not explicit
 

“GOOD”  mesoscopic tensor densities 

 uniquely defined, e.g., can be derived from Lagrangians

 encode symmetries   ⇔   conserved Noether currents
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Σ , and can be described by a Σ -time-independent, normalized
one-particle phase-space probability density function (PDF)

f (t ,x,p)= ϕ(x,p)= "(x)φJ(p) (3a)

with Jüttner momentum distribution20,21

φJ(p)=Z−1exp(−βp0), β > 0 (3b)

Z = 4πm3K2(βm)/(βm) is the normalization constant, Kn(z)
is the nth modified Bessel function of the second kind22 and
p0 = (m2 +p2)1/2 is the particle energy. Later, the distribution pa-
rameter β will be identified with the inverse thermodynamic (rest)
temperature of the gas. The exact functional form of the spatial
density " in equation (3a) is irrelevant, as long as " is normalizable
(that is, restricted to a finite spatial volume set V⊂R3 in Σ ). For
simplicity, we may consider a spatially homogeneous gas enclosed
in a stationary cubic boxV=[−L/2,L/2]3 inΣ , corresponding to

"(x)=
{
V −1, if x∈V
0, if x $∈V (3c)

Here,V =L3 is theΣ -simultaneously measured (Lebesgue) volume
of V in Σ .

The phase-space PDF f is a Lorentz scalar23. Thus, the current
density jµ and energy–momentum tensor θµν can be constructed
from f by:

jµ(t ,x)=N
∫

d3p
p0

f pµ (4a)

θµν(t ,x)=N
∫

d3p
p0

f pµpν (4b)

where d3p/p0 is the Lorentz-invariant integration measure in
relativistic momentum space. Concretely, for equation (3) we
have (jα)= (",0) and

θµν =N "

{ 〈p0〉, µ = ν = 0
β−1, µ = ν = 1,2,3
0, µ $= ν

(5)

where 〈p0〉=3β−1+mK1(βm)/K2(βm) is themean energy per par-
ticle. One readily verifies that ∂α jα ≡ 0, whereas ∂µθµi =β−1∂i" $= 0
at the boundary ofV, in agreement with equation (1). Confinement
generates stress—the importance of this seemingly trivial statement
shall be seen immediately.

Isochronous state variables
The traditional versions of relativistic thermodynamics7–12,14 are re-
covered from equations (3)–(5) by inserting isochronous spacetime
hypersurfaces into equation (2). To see this, consider an inertial
frame Σ ′, moving at velocity w along the x1-axis of the lab-frame
Σ . An event E with coordinates (ξ 0,ξ) in Σ and (ξ ′0,ξ′) in
Σ ′ defines isochronous hyperplanes I(ξ 0) and I ′(ξ ′0) in Σ and
Σ ′, respectively, by

I(ξ 0) := { (t ,x) | t = ξ 0 } (6a)

I ′(ξ ′0) := { (t ′,x′) | t ′ = ξ ′0 } (6b)

If Σ and Σ ′ are in relative motion, these hyperplanes differ from
each other, I(ξ 0) $= I ′(ξ ′0), see Fig. 1. Inserting H = I(ξ 0) into

x

t

P1 P2

t = ξ0

t’ = ξ’0

Figure 1 |Non-local thermodynamic quantities depend on the underlying
hypersurface in Minkowski spacetime.When particles ‘P1’ and ‘P2’
interact with each other or with a confining structure (grey) they change
their momentum. Hence, different hyperplanes sample different
many-particle momentum states. Traditional formulations of relativistic
thermodynamics introduce global state variables as integrals over
isochronous hyperplanes (dotted), whereas a photograph taken at the
spacetime event E or E ′ records the state of the system along the
corresponding backward-lightcone C(E ) or C(E ′).

equation (2), we obtain the lab-isochronous energy–momentum
vector U µ[I] in Σ :

(U µ[I])=N (〈p0〉,0) (7)

On the other hand, choosing H = I ′[ξ ′0] yields theΣ ′-isochronous
energy–momentum vectorU ′µ[I ′] inΣ ′:

(
U ′µ[I ′]

)
=N

{
γ (〈p0〉+w2β−1), µ = 0
−γw(〈p0〉+β−1), µ = 1
0, µ > 1

(8)

where γ := (1 − w2)−1/2. Applying a Lorentz transformation
with −w to equation (8), we find the corresponding energy–
momentum in Σ

(U µ[I ′])=N (〈p0〉,−wβ−1,0,0)

Hence, the energy–momentum vectors equations (7) and (8) are
not related by a Lorentz transformation. In fact, U µ[I] and
U µ[I ′] are connected by

(U µ[I ′])= (U µ[I])+Nβ−1(0,−w,0,0)

reflecting the underlying hypersurface and observer velocity. As
mentioned earlier, the difference between U µ[I] and U µ[I ′] arises
because the energy–momentum tensor of a spatially confined gas
is not conserved. It is also a reason for the existence of various
temperature Lorentz transformation laws.

Entropy
Having at hand the state variables ‘energy’ U 0 and ‘momen-
tum’ U, one still needs ‘entropy’. For a Jüttner gas, one can
define the entropy density four-current24,25 by (h = Planck’s con-
stant, units kB = 1)

sµ(t ,x)= −N
∫

d3p
p0

pµf ln(h3f ) (9)

The specific shape of equation (9) is tightly linked to the ex-
ponential form of the Jüttner distribution equation (3). In fact,
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Σ , and can be described by a Σ -time-independent, normalized
one-particle phase-space probability density function (PDF)

f (t ,x,p)= ϕ(x,p)= "(x)φJ(p) (3a)

with Jüttner momentum distribution20,21

φJ(p)=Z−1exp(−βp0), β > 0 (3b)

Z = 4πm3K2(βm)/(βm) is the normalization constant, Kn(z)
is the nth modified Bessel function of the second kind22 and
p0 = (m2 +p2)1/2 is the particle energy. Later, the distribution pa-
rameter β will be identified with the inverse thermodynamic (rest)
temperature of the gas. The exact functional form of the spatial
density " in equation (3a) is irrelevant, as long as " is normalizable
(that is, restricted to a finite spatial volume set V⊂R3 in Σ ). For
simplicity, we may consider a spatially homogeneous gas enclosed
in a stationary cubic boxV=[−L/2,L/2]3 inΣ , corresponding to

"(x)=
{
V −1, if x∈V
0, if x $∈V (3c)

Here,V =L3 is theΣ -simultaneously measured (Lebesgue) volume
of V in Σ .

The phase-space PDF f is a Lorentz scalar23. Thus, the current
density jµ and energy–momentum tensor θµν can be constructed
from f by:

jµ(t ,x)=N
∫

d3p
p0

f pµ (4a)

θµν(t ,x)=N
∫

d3p
p0

f pµpν (4b)

where d3p/p0 is the Lorentz-invariant integration measure in
relativistic momentum space. Concretely, for equation (3) we
have (jα)= (",0) and

θµν =N "

{ 〈p0〉, µ = ν = 0
β−1, µ = ν = 1,2,3
0, µ $= ν

(5)

where 〈p0〉=3β−1+mK1(βm)/K2(βm) is themean energy per par-
ticle. One readily verifies that ∂α jα ≡ 0, whereas ∂µθµi =β−1∂i" $= 0
at the boundary ofV, in agreement with equation (1). Confinement
generates stress—the importance of this seemingly trivial statement
shall be seen immediately.

Isochronous state variables
The traditional versions of relativistic thermodynamics7–12,14 are re-
covered from equations (3)–(5) by inserting isochronous spacetime
hypersurfaces into equation (2). To see this, consider an inertial
frame Σ ′, moving at velocity w along the x1-axis of the lab-frame
Σ . An event E with coordinates (ξ 0,ξ) in Σ and (ξ ′0,ξ′) in
Σ ′ defines isochronous hyperplanes I(ξ 0) and I ′(ξ ′0) in Σ and
Σ ′, respectively, by

I(ξ 0) := { (t ,x) | t = ξ 0 } (6a)

I ′(ξ ′0) := { (t ′,x′) | t ′ = ξ ′0 } (6b)

If Σ and Σ ′ are in relative motion, these hyperplanes differ from
each other, I(ξ 0) $= I ′(ξ ′0), see Fig. 1. Inserting H = I(ξ 0) into
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t’ = ξ’0

Figure 1 |Non-local thermodynamic quantities depend on the underlying
hypersurface in Minkowski spacetime.When particles ‘P1’ and ‘P2’
interact with each other or with a confining structure (grey) they change
their momentum. Hence, different hyperplanes sample different
many-particle momentum states. Traditional formulations of relativistic
thermodynamics introduce global state variables as integrals over
isochronous hyperplanes (dotted), whereas a photograph taken at the
spacetime event E or E ′ records the state of the system along the
corresponding backward-lightcone C(E ) or C(E ′).

equation (2), we obtain the lab-isochronous energy–momentum
vector U µ[I] in Σ :

(U µ[I])=N (〈p0〉,0) (7)

On the other hand, choosing H = I ′[ξ ′0] yields theΣ ′-isochronous
energy–momentum vectorU ′µ[I ′] inΣ ′:

(
U ′µ[I ′]

)
=N

{
γ (〈p0〉+w2β−1), µ = 0
−γw(〈p0〉+β−1), µ = 1
0, µ > 1

(8)

where γ := (1 − w2)−1/2. Applying a Lorentz transformation
with −w to equation (8), we find the corresponding energy–
momentum in Σ

(U µ[I ′])=N (〈p0〉,−wβ−1,0,0)

Hence, the energy–momentum vectors equations (7) and (8) are
not related by a Lorentz transformation. In fact, U µ[I] and
U µ[I ′] are connected by

(U µ[I ′])= (U µ[I])+Nβ−1(0,−w,0,0)

reflecting the underlying hypersurface and observer velocity. As
mentioned earlier, the difference between U µ[I] and U µ[I ′] arises
because the energy–momentum tensor of a spatially confined gas
is not conserved. It is also a reason for the existence of various
temperature Lorentz transformation laws.

Entropy
Having at hand the state variables ‘energy’ U 0 and ‘momen-
tum’ U, one still needs ‘entropy’. For a Jüttner gas, one can
define the entropy density four-current24,25 by (h = Planck’s con-
stant, units kB = 1)

sµ(t ,x)= −N
∫

d3p
p0

pµf ln(h3f ) (9)

The specific shape of equation (9) is tightly linked to the ex-
ponential form of the Jüttner distribution equation (3). In fact,
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Σ , and can be described by a Σ -time-independent, normalized
one-particle phase-space probability density function (PDF)

f (t ,x,p)= ϕ(x,p)= "(x)φJ(p) (3a)

with Jüttner momentum distribution20,21

φJ(p)=Z−1exp(−βp0), β > 0 (3b)

Z = 4πm3K2(βm)/(βm) is the normalization constant, Kn(z)
is the nth modified Bessel function of the second kind22 and
p0 = (m2 +p2)1/2 is the particle energy. Later, the distribution pa-
rameter β will be identified with the inverse thermodynamic (rest)
temperature of the gas. The exact functional form of the spatial
density " in equation (3a) is irrelevant, as long as " is normalizable
(that is, restricted to a finite spatial volume set V⊂R3 in Σ ). For
simplicity, we may consider a spatially homogeneous gas enclosed
in a stationary cubic boxV=[−L/2,L/2]3 inΣ , corresponding to

"(x)=
{
V −1, if x∈V
0, if x $∈V (3c)

Here,V =L3 is theΣ -simultaneously measured (Lebesgue) volume
of V in Σ .

The phase-space PDF f is a Lorentz scalar23. Thus, the current
density jµ and energy–momentum tensor θµν can be constructed
from f by:

jµ(t ,x)=N
∫

d3p
p0

f pµ (4a)

θµν(t ,x)=N
∫

d3p
p0

f pµpν (4b)

where d3p/p0 is the Lorentz-invariant integration measure in
relativistic momentum space. Concretely, for equation (3) we
have (jα)= (",0) and

θµν =N "

{ 〈p0〉, µ = ν = 0
β−1, µ = ν = 1,2,3
0, µ $= ν

(5)

where 〈p0〉=3β−1+mK1(βm)/K2(βm) is themean energy per par-
ticle. One readily verifies that ∂α jα ≡ 0, whereas ∂µθµi =β−1∂i" $= 0
at the boundary ofV, in agreement with equation (1). Confinement
generates stress—the importance of this seemingly trivial statement
shall be seen immediately.

Isochronous state variables
The traditional versions of relativistic thermodynamics7–12,14 are re-
covered from equations (3)–(5) by inserting isochronous spacetime
hypersurfaces into equation (2). To see this, consider an inertial
frame Σ ′, moving at velocity w along the x1-axis of the lab-frame
Σ . An event E with coordinates (ξ 0,ξ) in Σ and (ξ ′0,ξ′) in
Σ ′ defines isochronous hyperplanes I(ξ 0) and I ′(ξ ′0) in Σ and
Σ ′, respectively, by

I(ξ 0) := { (t ,x) | t = ξ 0 } (6a)

I ′(ξ ′0) := { (t ′,x′) | t ′ = ξ ′0 } (6b)

If Σ and Σ ′ are in relative motion, these hyperplanes differ from
each other, I(ξ 0) $= I ′(ξ ′0), see Fig. 1. Inserting H = I(ξ 0) into
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Figure 1 |Non-local thermodynamic quantities depend on the underlying
hypersurface in Minkowski spacetime.When particles ‘P1’ and ‘P2’
interact with each other or with a confining structure (grey) they change
their momentum. Hence, different hyperplanes sample different
many-particle momentum states. Traditional formulations of relativistic
thermodynamics introduce global state variables as integrals over
isochronous hyperplanes (dotted), whereas a photograph taken at the
spacetime event E or E ′ records the state of the system along the
corresponding backward-lightcone C(E ) or C(E ′).

equation (2), we obtain the lab-isochronous energy–momentum
vector U µ[I] in Σ :

(U µ[I])=N (〈p0〉,0) (7)

On the other hand, choosing H = I ′[ξ ′0] yields theΣ ′-isochronous
energy–momentum vectorU ′µ[I ′] inΣ ′:

(
U ′µ[I ′]

)
=N

{
γ (〈p0〉+w2β−1), µ = 0
−γw(〈p0〉+β−1), µ = 1
0, µ > 1

(8)

where γ := (1 − w2)−1/2. Applying a Lorentz transformation
with −w to equation (8), we find the corresponding energy–
momentum in Σ

(U µ[I ′])=N (〈p0〉,−wβ−1,0,0)

Hence, the energy–momentum vectors equations (7) and (8) are
not related by a Lorentz transformation. In fact, U µ[I] and
U µ[I ′] are connected by

(U µ[I ′])= (U µ[I])+Nβ−1(0,−w,0,0)

reflecting the underlying hypersurface and observer velocity. As
mentioned earlier, the difference between U µ[I] and U µ[I ′] arises
because the energy–momentum tensor of a spatially confined gas
is not conserved. It is also a reason for the existence of various
temperature Lorentz transformation laws.

Entropy
Having at hand the state variables ‘energy’ U 0 and ‘momen-
tum’ U, one still needs ‘entropy’. For a Jüttner gas, one can
define the entropy density four-current24,25 by (h = Planck’s con-
stant, units kB = 1)

sµ(t ,x)= −N
∫

d3p
p0

pµf ln(h3f ) (9)

The specific shape of equation (9) is tightly linked to the ex-
ponential form of the Jüttner distribution equation (3). In fact,
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Σ , and can be described by a Σ -time-independent, normalized
one-particle phase-space probability density function (PDF)

f (t ,x,p)= ϕ(x,p)= "(x)φJ(p) (3a)

with Jüttner momentum distribution20,21

φJ(p)=Z−1exp(−βp0), β > 0 (3b)

Z = 4πm3K2(βm)/(βm) is the normalization constant, Kn(z)
is the nth modified Bessel function of the second kind22 and
p0 = (m2 +p2)1/2 is the particle energy. Later, the distribution pa-
rameter β will be identified with the inverse thermodynamic (rest)
temperature of the gas. The exact functional form of the spatial
density " in equation (3a) is irrelevant, as long as " is normalizable
(that is, restricted to a finite spatial volume set V⊂R3 in Σ ). For
simplicity, we may consider a spatially homogeneous gas enclosed
in a stationary cubic boxV=[−L/2,L/2]3 inΣ , corresponding to

"(x)=
{
V −1, if x∈V
0, if x $∈V (3c)

Here,V =L3 is theΣ -simultaneously measured (Lebesgue) volume
of V in Σ .

The phase-space PDF f is a Lorentz scalar23. Thus, the current
density jµ and energy–momentum tensor θµν can be constructed
from f by:

jµ(t ,x)=N
∫

d3p
p0

f pµ (4a)

θµν(t ,x)=N
∫

d3p
p0

f pµpν (4b)

where d3p/p0 is the Lorentz-invariant integration measure in
relativistic momentum space. Concretely, for equation (3) we
have (jα)= (",0) and

θµν =N "

{ 〈p0〉, µ = ν = 0
β−1, µ = ν = 1,2,3
0, µ $= ν

(5)

where 〈p0〉=3β−1+mK1(βm)/K2(βm) is themean energy per par-
ticle. One readily verifies that ∂α jα ≡ 0, whereas ∂µθµi =β−1∂i" $= 0
at the boundary ofV, in agreement with equation (1). Confinement
generates stress—the importance of this seemingly trivial statement
shall be seen immediately.

Isochronous state variables
The traditional versions of relativistic thermodynamics7–12,14 are re-
covered from equations (3)–(5) by inserting isochronous spacetime
hypersurfaces into equation (2). To see this, consider an inertial
frame Σ ′, moving at velocity w along the x1-axis of the lab-frame
Σ . An event E with coordinates (ξ 0,ξ) in Σ and (ξ ′0,ξ′) in
Σ ′ defines isochronous hyperplanes I(ξ 0) and I ′(ξ ′0) in Σ and
Σ ′, respectively, by

I(ξ 0) := { (t ,x) | t = ξ 0 } (6a)

I ′(ξ ′0) := { (t ′,x′) | t ′ = ξ ′0 } (6b)

If Σ and Σ ′ are in relative motion, these hyperplanes differ from
each other, I(ξ 0) $= I ′(ξ ′0), see Fig. 1. Inserting H = I(ξ 0) into
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Figure 1 |Non-local thermodynamic quantities depend on the underlying
hypersurface in Minkowski spacetime.When particles ‘P1’ and ‘P2’
interact with each other or with a confining structure (grey) they change
their momentum. Hence, different hyperplanes sample different
many-particle momentum states. Traditional formulations of relativistic
thermodynamics introduce global state variables as integrals over
isochronous hyperplanes (dotted), whereas a photograph taken at the
spacetime event E or E ′ records the state of the system along the
corresponding backward-lightcone C(E ) or C(E ′).

equation (2), we obtain the lab-isochronous energy–momentum
vector U µ[I] in Σ :

(U µ[I])=N (〈p0〉,0) (7)

On the other hand, choosing H = I ′[ξ ′0] yields theΣ ′-isochronous
energy–momentum vectorU ′µ[I ′] inΣ ′:

(
U ′µ[I ′]

)
=N

{
γ (〈p0〉+w2β−1), µ = 0
−γw(〈p0〉+β−1), µ = 1
0, µ > 1

(8)

where γ := (1 − w2)−1/2. Applying a Lorentz transformation
with −w to equation (8), we find the corresponding energy–
momentum in Σ

(U µ[I ′])=N (〈p0〉,−wβ−1,0,0)

Hence, the energy–momentum vectors equations (7) and (8) are
not related by a Lorentz transformation. In fact, U µ[I] and
U µ[I ′] are connected by

(U µ[I ′])= (U µ[I])+Nβ−1(0,−w,0,0)

reflecting the underlying hypersurface and observer velocity. As
mentioned earlier, the difference between U µ[I] and U µ[I ′] arises
because the energy–momentum tensor of a spatially confined gas
is not conserved. It is also a reason for the existence of various
temperature Lorentz transformation laws.

Entropy
Having at hand the state variables ‘energy’ U 0 and ‘momen-
tum’ U, one still needs ‘entropy’. For a Jüttner gas, one can
define the entropy density four-current24,25 by (h = Planck’s con-
stant, units kB = 1)

sµ(t ,x)= −N
∫

d3p
p0

pµf ln(h3f ) (9)

The specific shape of equation (9) is tightly linked to the ex-
ponential form of the Jüttner distribution equation (3). In fact,
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Σ , and can be described by a Σ -time-independent, normalized
one-particle phase-space probability density function (PDF)

f (t ,x,p)= ϕ(x,p)= "(x)φJ(p) (3a)

with Jüttner momentum distribution20,21

φJ(p)=Z−1exp(−βp0), β > 0 (3b)

Z = 4πm3K2(βm)/(βm) is the normalization constant, Kn(z)
is the nth modified Bessel function of the second kind22 and
p0 = (m2 +p2)1/2 is the particle energy. Later, the distribution pa-
rameter β will be identified with the inverse thermodynamic (rest)
temperature of the gas. The exact functional form of the spatial
density " in equation (3a) is irrelevant, as long as " is normalizable
(that is, restricted to a finite spatial volume set V⊂R3 in Σ ). For
simplicity, we may consider a spatially homogeneous gas enclosed
in a stationary cubic boxV=[−L/2,L/2]3 inΣ , corresponding to

"(x)=
{
V −1, if x∈V
0, if x $∈V (3c)

Here,V =L3 is theΣ -simultaneously measured (Lebesgue) volume
of V in Σ .

The phase-space PDF f is a Lorentz scalar23. Thus, the current
density jµ and energy–momentum tensor θµν can be constructed
from f by:

jµ(t ,x)=N
∫

d3p
p0

f pµ (4a)

θµν(t ,x)=N
∫

d3p
p0

f pµpν (4b)

where d3p/p0 is the Lorentz-invariant integration measure in
relativistic momentum space. Concretely, for equation (3) we
have (jα)= (",0) and

θµν =N "

{ 〈p0〉, µ = ν = 0
β−1, µ = ν = 1,2,3
0, µ $= ν

(5)

where 〈p0〉=3β−1+mK1(βm)/K2(βm) is themean energy per par-
ticle. One readily verifies that ∂α jα ≡ 0, whereas ∂µθµi =β−1∂i" $= 0
at the boundary ofV, in agreement with equation (1). Confinement
generates stress—the importance of this seemingly trivial statement
shall be seen immediately.

Isochronous state variables
The traditional versions of relativistic thermodynamics7–12,14 are re-
covered from equations (3)–(5) by inserting isochronous spacetime
hypersurfaces into equation (2). To see this, consider an inertial
frame Σ ′, moving at velocity w along the x1-axis of the lab-frame
Σ . An event E with coordinates (ξ 0,ξ) in Σ and (ξ ′0,ξ′) in
Σ ′ defines isochronous hyperplanes I(ξ 0) and I ′(ξ ′0) in Σ and
Σ ′, respectively, by

I(ξ 0) := { (t ,x) | t = ξ 0 } (6a)

I ′(ξ ′0) := { (t ′,x′) | t ′ = ξ ′0 } (6b)

If Σ and Σ ′ are in relative motion, these hyperplanes differ from
each other, I(ξ 0) $= I ′(ξ ′0), see Fig. 1. Inserting H = I(ξ 0) into
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Figure 1 |Non-local thermodynamic quantities depend on the underlying
hypersurface in Minkowski spacetime.When particles ‘P1’ and ‘P2’
interact with each other or with a confining structure (grey) they change
their momentum. Hence, different hyperplanes sample different
many-particle momentum states. Traditional formulations of relativistic
thermodynamics introduce global state variables as integrals over
isochronous hyperplanes (dotted), whereas a photograph taken at the
spacetime event E or E ′ records the state of the system along the
corresponding backward-lightcone C(E ) or C(E ′).

equation (2), we obtain the lab-isochronous energy–momentum
vector U µ[I] in Σ :

(U µ[I])=N (〈p0〉,0) (7)

On the other hand, choosing H = I ′[ξ ′0] yields theΣ ′-isochronous
energy–momentum vectorU ′µ[I ′] inΣ ′:

(
U ′µ[I ′]

)
=N

{
γ (〈p0〉+w2β−1), µ = 0
−γw(〈p0〉+β−1), µ = 1
0, µ > 1

(8)

where γ := (1 − w2)−1/2. Applying a Lorentz transformation
with −w to equation (8), we find the corresponding energy–
momentum in Σ

(U µ[I ′])=N (〈p0〉,−wβ−1,0,0)

Hence, the energy–momentum vectors equations (7) and (8) are
not related by a Lorentz transformation. In fact, U µ[I] and
U µ[I ′] are connected by

(U µ[I ′])= (U µ[I])+Nβ−1(0,−w,0,0)

reflecting the underlying hypersurface and observer velocity. As
mentioned earlier, the difference between U µ[I] and U µ[I ′] arises
because the energy–momentum tensor of a spatially confined gas
is not conserved. It is also a reason for the existence of various
temperature Lorentz transformation laws.

Entropy
Having at hand the state variables ‘energy’ U 0 and ‘momen-
tum’ U, one still needs ‘entropy’. For a Jüttner gas, one can
define the entropy density four-current24,25 by (h = Planck’s con-
stant, units kB = 1)

sµ(t ,x)= −N
∫

d3p
p0

pµf ln(h3f ) (9)

The specific shape of equation (9) is tightly linked to the ex-
ponential form of the Jüttner distribution equation (3). In fact,

2 NATURE PHYSICS | ADVANCE ONLINE PUBLICATION | www.nature.com/naturephysics

ARTICLES NATURE PHYSICS DOI: 10.1038/NPHYS1395

Σ , and can be described by a Σ -time-independent, normalized
one-particle phase-space probability density function (PDF)

f (t ,x,p)= ϕ(x,p)= "(x)φJ(p) (3a)

with Jüttner momentum distribution20,21

φJ(p)=Z−1exp(−βp0), β > 0 (3b)

Z = 4πm3K2(βm)/(βm) is the normalization constant, Kn(z)
is the nth modified Bessel function of the second kind22 and
p0 = (m2 +p2)1/2 is the particle energy. Later, the distribution pa-
rameter β will be identified with the inverse thermodynamic (rest)
temperature of the gas. The exact functional form of the spatial
density " in equation (3a) is irrelevant, as long as " is normalizable
(that is, restricted to a finite spatial volume set V⊂R3 in Σ ). For
simplicity, we may consider a spatially homogeneous gas enclosed
in a stationary cubic boxV=[−L/2,L/2]3 inΣ , corresponding to

"(x)=
{
V −1, if x∈V
0, if x $∈V (3c)

Here,V =L3 is theΣ -simultaneously measured (Lebesgue) volume
of V in Σ .

The phase-space PDF f is a Lorentz scalar23. Thus, the current
density jµ and energy–momentum tensor θµν can be constructed
from f by:

jµ(t ,x)=N
∫

d3p
p0

f pµ (4a)

θµν(t ,x)=N
∫

d3p
p0

f pµpν (4b)

where d3p/p0 is the Lorentz-invariant integration measure in
relativistic momentum space. Concretely, for equation (3) we
have (jα)= (",0) and

θµν =N "

{ 〈p0〉, µ = ν = 0
β−1, µ = ν = 1,2,3
0, µ $= ν

(5)

where 〈p0〉=3β−1+mK1(βm)/K2(βm) is themean energy per par-
ticle. One readily verifies that ∂α jα ≡ 0, whereas ∂µθµi =β−1∂i" $= 0
at the boundary ofV, in agreement with equation (1). Confinement
generates stress—the importance of this seemingly trivial statement
shall be seen immediately.

Isochronous state variables
The traditional versions of relativistic thermodynamics7–12,14 are re-
covered from equations (3)–(5) by inserting isochronous spacetime
hypersurfaces into equation (2). To see this, consider an inertial
frame Σ ′, moving at velocity w along the x1-axis of the lab-frame
Σ . An event E with coordinates (ξ 0,ξ) in Σ and (ξ ′0,ξ′) in
Σ ′ defines isochronous hyperplanes I(ξ 0) and I ′(ξ ′0) in Σ and
Σ ′, respectively, by

I(ξ 0) := { (t ,x) | t = ξ 0 } (6a)

I ′(ξ ′0) := { (t ′,x′) | t ′ = ξ ′0 } (6b)

If Σ and Σ ′ are in relative motion, these hyperplanes differ from
each other, I(ξ 0) $= I ′(ξ ′0), see Fig. 1. Inserting H = I(ξ 0) into
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Figure 1 |Non-local thermodynamic quantities depend on the underlying
hypersurface in Minkowski spacetime.When particles ‘P1’ and ‘P2’
interact with each other or with a confining structure (grey) they change
their momentum. Hence, different hyperplanes sample different
many-particle momentum states. Traditional formulations of relativistic
thermodynamics introduce global state variables as integrals over
isochronous hyperplanes (dotted), whereas a photograph taken at the
spacetime event E or E ′ records the state of the system along the
corresponding backward-lightcone C(E ) or C(E ′).

equation (2), we obtain the lab-isochronous energy–momentum
vector U µ[I] in Σ :

(U µ[I])=N (〈p0〉,0) (7)

On the other hand, choosing H = I ′[ξ ′0] yields theΣ ′-isochronous
energy–momentum vectorU ′µ[I ′] inΣ ′:

(
U ′µ[I ′]

)
=N

{
γ (〈p0〉+w2β−1), µ = 0
−γw(〈p0〉+β−1), µ = 1
0, µ > 1

(8)

where γ := (1 − w2)−1/2. Applying a Lorentz transformation
with −w to equation (8), we find the corresponding energy–
momentum in Σ

(U µ[I ′])=N (〈p0〉,−wβ−1,0,0)

Hence, the energy–momentum vectors equations (7) and (8) are
not related by a Lorentz transformation. In fact, U µ[I] and
U µ[I ′] are connected by

(U µ[I ′])= (U µ[I])+Nβ−1(0,−w,0,0)

reflecting the underlying hypersurface and observer velocity. As
mentioned earlier, the difference between U µ[I] and U µ[I ′] arises
because the energy–momentum tensor of a spatially confined gas
is not conserved. It is also a reason for the existence of various
temperature Lorentz transformation laws.

Entropy
Having at hand the state variables ‘energy’ U 0 and ‘momen-
tum’ U, one still needs ‘entropy’. For a Jüttner gas, one can
define the entropy density four-current24,25 by (h = Planck’s con-
stant, units kB = 1)

sµ(t ,x)= −N
∫

d3p
p0

pµf ln(h3f ) (9)

The specific shape of equation (9) is tightly linked to the ex-
ponential form of the Jüttner distribution equation (3). In fact,
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Σ , and can be described by a Σ -time-independent, normalized
one-particle phase-space probability density function (PDF)

f (t ,x,p)= ϕ(x,p)= "(x)φJ(p) (3a)

with Jüttner momentum distribution20,21

φJ(p)=Z−1exp(−βp0), β > 0 (3b)

Z = 4πm3K2(βm)/(βm) is the normalization constant, Kn(z)
is the nth modified Bessel function of the second kind22 and
p0 = (m2 +p2)1/2 is the particle energy. Later, the distribution pa-
rameter β will be identified with the inverse thermodynamic (rest)
temperature of the gas. The exact functional form of the spatial
density " in equation (3a) is irrelevant, as long as " is normalizable
(that is, restricted to a finite spatial volume set V⊂R3 in Σ ). For
simplicity, we may consider a spatially homogeneous gas enclosed
in a stationary cubic boxV=[−L/2,L/2]3 inΣ , corresponding to

"(x)=
{
V −1, if x∈V
0, if x $∈V (3c)

Here,V =L3 is theΣ -simultaneously measured (Lebesgue) volume
of V in Σ .

The phase-space PDF f is a Lorentz scalar23. Thus, the current
density jµ and energy–momentum tensor θµν can be constructed
from f by:

jµ(t ,x)=N
∫

d3p
p0

f pµ (4a)

θµν(t ,x)=N
∫

d3p
p0

f pµpν (4b)

where d3p/p0 is the Lorentz-invariant integration measure in
relativistic momentum space. Concretely, for equation (3) we
have (jα)= (",0) and

θµν =N "

{ 〈p0〉, µ = ν = 0
β−1, µ = ν = 1,2,3
0, µ $= ν

(5)

where 〈p0〉=3β−1+mK1(βm)/K2(βm) is themean energy per par-
ticle. One readily verifies that ∂α jα ≡ 0, whereas ∂µθµi =β−1∂i" $= 0
at the boundary ofV, in agreement with equation (1). Confinement
generates stress—the importance of this seemingly trivial statement
shall be seen immediately.

Isochronous state variables
The traditional versions of relativistic thermodynamics7–12,14 are re-
covered from equations (3)–(5) by inserting isochronous spacetime
hypersurfaces into equation (2). To see this, consider an inertial
frame Σ ′, moving at velocity w along the x1-axis of the lab-frame
Σ . An event E with coordinates (ξ 0,ξ) in Σ and (ξ ′0,ξ′) in
Σ ′ defines isochronous hyperplanes I(ξ 0) and I ′(ξ ′0) in Σ and
Σ ′, respectively, by

I(ξ 0) := { (t ,x) | t = ξ 0 } (6a)

I ′(ξ ′0) := { (t ′,x′) | t ′ = ξ ′0 } (6b)

If Σ and Σ ′ are in relative motion, these hyperplanes differ from
each other, I(ξ 0) $= I ′(ξ ′0), see Fig. 1. Inserting H = I(ξ 0) into
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t = ξ0

t’ = ξ’0

Figure 1 |Non-local thermodynamic quantities depend on the underlying
hypersurface in Minkowski spacetime.When particles ‘P1’ and ‘P2’
interact with each other or with a confining structure (grey) they change
their momentum. Hence, different hyperplanes sample different
many-particle momentum states. Traditional formulations of relativistic
thermodynamics introduce global state variables as integrals over
isochronous hyperplanes (dotted), whereas a photograph taken at the
spacetime event E or E ′ records the state of the system along the
corresponding backward-lightcone C(E ) or C(E ′).

equation (2), we obtain the lab-isochronous energy–momentum
vector U µ[I] in Σ :

(U µ[I])=N (〈p0〉,0) (7)

On the other hand, choosing H = I ′[ξ ′0] yields theΣ ′-isochronous
energy–momentum vectorU ′µ[I ′] inΣ ′:

(
U ′µ[I ′]

)
=N

{
γ (〈p0〉+w2β−1), µ = 0
−γw(〈p0〉+β−1), µ = 1
0, µ > 1

(8)

where γ := (1 − w2)−1/2. Applying a Lorentz transformation
with −w to equation (8), we find the corresponding energy–
momentum in Σ

(U µ[I ′])=N (〈p0〉,−wβ−1,0,0)

Hence, the energy–momentum vectors equations (7) and (8) are
not related by a Lorentz transformation. In fact, U µ[I] and
U µ[I ′] are connected by

(U µ[I ′])= (U µ[I])+Nβ−1(0,−w,0,0)

reflecting the underlying hypersurface and observer velocity. As
mentioned earlier, the difference between U µ[I] and U µ[I ′] arises
because the energy–momentum tensor of a spatially confined gas
is not conserved. It is also a reason for the existence of various
temperature Lorentz transformation laws.

Entropy
Having at hand the state variables ‘energy’ U 0 and ‘momen-
tum’ U, one still needs ‘entropy’. For a Jüttner gas, one can
define the entropy density four-current24,25 by (h = Planck’s con-
stant, units kB = 1)

sµ(t ,x)= −N
∫

d3p
p0

pµf ln(h3f ) (9)

The specific shape of equation (9) is tightly linked to the ex-
ponential form of the Jüttner distribution equation (3). In fact,
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Non-local observables and lightcone-averaging in
relativistic thermodynamics
Jörn Dunkel1*, Peter Hänggi2 and Stefan Hilbert3

The unification of relativity and thermodynamics has been a subject of considerable debate over the past 100 years.
The reasons for this are twofold. First, thermodynamic variables are non-local quantities and therefore single out a
preferred class of hyperplanes in spacetime. Second, there exist different ways of defining heat and work in relativistic
systems and all of them seem equally plausible. These ambiguities have led, for example, to various proposals for the
Lorentz-transformation law of temperature. However, traditional ‘isochronous’ formulations of relativistic thermodynamics are
neither theoretically satisfactory nor experimentally feasible. Here, we demonstrate how these deficiencies can be resolved by
defining thermodynamic quantities with respect to the backward-lightcone of an observation event. This approach yields new
predictions that are, in principle, testable and allows for a straightforward extension of thermodynamics to general relativity.
Our theoretical considerations are illustrated through three-dimensional relativistic many-body simulations.

Thermodynamics, in the traditional sense, aims at describing
the state of a macroscopic system by means of a few
characteristic parameters {Ai} (refs 1–4). Typical candidates

for thermodynamic state variables {Ai} are either conserved
(extensive) quantities, for example, the particle number N and
internal energy U , or external control parameters that quantify
the breaking of symmetries1. Examples of the last of these
include the volume V of a confining vessel, indicating the
violation of translational invariance, or external magnetic fields,
which may break the spatial isotropy. Each extensive state
variable is accompanied by an intensive quantity ai = ∂S/Ai,
derived from a suitably defined entropy function(al) S({Ai}).
Representing an abstract mathematical theory of differential
forms4, thermodynamic concepts have been successfully applied
to vastly different areas, ranging from microscopic many-particle
systems2,3,5, where S is usually interpreted as an information
measure (canonical ensemble) or integrated phase-space volume
(microcanonical ensemble), to exotic objects such as black holes6,
where S is related to the black hole’s surface area.

As a coarse-grained macroscopic theory, thermodynamics is
inherently non-local in that it considers only certain global,
or averaged, properties of a physical system2,3. This is rather
unproblematic within non-relativistic Newtonian physics, where
statements such as ‘the total energy of a system at time t ’ are
unambiguously defined for arbitrary observers. In contrast—owing
to the absence of a universal time parameter—the non-local
character of thermodynamics has caused considerable confusion7–15

within Einstein’s theory of relativity16–19.
To illustrate the conceptual difficulties in relativistic thermo-

dynamics, consider a confined gas described by a particle current
density jµ(t ,x) and an energy–momentum tensor density θµν(t ,x).
If the gas is stationary in some inertial frameΣ , then jµ is conserved,
that is, ∂µjµ ≡ 0, but the divergence of θµν does not identically
vanish (owing to the pressure arising from the spatial confinement,
see the example below):

∂µθµi "≡ 0, i= 1,2,3 (1)
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This means that space-like surface integrals over jµ are independent
of the underlying three-dimensional hypersurface H in (1+ 3)-
dimensional Minkowski spacetimeM4, whereas those over θµν do
depend on H. The latter fact is problematic because thermodynamic
state variables such as energy U 0 or momentum U= (U 1,U 2,U 3)
are usually defined as surface integrals over the energy–momentum
tensor (see theMethods section)16, that is,

U ν[H] :=
∫

H
dσµ θµν, µ,ν = 0,1,2,3 (2)

where, for a finite thermodynamic system, θµν is assumed to vanish
outside a bounded spatial region. Hence, the first task in relativistic
thermodynamics is to identify those hypersurfaces {H} that are
suitable for defining state variables. Subsequently, one still needs to
settle for appropriate definitions of entropy, heat and so on.

We shall begin by reviewing how these problems are tackled
in the most popular, competing versions of relativistic thermody-
namics, originally proposed by Planck7 and Einstein8, and Ott10
and Van Kampen9, respectively. A careful analysis shows that the
traditional approaches are neither conceptually satisfactory nor
experimentally feasible. The deficiencies can be cured by defining
thermodynamic quantities in terms of lightcone integrals. To clarify
these aspects, we consider a weakly interacting relativistic gas20.
Notwithstanding, the main conclusions apply to any confined
system that can be described by tensor densities jµ,θαβ,.... In the
second part, we shall discuss observable consequences such as the
apparent drift of distant objects that are, in fact, at rest relative to
the observer. This surprising effect—which should be accounted
for when estimating the velocities of very hot astrophysical ob-
jects from photographic data—will be illustrated by relativistic
many-particle simulations.

Model (Jüttner gas)
We consider an enclosed, dilute gas consisting ofN relativistic par-
ticles (rest massm; velocity v; momentum p=mv(1−v2)−1/2; speed
of light c =1). Let us assume the gas is stationary in the (‘lab’-)frame
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Σ , and can be described by a Σ -time-independent, normalized
one-particle phase-space probability density function (PDF)

f (t ,x,p)= ϕ(x,p)= "(x)φJ(p) (3a)

with Jüttner momentum distribution20,21

φJ(p)=Z−1exp(−βp0), β > 0 (3b)

Z = 4πm3K2(βm)/(βm) is the normalization constant, Kn(z)
is the nth modified Bessel function of the second kind22 and
p0 = (m2 +p2)1/2 is the particle energy. Later, the distribution pa-
rameter β will be identified with the inverse thermodynamic (rest)
temperature of the gas. The exact functional form of the spatial
density " in equation (3a) is irrelevant, as long as " is normalizable
(that is, restricted to a finite spatial volume set V⊂R3 in Σ ). For
simplicity, we may consider a spatially homogeneous gas enclosed
in a stationary cubic boxV=[−L/2,L/2]3 inΣ , corresponding to

"(x)=
{
V −1, if x∈V
0, if x $∈V (3c)

Here,V =L3 is theΣ -simultaneously measured (Lebesgue) volume
of V in Σ .

The phase-space PDF f is a Lorentz scalar23. Thus, the current
density jµ and energy–momentum tensor θµν can be constructed
from f by:

jµ(t ,x)=N
∫

d3p
p0

f pµ (4a)

θµν(t ,x)=N
∫

d3p
p0

f pµpν (4b)

where d3p/p0 is the Lorentz-invariant integration measure in
relativistic momentum space. Concretely, for equation (3) we
have (jα)= (",0) and

θµν =N "

{ 〈p0〉, µ = ν = 0
β−1, µ = ν = 1,2,3
0, µ $= ν

(5)

where 〈p0〉=3β−1+mK1(βm)/K2(βm) is themean energy per par-
ticle. One readily verifies that ∂α jα ≡ 0, whereas ∂µθµi =β−1∂i" $= 0
at the boundary ofV, in agreement with equation (1). Confinement
generates stress—the importance of this seemingly trivial statement
shall be seen immediately.

Isochronous state variables
The traditional versions of relativistic thermodynamics7–12,14 are re-
covered from equations (3)–(5) by inserting isochronous spacetime
hypersurfaces into equation (2). To see this, consider an inertial
frame Σ ′, moving at velocity w along the x1-axis of the lab-frame
Σ . An event E with coordinates (ξ 0,ξ) in Σ and (ξ ′0,ξ′) in
Σ ′ defines isochronous hyperplanes I(ξ 0) and I ′(ξ ′0) in Σ and
Σ ′, respectively, by

I(ξ 0) := { (t ,x) | t = ξ 0 } (6a)

I ′(ξ ′0) := { (t ′,x′) | t ′ = ξ ′0 } (6b)

If Σ and Σ ′ are in relative motion, these hyperplanes differ from
each other, I(ξ 0) $= I ′(ξ ′0), see Fig. 1. Inserting H = I(ξ 0) into

x
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t = ξ0

t’ = ξ’0

Figure 1 |Non-local thermodynamic quantities depend on the underlying
hypersurface in Minkowski spacetime.When particles ‘P1’ and ‘P2’
interact with each other or with a confining structure (grey) they change
their momentum. Hence, different hyperplanes sample different
many-particle momentum states. Traditional formulations of relativistic
thermodynamics introduce global state variables as integrals over
isochronous hyperplanes (dotted), whereas a photograph taken at the
spacetime event E or E ′ records the state of the system along the
corresponding backward-lightcone C(E ) or C(E ′).

equation (2), we obtain the lab-isochronous energy–momentum
vector U µ[I] in Σ :

(U µ[I])=N (〈p0〉,0) (7)

On the other hand, choosing H = I ′[ξ ′0] yields theΣ ′-isochronous
energy–momentum vectorU ′µ[I ′] inΣ ′:

(
U ′µ[I ′]

)
=N

{
γ (〈p0〉+w2β−1), µ = 0
−γw(〈p0〉+β−1), µ = 1
0, µ > 1

(8)

where γ := (1 − w2)−1/2. Applying a Lorentz transformation
with −w to equation (8), we find the corresponding energy–
momentum in Σ

(U µ[I ′])=N (〈p0〉,−wβ−1,0,0)

Hence, the energy–momentum vectors equations (7) and (8) are
not related by a Lorentz transformation. In fact, U µ[I] and
U µ[I ′] are connected by

(U µ[I ′])= (U µ[I])+Nβ−1(0,−w,0,0)

reflecting the underlying hypersurface and observer velocity. As
mentioned earlier, the difference between U µ[I] and U µ[I ′] arises
because the energy–momentum tensor of a spatially confined gas
is not conserved. It is also a reason for the existence of various
temperature Lorentz transformation laws.

Entropy
Having at hand the state variables ‘energy’ U 0 and ‘momen-
tum’ U, one still needs ‘entropy’. For a Jüttner gas, one can
define the entropy density four-current24,25 by (h = Planck’s con-
stant, units kB = 1)

sµ(t ,x)= −N
∫

d3p
p0

pµf ln(h3f ) (9)

The specific shape of equation (9) is tightly linked to the ex-
ponential form of the Jüttner distribution equation (3). In fact,
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Σ , and can be described by a Σ -time-independent, normalized
one-particle phase-space probability density function (PDF)

f (t ,x,p)= ϕ(x,p)= "(x)φJ(p) (3a)

with Jüttner momentum distribution20,21

φJ(p)=Z−1exp(−βp0), β > 0 (3b)

Z = 4πm3K2(βm)/(βm) is the normalization constant, Kn(z)
is the nth modified Bessel function of the second kind22 and
p0 = (m2 +p2)1/2 is the particle energy. Later, the distribution pa-
rameter β will be identified with the inverse thermodynamic (rest)
temperature of the gas. The exact functional form of the spatial
density " in equation (3a) is irrelevant, as long as " is normalizable
(that is, restricted to a finite spatial volume set V⊂R3 in Σ ). For
simplicity, we may consider a spatially homogeneous gas enclosed
in a stationary cubic boxV=[−L/2,L/2]3 inΣ , corresponding to

"(x)=
{
V −1, if x∈V
0, if x $∈V (3c)

Here,V =L3 is theΣ -simultaneously measured (Lebesgue) volume
of V in Σ .

The phase-space PDF f is a Lorentz scalar23. Thus, the current
density jµ and energy–momentum tensor θµν can be constructed
from f by:

jµ(t ,x)=N
∫

d3p
p0

f pµ (4a)

θµν(t ,x)=N
∫

d3p
p0

f pµpν (4b)

where d3p/p0 is the Lorentz-invariant integration measure in
relativistic momentum space. Concretely, for equation (3) we
have (jα)= (",0) and

θµν =N "

{ 〈p0〉, µ = ν = 0
β−1, µ = ν = 1,2,3
0, µ $= ν

(5)

where 〈p0〉=3β−1+mK1(βm)/K2(βm) is themean energy per par-
ticle. One readily verifies that ∂α jα ≡ 0, whereas ∂µθµi =β−1∂i" $= 0
at the boundary ofV, in agreement with equation (1). Confinement
generates stress—the importance of this seemingly trivial statement
shall be seen immediately.

Isochronous state variables
The traditional versions of relativistic thermodynamics7–12,14 are re-
covered from equations (3)–(5) by inserting isochronous spacetime
hypersurfaces into equation (2). To see this, consider an inertial
frame Σ ′, moving at velocity w along the x1-axis of the lab-frame
Σ . An event E with coordinates (ξ 0,ξ) in Σ and (ξ ′0,ξ′) in
Σ ′ defines isochronous hyperplanes I(ξ 0) and I ′(ξ ′0) in Σ and
Σ ′, respectively, by

I(ξ 0) := { (t ,x) | t = ξ 0 } (6a)

I ′(ξ ′0) := { (t ′,x′) | t ′ = ξ ′0 } (6b)

If Σ and Σ ′ are in relative motion, these hyperplanes differ from
each other, I(ξ 0) $= I ′(ξ ′0), see Fig. 1. Inserting H = I(ξ 0) into
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t’ = ξ’0

Figure 1 |Non-local thermodynamic quantities depend on the underlying
hypersurface in Minkowski spacetime.When particles ‘P1’ and ‘P2’
interact with each other or with a confining structure (grey) they change
their momentum. Hence, different hyperplanes sample different
many-particle momentum states. Traditional formulations of relativistic
thermodynamics introduce global state variables as integrals over
isochronous hyperplanes (dotted), whereas a photograph taken at the
spacetime event E or E ′ records the state of the system along the
corresponding backward-lightcone C(E ) or C(E ′).

equation (2), we obtain the lab-isochronous energy–momentum
vector U µ[I] in Σ :

(U µ[I])=N (〈p0〉,0) (7)

On the other hand, choosing H = I ′[ξ ′0] yields theΣ ′-isochronous
energy–momentum vectorU ′µ[I ′] inΣ ′:

(
U ′µ[I ′]

)
=N

{
γ (〈p0〉+w2β−1), µ = 0
−γw(〈p0〉+β−1), µ = 1
0, µ > 1

(8)

where γ := (1 − w2)−1/2. Applying a Lorentz transformation
with −w to equation (8), we find the corresponding energy–
momentum in Σ

(U µ[I ′])=N (〈p0〉,−wβ−1,0,0)

Hence, the energy–momentum vectors equations (7) and (8) are
not related by a Lorentz transformation. In fact, U µ[I] and
U µ[I ′] are connected by

(U µ[I ′])= (U µ[I])+Nβ−1(0,−w,0,0)

reflecting the underlying hypersurface and observer velocity. As
mentioned earlier, the difference between U µ[I] and U µ[I ′] arises
because the energy–momentum tensor of a spatially confined gas
is not conserved. It is also a reason for the existence of various
temperature Lorentz transformation laws.

Entropy
Having at hand the state variables ‘energy’ U 0 and ‘momen-
tum’ U, one still needs ‘entropy’. For a Jüttner gas, one can
define the entropy density four-current24,25 by (h = Planck’s con-
stant, units kB = 1)

sµ(t ,x)= −N
∫

d3p
p0

pµf ln(h3f ) (9)

The specific shape of equation (9) is tightly linked to the ex-
ponential form of the Jüttner distribution equation (3). In fact,
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Σ , and can be described by a Σ -time-independent, normalized
one-particle phase-space probability density function (PDF)

f (t ,x,p)= ϕ(x,p)= "(x)φJ(p) (3a)

with Jüttner momentum distribution20,21

φJ(p)=Z−1exp(−βp0), β > 0 (3b)

Z = 4πm3K2(βm)/(βm) is the normalization constant, Kn(z)
is the nth modified Bessel function of the second kind22 and
p0 = (m2 +p2)1/2 is the particle energy. Later, the distribution pa-
rameter β will be identified with the inverse thermodynamic (rest)
temperature of the gas. The exact functional form of the spatial
density " in equation (3a) is irrelevant, as long as " is normalizable
(that is, restricted to a finite spatial volume set V⊂R3 in Σ ). For
simplicity, we may consider a spatially homogeneous gas enclosed
in a stationary cubic boxV=[−L/2,L/2]3 inΣ , corresponding to

"(x)=
{
V −1, if x∈V
0, if x $∈V (3c)

Here,V =L3 is theΣ -simultaneously measured (Lebesgue) volume
of V in Σ .

The phase-space PDF f is a Lorentz scalar23. Thus, the current
density jµ and energy–momentum tensor θµν can be constructed
from f by:

jµ(t ,x)=N
∫

d3p
p0

f pµ (4a)

θµν(t ,x)=N
∫

d3p
p0

f pµpν (4b)

where d3p/p0 is the Lorentz-invariant integration measure in
relativistic momentum space. Concretely, for equation (3) we
have (jα)= (",0) and

θµν =N "

{ 〈p0〉, µ = ν = 0
β−1, µ = ν = 1,2,3
0, µ $= ν

(5)

where 〈p0〉=3β−1+mK1(βm)/K2(βm) is themean energy per par-
ticle. One readily verifies that ∂α jα ≡ 0, whereas ∂µθµi =β−1∂i" $= 0
at the boundary ofV, in agreement with equation (1). Confinement
generates stress—the importance of this seemingly trivial statement
shall be seen immediately.

Isochronous state variables
The traditional versions of relativistic thermodynamics7–12,14 are re-
covered from equations (3)–(5) by inserting isochronous spacetime
hypersurfaces into equation (2). To see this, consider an inertial
frame Σ ′, moving at velocity w along the x1-axis of the lab-frame
Σ . An event E with coordinates (ξ 0,ξ) in Σ and (ξ ′0,ξ′) in
Σ ′ defines isochronous hyperplanes I(ξ 0) and I ′(ξ ′0) in Σ and
Σ ′, respectively, by

I(ξ 0) := { (t ,x) | t = ξ 0 } (6a)

I ′(ξ ′0) := { (t ′,x′) | t ′ = ξ ′0 } (6b)

If Σ and Σ ′ are in relative motion, these hyperplanes differ from
each other, I(ξ 0) $= I ′(ξ ′0), see Fig. 1. Inserting H = I(ξ 0) into
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Figure 1 |Non-local thermodynamic quantities depend on the underlying
hypersurface in Minkowski spacetime.When particles ‘P1’ and ‘P2’
interact with each other or with a confining structure (grey) they change
their momentum. Hence, different hyperplanes sample different
many-particle momentum states. Traditional formulations of relativistic
thermodynamics introduce global state variables as integrals over
isochronous hyperplanes (dotted), whereas a photograph taken at the
spacetime event E or E ′ records the state of the system along the
corresponding backward-lightcone C(E ) or C(E ′).

equation (2), we obtain the lab-isochronous energy–momentum
vector U µ[I] in Σ :

(U µ[I])=N (〈p0〉,0) (7)

On the other hand, choosing H = I ′[ξ ′0] yields theΣ ′-isochronous
energy–momentum vectorU ′µ[I ′] inΣ ′:

(
U ′µ[I ′]

)
=N

{
γ (〈p0〉+w2β−1), µ = 0
−γw(〈p0〉+β−1), µ = 1
0, µ > 1

(8)

where γ := (1 − w2)−1/2. Applying a Lorentz transformation
with −w to equation (8), we find the corresponding energy–
momentum in Σ

(U µ[I ′])=N (〈p0〉,−wβ−1,0,0)

Hence, the energy–momentum vectors equations (7) and (8) are
not related by a Lorentz transformation. In fact, U µ[I] and
U µ[I ′] are connected by

(U µ[I ′])= (U µ[I])+Nβ−1(0,−w,0,0)

reflecting the underlying hypersurface and observer velocity. As
mentioned earlier, the difference between U µ[I] and U µ[I ′] arises
because the energy–momentum tensor of a spatially confined gas
is not conserved. It is also a reason for the existence of various
temperature Lorentz transformation laws.

Entropy
Having at hand the state variables ‘energy’ U 0 and ‘momen-
tum’ U, one still needs ‘entropy’. For a Jüttner gas, one can
define the entropy density four-current24,25 by (h = Planck’s con-
stant, units kB = 1)

sµ(t ,x)= −N
∫

d3p
p0

pµf ln(h3f ) (9)

The specific shape of equation (9) is tightly linked to the ex-
ponential form of the Jüttner distribution equation (3). In fact,

2 NATURE PHYSICS | ADVANCE ONLINE PUBLICATION | www.nature.com/naturephysics

Tensor densities

ARTICLES NATURE PHYSICS DOI: 10.1038/NPHYS1395

Σ , and can be described by a Σ -time-independent, normalized
one-particle phase-space probability density function (PDF)

f (t ,x,p)= ϕ(x,p)= "(x)φJ(p) (3a)

with Jüttner momentum distribution20,21

φJ(p)=Z−1exp(−βp0), β > 0 (3b)

Z = 4πm3K2(βm)/(βm) is the normalization constant, Kn(z)
is the nth modified Bessel function of the second kind22 and
p0 = (m2 +p2)1/2 is the particle energy. Later, the distribution pa-
rameter β will be identified with the inverse thermodynamic (rest)
temperature of the gas. The exact functional form of the spatial
density " in equation (3a) is irrelevant, as long as " is normalizable
(that is, restricted to a finite spatial volume set V⊂R3 in Σ ). For
simplicity, we may consider a spatially homogeneous gas enclosed
in a stationary cubic boxV=[−L/2,L/2]3 inΣ , corresponding to

"(x)=
{
V −1, if x∈V
0, if x $∈V (3c)

Here,V =L3 is theΣ -simultaneously measured (Lebesgue) volume
of V in Σ .

The phase-space PDF f is a Lorentz scalar23. Thus, the current
density jµ and energy–momentum tensor θµν can be constructed
from f by:

jµ(t ,x)=N
∫

d3p
p0

f pµ (4a)

θµν(t ,x)=N
∫

d3p
p0

f pµpν (4b)

where d3p/p0 is the Lorentz-invariant integration measure in
relativistic momentum space. Concretely, for equation (3) we
have (jα)= (",0) and

θµν =N "

{ 〈p0〉, µ = ν = 0
β−1, µ = ν = 1,2,3
0, µ $= ν

(5)

where 〈p0〉=3β−1+mK1(βm)/K2(βm) is themean energy per par-
ticle. One readily verifies that ∂α jα ≡ 0, whereas ∂µθµi =β−1∂i" $= 0
at the boundary ofV, in agreement with equation (1). Confinement
generates stress—the importance of this seemingly trivial statement
shall be seen immediately.

Isochronous state variables
The traditional versions of relativistic thermodynamics7–12,14 are re-
covered from equations (3)–(5) by inserting isochronous spacetime
hypersurfaces into equation (2). To see this, consider an inertial
frame Σ ′, moving at velocity w along the x1-axis of the lab-frame
Σ . An event E with coordinates (ξ 0,ξ) in Σ and (ξ ′0,ξ′) in
Σ ′ defines isochronous hyperplanes I(ξ 0) and I ′(ξ ′0) in Σ and
Σ ′, respectively, by

I(ξ 0) := { (t ,x) | t = ξ 0 } (6a)

I ′(ξ ′0) := { (t ′,x′) | t ′ = ξ ′0 } (6b)

If Σ and Σ ′ are in relative motion, these hyperplanes differ from
each other, I(ξ 0) $= I ′(ξ ′0), see Fig. 1. Inserting H = I(ξ 0) into
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Figure 1 |Non-local thermodynamic quantities depend on the underlying
hypersurface in Minkowski spacetime.When particles ‘P1’ and ‘P2’
interact with each other or with a confining structure (grey) they change
their momentum. Hence, different hyperplanes sample different
many-particle momentum states. Traditional formulations of relativistic
thermodynamics introduce global state variables as integrals over
isochronous hyperplanes (dotted), whereas a photograph taken at the
spacetime event E or E ′ records the state of the system along the
corresponding backward-lightcone C(E ) or C(E ′).

equation (2), we obtain the lab-isochronous energy–momentum
vector U µ[I] in Σ :

(U µ[I])=N (〈p0〉,0) (7)

On the other hand, choosing H = I ′[ξ ′0] yields theΣ ′-isochronous
energy–momentum vectorU ′µ[I ′] inΣ ′:

(
U ′µ[I ′]

)
=N

{
γ (〈p0〉+w2β−1), µ = 0
−γw(〈p0〉+β−1), µ = 1
0, µ > 1

(8)

where γ := (1 − w2)−1/2. Applying a Lorentz transformation
with −w to equation (8), we find the corresponding energy–
momentum in Σ

(U µ[I ′])=N (〈p0〉,−wβ−1,0,0)

Hence, the energy–momentum vectors equations (7) and (8) are
not related by a Lorentz transformation. In fact, U µ[I] and
U µ[I ′] are connected by

(U µ[I ′])= (U µ[I])+Nβ−1(0,−w,0,0)

reflecting the underlying hypersurface and observer velocity. As
mentioned earlier, the difference between U µ[I] and U µ[I ′] arises
because the energy–momentum tensor of a spatially confined gas
is not conserved. It is also a reason for the existence of various
temperature Lorentz transformation laws.

Entropy
Having at hand the state variables ‘energy’ U 0 and ‘momen-
tum’ U, one still needs ‘entropy’. For a Jüttner gas, one can
define the entropy density four-current24,25 by (h = Planck’s con-
stant, units kB = 1)

sµ(t ,x)= −N
∫

d3p
p0

pµf ln(h3f ) (9)

The specific shape of equation (9) is tightly linked to the ex-
ponential form of the Jüttner distribution equation (3). In fact,

2 NATURE PHYSICS | ADVANCE ONLINE PUBLICATION | www.nature.com/naturephysics

ARTICLES NATURE PHYSICS DOI: 10.1038/NPHYS1395

Σ , and can be described by a Σ -time-independent, normalized
one-particle phase-space probability density function (PDF)

f (t ,x,p)= ϕ(x,p)= "(x)φJ(p) (3a)
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at the boundary ofV, in agreement with equation (1). Confinement
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hypersurfaces into equation (2). To see this, consider an inertial
frame Σ ′, moving at velocity w along the x1-axis of the lab-frame
Σ . An event E with coordinates (ξ 0,ξ) in Σ and (ξ ′0,ξ′) in
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Σ ′, respectively, by
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Figure 1 |Non-local thermodynamic quantities depend on the underlying
hypersurface in Minkowski spacetime.When particles ‘P1’ and ‘P2’
interact with each other or with a confining structure (grey) they change
their momentum. Hence, different hyperplanes sample different
many-particle momentum states. Traditional formulations of relativistic
thermodynamics introduce global state variables as integrals over
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equation (2), we obtain the lab-isochronous energy–momentum
vector U µ[I] in Σ :

(U µ[I])=N (〈p0〉,0) (7)

On the other hand, choosing H = I ′[ξ ′0] yields theΣ ′-isochronous
energy–momentum vectorU ′µ[I ′] inΣ ′:

(
U ′µ[I ′]

)
=N

{
γ (〈p0〉+w2β−1), µ = 0
−γw(〈p0〉+β−1), µ = 1
0, µ > 1

(8)

where γ := (1 − w2)−1/2. Applying a Lorentz transformation
with −w to equation (8), we find the corresponding energy–
momentum in Σ

(U µ[I ′])=N (〈p0〉,−wβ−1,0,0)

Hence, the energy–momentum vectors equations (7) and (8) are
not related by a Lorentz transformation. In fact, U µ[I] and
U µ[I ′] are connected by

(U µ[I ′])= (U µ[I])+Nβ−1(0,−w,0,0)

reflecting the underlying hypersurface and observer velocity. As
mentioned earlier, the difference between U µ[I] and U µ[I ′] arises
because the energy–momentum tensor of a spatially confined gas
is not conserved. It is also a reason for the existence of various
temperature Lorentz transformation laws.

Entropy
Having at hand the state variables ‘energy’ U 0 and ‘momen-
tum’ U, one still needs ‘entropy’. For a Jüttner gas, one can
define the entropy density four-current24,25 by (h = Planck’s con-
stant, units kB = 1)

sµ(t ,x)= −N
∫

d3p
p0

pµf ln(h3f ) (9)

The specific shape of equation (9) is tightly linked to the ex-
ponential form of the Jüttner distribution equation (3). In fact,
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is the nth modified Bessel function of the second kind22 and
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"(x)=
{
V −1, if x∈V
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from f by:
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have (jα)= (",0) and
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where 〈p0〉=3β−1+mK1(βm)/K2(βm) is themean energy per par-
ticle. One readily verifies that ∂α jα ≡ 0, whereas ∂µθµi =β−1∂i" $= 0
at the boundary ofV, in agreement with equation (1). Confinement
generates stress—the importance of this seemingly trivial statement
shall be seen immediately.
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The traditional versions of relativistic thermodynamics7–12,14 are re-
covered from equations (3)–(5) by inserting isochronous spacetime
hypersurfaces into equation (2). To see this, consider an inertial
frame Σ ′, moving at velocity w along the x1-axis of the lab-frame
Σ . An event E with coordinates (ξ 0,ξ) in Σ and (ξ ′0,ξ′) in
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Σ ′, respectively, by
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Figure 1 |Non-local thermodynamic quantities depend on the underlying
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interact with each other or with a confining structure (grey) they change
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equation (2), we obtain the lab-isochronous energy–momentum
vector U µ[I] in Σ :

(U µ[I])=N (〈p0〉,0) (7)

On the other hand, choosing H = I ′[ξ ′0] yields theΣ ′-isochronous
energy–momentum vectorU ′µ[I ′] inΣ ′:

(
U ′µ[I ′]

)
=N

{
γ (〈p0〉+w2β−1), µ = 0
−γw(〈p0〉+β−1), µ = 1
0, µ > 1

(8)

where γ := (1 − w2)−1/2. Applying a Lorentz transformation
with −w to equation (8), we find the corresponding energy–
momentum in Σ

(U µ[I ′])=N (〈p0〉,−wβ−1,0,0)

Hence, the energy–momentum vectors equations (7) and (8) are
not related by a Lorentz transformation. In fact, U µ[I] and
U µ[I ′] are connected by

(U µ[I ′])= (U µ[I])+Nβ−1(0,−w,0,0)

reflecting the underlying hypersurface and observer velocity. As
mentioned earlier, the difference between U µ[I] and U µ[I ′] arises
because the energy–momentum tensor of a spatially confined gas
is not conserved. It is also a reason for the existence of various
temperature Lorentz transformation laws.

Entropy
Having at hand the state variables ‘energy’ U 0 and ‘momen-
tum’ U, one still needs ‘entropy’. For a Jüttner gas, one can
define the entropy density four-current24,25 by (h = Planck’s con-
stant, units kB = 1)

sµ(t ,x)= −N
∫

d3p
p0

pµf ln(h3f ) (9)

The specific shape of equation (9) is tightly linked to the ex-
ponential form of the Jüttner distribution equation (3). In fact,
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The unification of relativity and thermodynamics has been a subject of considerable debate over
the last 100 years. The reasons for this are twofold: (i) Thermodynamic variables are nonlocal
quantities and, thus, single out a preferred class of hyperplanes in spacetime. (ii) There exist dif-
ferent, seemingly equally plausible ways of defining heat and work in relativistic systems. These
ambiguities led, for example, to various proposals for the Lorentz transformation law of temperature.
Traditional ‘isochronous’ formulations of relativistic thermodynamics are neither theoretically sat-
isfactory nor experimentally feasible. Here, we demonstrate how these deficiencies can be resolved
by defining thermodynamic quantities with respect to the backward-lightcone of an observation
event. This approach yields novel, testable predictions and allows for a straightforward-extension
of thermodynamics to General Relativity. Our theoretical considerations are illustrated through
three-dimensional relativistic many-body simulations.

PACS numbers:
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sµ(t, x), jµ(t, x), θµν(t, x), . . .

= N"

{
1, µ = 0
0, µ > 0

S[φ|ρ] =
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ddp φ(p) ln
[
φ(p)
ρ(p)

]
(1)

ε =
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ddp φ(p) p0 (2)

1 =
∫

ddp φ(p) (3)

ρ = ρ0 : φJ ∝ exp(−βp0) ⇔ f(t→∞) (4)

ρ ∝ 1
p0

: φMJ ∝
exp(−βp0)

p0
⇔ f̂(τ →∞) (5)
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T ′(w) = T (1− w2)α/2 α =






+1 Planck, Einstein
0 Landsberg, van Kampen
−1 Ott

(6)
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1D Jüttner

φJ(p) ∝ exp[β(p2 + M2)1/2] (7)

Ansatz 3D Jüttner

f(t, x,p) = ϕ(x,p) = $(x) φJ(p), (8a)

with Jüttner momentum distribution [20, 21]

φJ(p) = Z−1 exp(−βp0), β > 0 (8b)

Z = 4πm3 K2(βm)/(βm) is the normalization constant, Kn(z) the nth modified Bessel function of the second kind [22],
and p0 = (m2 + p2)1/2 the particle energy.

f(t, x,p) = $(x) exp(−βp0) (8c)

Four vector currents

sµ(t, x) = −N

∫
d3p

p0
pµ f ln(h3f) ⇒ ∂νsν ≡ 0 (8d)

jµ(t, x) = N

∫
d3p

p0
f pµ ⇒ ∂νjν ≡ 0 (8e)

θµν(t, x) = N

∫
d3p

p0
f pµpν ⇒ ∂µθµi %≡0 (8f)

S[H] :=
∫

H
dσν sν (8g)

Uν [H] :=
∫

H
dσµ θµν %= Uν [H′] (8h)

H = I H = I′ H = C (8i)

I(ξ0) := { (t, x) | t = ξ0 } I′(ξ′0) := { (t′,x′) | t′ = ξ′0 } (8j)

Gas enclosed in a stationary cubic box V = [−L/2, L/2]3 in Σ, corresponding to

$(x) =

{
V −1 if x ∈ V
0 if x %∈ V

V = [−L/2, L/2]3 (8k)

V = L3 is the Σ-simultaneously measured (Lebesgue) volume of V ⊂ R3 in Σ. Explicit

sµ(t, x) = N$

{
ln(V Z/h3) + β

〈
p0

〉
ν = 0

0 ν = 1, 2, 3
(9)

jα =

{
$ ν = 0
0 ν = 1, 2, 3

(10)

θµν = N $






〈
p0

〉
µ = ν = 0

β−1 µ = ν = 1, 2, 3
0 µ %= ν

(11)

where
〈
p0

〉
= 3β−1 + m

K1(βm)
K2(βm)

(12)
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ticle. One readily verifies that ∂α jα ≡ 0, whereas ∂µθµi =β−1∂i" $= 0
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equation (2), we obtain the lab-isochronous energy–momentum
vector U µ[I] in Σ :

(U µ[I])=N (〈p0〉,0) (7)

On the other hand, choosing H = I ′[ξ ′0] yields theΣ ′-isochronous
energy–momentum vectorU ′µ[I ′] inΣ ′:
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where γ := (1 − w2)−1/2. Applying a Lorentz transformation
with −w to equation (8), we find the corresponding energy–
momentum in Σ

(U µ[I ′])=N (〈p0〉,−wβ−1,0,0)

Hence, the energy–momentum vectors equations (7) and (8) are
not related by a Lorentz transformation. In fact, U µ[I] and
U µ[I ′] are connected by

(U µ[I ′])= (U µ[I])+Nβ−1(0,−w,0,0)

reflecting the underlying hypersurface and observer velocity. As
mentioned earlier, the difference between U µ[I] and U µ[I ′] arises
because the energy–momentum tensor of a spatially confined gas
is not conserved. It is also a reason for the existence of various
temperature Lorentz transformation laws.

Entropy
Having at hand the state variables ‘energy’ U 0 and ‘momen-
tum’ U, one still needs ‘entropy’. For a Jüttner gas, one can
define the entropy density four-current24,25 by (h = Planck’s con-
stant, units kB = 1)

sµ(t ,x)= −N
∫

d3p
p0

pµf ln(h3f ) (9)

The specific shape of equation (9) is tightly linked to the ex-
ponential form of the Jüttner distribution equation (3). In fact,
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Non-local observables and lightcone-averaging in
relativistic thermodynamics
Jörn Dunkel1*, Peter Hänggi2 and Stefan Hilbert3

The unification of relativity and thermodynamics has been a subject of considerable debate over the past 100 years.
The reasons for this are twofold. First, thermodynamic variables are non-local quantities and therefore single out a
preferred class of hyperplanes in spacetime. Second, there exist different ways of defining heat and work in relativistic
systems and all of them seem equally plausible. These ambiguities have led, for example, to various proposals for the
Lorentz-transformation law of temperature. However, traditional ‘isochronous’ formulations of relativistic thermodynamics are
neither theoretically satisfactory nor experimentally feasible. Here, we demonstrate how these deficiencies can be resolved by
defining thermodynamic quantities with respect to the backward-lightcone of an observation event. This approach yields new
predictions that are, in principle, testable and allows for a straightforward extension of thermodynamics to general relativity.
Our theoretical considerations are illustrated through three-dimensional relativistic many-body simulations.

Thermodynamics, in the traditional sense, aims at describing
the state of a macroscopic system by means of a few
characteristic parameters {Ai} (refs 1–4). Typical candidates

for thermodynamic state variables {Ai} are either conserved
(extensive) quantities, for example, the particle number N and
internal energy U , or external control parameters that quantify
the breaking of symmetries1. Examples of the last of these
include the volume V of a confining vessel, indicating the
violation of translational invariance, or external magnetic fields,
which may break the spatial isotropy. Each extensive state
variable is accompanied by an intensive quantity ai = ∂S/Ai,
derived from a suitably defined entropy function(al) S({Ai}).
Representing an abstract mathematical theory of differential
forms4, thermodynamic concepts have been successfully applied
to vastly different areas, ranging from microscopic many-particle
systems2,3,5, where S is usually interpreted as an information
measure (canonical ensemble) or integrated phase-space volume
(microcanonical ensemble), to exotic objects such as black holes6,
where S is related to the black hole’s surface area.

As a coarse-grained macroscopic theory, thermodynamics is
inherently non-local in that it considers only certain global,
or averaged, properties of a physical system2,3. This is rather
unproblematic within non-relativistic Newtonian physics, where
statements such as ‘the total energy of a system at time t ’ are
unambiguously defined for arbitrary observers. In contrast—owing
to the absence of a universal time parameter—the non-local
character of thermodynamics has caused considerable confusion7–15

within Einstein’s theory of relativity16–19.
To illustrate the conceptual difficulties in relativistic thermo-

dynamics, consider a confined gas described by a particle current
density jµ(t ,x) and an energy–momentum tensor density θµν(t ,x).
If the gas is stationary in some inertial frameΣ , then jµ is conserved,
that is, ∂µjµ ≡ 0, but the divergence of θµν does not identically
vanish (owing to the pressure arising from the spatial confinement,
see the example below):

∂µθµi "≡ 0, i= 1,2,3 (1)
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This means that space-like surface integrals over jµ are independent
of the underlying three-dimensional hypersurface H in (1+ 3)-
dimensional Minkowski spacetimeM4, whereas those over θµν do
depend on H. The latter fact is problematic because thermodynamic
state variables such as energy U 0 or momentum U= (U 1,U 2,U 3)
are usually defined as surface integrals over the energy–momentum
tensor (see theMethods section)16, that is,

U ν[H] :=
∫

H
dσµ θµν, µ,ν = 0,1,2,3 (2)

where, for a finite thermodynamic system, θµν is assumed to vanish
outside a bounded spatial region. Hence, the first task in relativistic
thermodynamics is to identify those hypersurfaces {H} that are
suitable for defining state variables. Subsequently, one still needs to
settle for appropriate definitions of entropy, heat and so on.

We shall begin by reviewing how these problems are tackled
in the most popular, competing versions of relativistic thermody-
namics, originally proposed by Planck7 and Einstein8, and Ott10
and Van Kampen9, respectively. A careful analysis shows that the
traditional approaches are neither conceptually satisfactory nor
experimentally feasible. The deficiencies can be cured by defining
thermodynamic quantities in terms of lightcone integrals. To clarify
these aspects, we consider a weakly interacting relativistic gas20.
Notwithstanding, the main conclusions apply to any confined
system that can be described by tensor densities jµ,θαβ,.... In the
second part, we shall discuss observable consequences such as the
apparent drift of distant objects that are, in fact, at rest relative to
the observer. This surprising effect—which should be accounted
for when estimating the velocities of very hot astrophysical ob-
jects from photographic data—will be illustrated by relativistic
many-particle simulations.

Model (Jüttner gas)
We consider an enclosed, dilute gas consisting ofN relativistic par-
ticles (rest massm; velocity v; momentum p=mv(1−v2)−1/2; speed
of light c =1). Let us assume the gas is stationary in the (‘lab’-)frame
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Σ , and can be described by a Σ -time-independent, normalized
one-particle phase-space probability density function (PDF)

f (t ,x,p)= ϕ(x,p)= "(x)φJ(p) (3a)

with Jüttner momentum distribution20,21

φJ(p)=Z−1exp(−βp0), β > 0 (3b)

Z = 4πm3K2(βm)/(βm) is the normalization constant, Kn(z)
is the nth modified Bessel function of the second kind22 and
p0 = (m2 +p2)1/2 is the particle energy. Later, the distribution pa-
rameter β will be identified with the inverse thermodynamic (rest)
temperature of the gas. The exact functional form of the spatial
density " in equation (3a) is irrelevant, as long as " is normalizable
(that is, restricted to a finite spatial volume set V⊂R3 in Σ ). For
simplicity, we may consider a spatially homogeneous gas enclosed
in a stationary cubic boxV=[−L/2,L/2]3 inΣ , corresponding to

"(x)=
{
V −1, if x∈V
0, if x $∈V (3c)

Here,V =L3 is theΣ -simultaneously measured (Lebesgue) volume
of V in Σ .

The phase-space PDF f is a Lorentz scalar23. Thus, the current
density jµ and energy–momentum tensor θµν can be constructed
from f by:

jµ(t ,x)=N
∫

d3p
p0

f pµ (4a)

θµν(t ,x)=N
∫

d3p
p0

f pµpν (4b)

where d3p/p0 is the Lorentz-invariant integration measure in
relativistic momentum space. Concretely, for equation (3) we
have (jα)= (",0) and

θµν =N "

{ 〈p0〉, µ = ν = 0
β−1, µ = ν = 1,2,3
0, µ $= ν

(5)

where 〈p0〉=3β−1+mK1(βm)/K2(βm) is themean energy per par-
ticle. One readily verifies that ∂α jα ≡ 0, whereas ∂µθµi =β−1∂i" $= 0
at the boundary ofV, in agreement with equation (1). Confinement
generates stress—the importance of this seemingly trivial statement
shall be seen immediately.

Isochronous state variables
The traditional versions of relativistic thermodynamics7–12,14 are re-
covered from equations (3)–(5) by inserting isochronous spacetime
hypersurfaces into equation (2). To see this, consider an inertial
frame Σ ′, moving at velocity w along the x1-axis of the lab-frame
Σ . An event E with coordinates (ξ 0,ξ) in Σ and (ξ ′0,ξ′) in
Σ ′ defines isochronous hyperplanes I(ξ 0) and I ′(ξ ′0) in Σ and
Σ ′, respectively, by

I(ξ 0) := { (t ,x) | t = ξ 0 } (6a)

I ′(ξ ′0) := { (t ′,x′) | t ′ = ξ ′0 } (6b)

If Σ and Σ ′ are in relative motion, these hyperplanes differ from
each other, I(ξ 0) $= I ′(ξ ′0), see Fig. 1. Inserting H = I(ξ 0) into

x

t

P1 P2

t = ξ0

t’ = ξ’0

Figure 1 |Non-local thermodynamic quantities depend on the underlying
hypersurface in Minkowski spacetime.When particles ‘P1’ and ‘P2’
interact with each other or with a confining structure (grey) they change
their momentum. Hence, different hyperplanes sample different
many-particle momentum states. Traditional formulations of relativistic
thermodynamics introduce global state variables as integrals over
isochronous hyperplanes (dotted), whereas a photograph taken at the
spacetime event E or E ′ records the state of the system along the
corresponding backward-lightcone C(E ) or C(E ′).

equation (2), we obtain the lab-isochronous energy–momentum
vector U µ[I] in Σ :

(U µ[I])=N (〈p0〉,0) (7)

On the other hand, choosing H = I ′[ξ ′0] yields theΣ ′-isochronous
energy–momentum vectorU ′µ[I ′] inΣ ′:

(
U ′µ[I ′]

)
=N

{
γ (〈p0〉+w2β−1), µ = 0
−γw(〈p0〉+β−1), µ = 1
0, µ > 1

(8)

where γ := (1 − w2)−1/2. Applying a Lorentz transformation
with −w to equation (8), we find the corresponding energy–
momentum in Σ

(U µ[I ′])=N (〈p0〉,−wβ−1,0,0)

Hence, the energy–momentum vectors equations (7) and (8) are
not related by a Lorentz transformation. In fact, U µ[I] and
U µ[I ′] are connected by

(U µ[I ′])= (U µ[I])+Nβ−1(0,−w,0,0)

reflecting the underlying hypersurface and observer velocity. As
mentioned earlier, the difference between U µ[I] and U µ[I ′] arises
because the energy–momentum tensor of a spatially confined gas
is not conserved. It is also a reason for the existence of various
temperature Lorentz transformation laws.

Entropy
Having at hand the state variables ‘energy’ U 0 and ‘momen-
tum’ U, one still needs ‘entropy’. For a Jüttner gas, one can
define the entropy density four-current24,25 by (h = Planck’s con-
stant, units kB = 1)

sµ(t ,x)= −N
∫

d3p
p0

pµf ln(h3f ) (9)

The specific shape of equation (9) is tightly linked to the ex-
ponential form of the Jüttner distribution equation (3). In fact,
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Σ , and can be described by a Σ -time-independent, normalized
one-particle phase-space probability density function (PDF)

f (t ,x,p)= ϕ(x,p)= "(x)φJ(p) (3a)

with Jüttner momentum distribution20,21

φJ(p)=Z−1exp(−βp0), β > 0 (3b)

Z = 4πm3K2(βm)/(βm) is the normalization constant, Kn(z)
is the nth modified Bessel function of the second kind22 and
p0 = (m2 +p2)1/2 is the particle energy. Later, the distribution pa-
rameter β will be identified with the inverse thermodynamic (rest)
temperature of the gas. The exact functional form of the spatial
density " in equation (3a) is irrelevant, as long as " is normalizable
(that is, restricted to a finite spatial volume set V⊂R3 in Σ ). For
simplicity, we may consider a spatially homogeneous gas enclosed
in a stationary cubic boxV=[−L/2,L/2]3 inΣ , corresponding to

"(x)=
{
V −1, if x∈V
0, if x $∈V (3c)

Here,V =L3 is theΣ -simultaneously measured (Lebesgue) volume
of V in Σ .

The phase-space PDF f is a Lorentz scalar23. Thus, the current
density jµ and energy–momentum tensor θµν can be constructed
from f by:

jµ(t ,x)=N
∫

d3p
p0

f pµ (4a)

θµν(t ,x)=N
∫

d3p
p0

f pµpν (4b)

where d3p/p0 is the Lorentz-invariant integration measure in
relativistic momentum space. Concretely, for equation (3) we
have (jα)= (",0) and

θµν =N "

{ 〈p0〉, µ = ν = 0
β−1, µ = ν = 1,2,3
0, µ $= ν

(5)

where 〈p0〉=3β−1+mK1(βm)/K2(βm) is themean energy per par-
ticle. One readily verifies that ∂α jα ≡ 0, whereas ∂µθµi =β−1∂i" $= 0
at the boundary ofV, in agreement with equation (1). Confinement
generates stress—the importance of this seemingly trivial statement
shall be seen immediately.

Isochronous state variables
The traditional versions of relativistic thermodynamics7–12,14 are re-
covered from equations (3)–(5) by inserting isochronous spacetime
hypersurfaces into equation (2). To see this, consider an inertial
frame Σ ′, moving at velocity w along the x1-axis of the lab-frame
Σ . An event E with coordinates (ξ 0,ξ) in Σ and (ξ ′0,ξ′) in
Σ ′ defines isochronous hyperplanes I(ξ 0) and I ′(ξ ′0) in Σ and
Σ ′, respectively, by

I(ξ 0) := { (t ,x) | t = ξ 0 } (6a)

I ′(ξ ′0) := { (t ′,x′) | t ′ = ξ ′0 } (6b)

If Σ and Σ ′ are in relative motion, these hyperplanes differ from
each other, I(ξ 0) $= I ′(ξ ′0), see Fig. 1. Inserting H = I(ξ 0) into

x
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t = ξ0

t’ = ξ’0

Figure 1 |Non-local thermodynamic quantities depend on the underlying
hypersurface in Minkowski spacetime.When particles ‘P1’ and ‘P2’
interact with each other or with a confining structure (grey) they change
their momentum. Hence, different hyperplanes sample different
many-particle momentum states. Traditional formulations of relativistic
thermodynamics introduce global state variables as integrals over
isochronous hyperplanes (dotted), whereas a photograph taken at the
spacetime event E or E ′ records the state of the system along the
corresponding backward-lightcone C(E ) or C(E ′).

equation (2), we obtain the lab-isochronous energy–momentum
vector U µ[I] in Σ :

(U µ[I])=N (〈p0〉,0) (7)

On the other hand, choosing H = I ′[ξ ′0] yields theΣ ′-isochronous
energy–momentum vectorU ′µ[I ′] inΣ ′:

(
U ′µ[I ′]

)
=N

{
γ (〈p0〉+w2β−1), µ = 0
−γw(〈p0〉+β−1), µ = 1
0, µ > 1

(8)

where γ := (1 − w2)−1/2. Applying a Lorentz transformation
with −w to equation (8), we find the corresponding energy–
momentum in Σ

(U µ[I ′])=N (〈p0〉,−wβ−1,0,0)

Hence, the energy–momentum vectors equations (7) and (8) are
not related by a Lorentz transformation. In fact, U µ[I] and
U µ[I ′] are connected by

(U µ[I ′])= (U µ[I])+Nβ−1(0,−w,0,0)

reflecting the underlying hypersurface and observer velocity. As
mentioned earlier, the difference between U µ[I] and U µ[I ′] arises
because the energy–momentum tensor of a spatially confined gas
is not conserved. It is also a reason for the existence of various
temperature Lorentz transformation laws.

Entropy
Having at hand the state variables ‘energy’ U 0 and ‘momen-
tum’ U, one still needs ‘entropy’. For a Jüttner gas, one can
define the entropy density four-current24,25 by (h = Planck’s con-
stant, units kB = 1)

sµ(t ,x)= −N
∫

d3p
p0

pµf ln(h3f ) (9)

The specific shape of equation (9) is tightly linked to the ex-
ponential form of the Jüttner distribution equation (3). In fact,
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Σ , and can be described by a Σ -time-independent, normalized
one-particle phase-space probability density function (PDF)

f (t ,x,p)= ϕ(x,p)= "(x)φJ(p) (3a)

with Jüttner momentum distribution20,21

φJ(p)=Z−1exp(−βp0), β > 0 (3b)

Z = 4πm3K2(βm)/(βm) is the normalization constant, Kn(z)
is the nth modified Bessel function of the second kind22 and
p0 = (m2 +p2)1/2 is the particle energy. Later, the distribution pa-
rameter β will be identified with the inverse thermodynamic (rest)
temperature of the gas. The exact functional form of the spatial
density " in equation (3a) is irrelevant, as long as " is normalizable
(that is, restricted to a finite spatial volume set V⊂R3 in Σ ). For
simplicity, we may consider a spatially homogeneous gas enclosed
in a stationary cubic boxV=[−L/2,L/2]3 inΣ , corresponding to

"(x)=
{
V −1, if x∈V
0, if x $∈V (3c)

Here,V =L3 is theΣ -simultaneously measured (Lebesgue) volume
of V in Σ .

The phase-space PDF f is a Lorentz scalar23. Thus, the current
density jµ and energy–momentum tensor θµν can be constructed
from f by:

jµ(t ,x)=N
∫

d3p
p0

f pµ (4a)

θµν(t ,x)=N
∫

d3p
p0

f pµpν (4b)

where d3p/p0 is the Lorentz-invariant integration measure in
relativistic momentum space. Concretely, for equation (3) we
have (jα)= (",0) and

θµν =N "

{ 〈p0〉, µ = ν = 0
β−1, µ = ν = 1,2,3
0, µ $= ν

(5)

where 〈p0〉=3β−1+mK1(βm)/K2(βm) is themean energy per par-
ticle. One readily verifies that ∂α jα ≡ 0, whereas ∂µθµi =β−1∂i" $= 0
at the boundary ofV, in agreement with equation (1). Confinement
generates stress—the importance of this seemingly trivial statement
shall be seen immediately.

Isochronous state variables
The traditional versions of relativistic thermodynamics7–12,14 are re-
covered from equations (3)–(5) by inserting isochronous spacetime
hypersurfaces into equation (2). To see this, consider an inertial
frame Σ ′, moving at velocity w along the x1-axis of the lab-frame
Σ . An event E with coordinates (ξ 0,ξ) in Σ and (ξ ′0,ξ′) in
Σ ′ defines isochronous hyperplanes I(ξ 0) and I ′(ξ ′0) in Σ and
Σ ′, respectively, by

I(ξ 0) := { (t ,x) | t = ξ 0 } (6a)

I ′(ξ ′0) := { (t ′,x′) | t ′ = ξ ′0 } (6b)

If Σ and Σ ′ are in relative motion, these hyperplanes differ from
each other, I(ξ 0) $= I ′(ξ ′0), see Fig. 1. Inserting H = I(ξ 0) into

x
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t = ξ0

t’ = ξ’0

Figure 1 |Non-local thermodynamic quantities depend on the underlying
hypersurface in Minkowski spacetime.When particles ‘P1’ and ‘P2’
interact with each other or with a confining structure (grey) they change
their momentum. Hence, different hyperplanes sample different
many-particle momentum states. Traditional formulations of relativistic
thermodynamics introduce global state variables as integrals over
isochronous hyperplanes (dotted), whereas a photograph taken at the
spacetime event E or E ′ records the state of the system along the
corresponding backward-lightcone C(E ) or C(E ′).

equation (2), we obtain the lab-isochronous energy–momentum
vector U µ[I] in Σ :

(U µ[I])=N (〈p0〉,0) (7)

On the other hand, choosing H = I ′[ξ ′0] yields theΣ ′-isochronous
energy–momentum vectorU ′µ[I ′] inΣ ′:

(
U ′µ[I ′]

)
=N

{
γ (〈p0〉+w2β−1), µ = 0
−γw(〈p0〉+β−1), µ = 1
0, µ > 1

(8)

where γ := (1 − w2)−1/2. Applying a Lorentz transformation
with −w to equation (8), we find the corresponding energy–
momentum in Σ

(U µ[I ′])=N (〈p0〉,−wβ−1,0,0)

Hence, the energy–momentum vectors equations (7) and (8) are
not related by a Lorentz transformation. In fact, U µ[I] and
U µ[I ′] are connected by

(U µ[I ′])= (U µ[I])+Nβ−1(0,−w,0,0)

reflecting the underlying hypersurface and observer velocity. As
mentioned earlier, the difference between U µ[I] and U µ[I ′] arises
because the energy–momentum tensor of a spatially confined gas
is not conserved. It is also a reason for the existence of various
temperature Lorentz transformation laws.

Entropy
Having at hand the state variables ‘energy’ U 0 and ‘momen-
tum’ U, one still needs ‘entropy’. For a Jüttner gas, one can
define the entropy density four-current24,25 by (h = Planck’s con-
stant, units kB = 1)

sµ(t ,x)= −N
∫

d3p
p0

pµf ln(h3f ) (9)

The specific shape of equation (9) is tightly linked to the ex-
ponential form of the Jüttner distribution equation (3). In fact,
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Σ , and can be described by a Σ -time-independent, normalized
one-particle phase-space probability density function (PDF)

f (t ,x,p)= ϕ(x,p)= "(x)φJ(p) (3a)

with Jüttner momentum distribution20,21

φJ(p)=Z−1exp(−βp0), β > 0 (3b)

Z = 4πm3K2(βm)/(βm) is the normalization constant, Kn(z)
is the nth modified Bessel function of the second kind22 and
p0 = (m2 +p2)1/2 is the particle energy. Later, the distribution pa-
rameter β will be identified with the inverse thermodynamic (rest)
temperature of the gas. The exact functional form of the spatial
density " in equation (3a) is irrelevant, as long as " is normalizable
(that is, restricted to a finite spatial volume set V⊂R3 in Σ ). For
simplicity, we may consider a spatially homogeneous gas enclosed
in a stationary cubic boxV=[−L/2,L/2]3 inΣ , corresponding to

"(x)=
{
V −1, if x∈V
0, if x $∈V (3c)

Here,V =L3 is theΣ -simultaneously measured (Lebesgue) volume
of V in Σ .

The phase-space PDF f is a Lorentz scalar23. Thus, the current
density jµ and energy–momentum tensor θµν can be constructed
from f by:

jµ(t ,x)=N
∫

d3p
p0

f pµ (4a)

θµν(t ,x)=N
∫

d3p
p0

f pµpν (4b)

where d3p/p0 is the Lorentz-invariant integration measure in
relativistic momentum space. Concretely, for equation (3) we
have (jα)= (",0) and

θµν =N "

{ 〈p0〉, µ = ν = 0
β−1, µ = ν = 1,2,3
0, µ $= ν

(5)

where 〈p0〉=3β−1+mK1(βm)/K2(βm) is themean energy per par-
ticle. One readily verifies that ∂α jα ≡ 0, whereas ∂µθµi =β−1∂i" $= 0
at the boundary ofV, in agreement with equation (1). Confinement
generates stress—the importance of this seemingly trivial statement
shall be seen immediately.

Isochronous state variables
The traditional versions of relativistic thermodynamics7–12,14 are re-
covered from equations (3)–(5) by inserting isochronous spacetime
hypersurfaces into equation (2). To see this, consider an inertial
frame Σ ′, moving at velocity w along the x1-axis of the lab-frame
Σ . An event E with coordinates (ξ 0,ξ) in Σ and (ξ ′0,ξ′) in
Σ ′ defines isochronous hyperplanes I(ξ 0) and I ′(ξ ′0) in Σ and
Σ ′, respectively, by

I(ξ 0) := { (t ,x) | t = ξ 0 } (6a)

I ′(ξ ′0) := { (t ′,x′) | t ′ = ξ ′0 } (6b)

If Σ and Σ ′ are in relative motion, these hyperplanes differ from
each other, I(ξ 0) $= I ′(ξ ′0), see Fig. 1. Inserting H = I(ξ 0) into
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Figure 1 |Non-local thermodynamic quantities depend on the underlying
hypersurface in Minkowski spacetime.When particles ‘P1’ and ‘P2’
interact with each other or with a confining structure (grey) they change
their momentum. Hence, different hyperplanes sample different
many-particle momentum states. Traditional formulations of relativistic
thermodynamics introduce global state variables as integrals over
isochronous hyperplanes (dotted), whereas a photograph taken at the
spacetime event E or E ′ records the state of the system along the
corresponding backward-lightcone C(E ) or C(E ′).

equation (2), we obtain the lab-isochronous energy–momentum
vector U µ[I] in Σ :

(U µ[I])=N (〈p0〉,0) (7)

On the other hand, choosing H = I ′[ξ ′0] yields theΣ ′-isochronous
energy–momentum vectorU ′µ[I ′] inΣ ′:

(
U ′µ[I ′]

)
=N

{
γ (〈p0〉+w2β−1), µ = 0
−γw(〈p0〉+β−1), µ = 1
0, µ > 1

(8)

where γ := (1 − w2)−1/2. Applying a Lorentz transformation
with −w to equation (8), we find the corresponding energy–
momentum in Σ

(U µ[I ′])=N (〈p0〉,−wβ−1,0,0)

Hence, the energy–momentum vectors equations (7) and (8) are
not related by a Lorentz transformation. In fact, U µ[I] and
U µ[I ′] are connected by

(U µ[I ′])= (U µ[I])+Nβ−1(0,−w,0,0)

reflecting the underlying hypersurface and observer velocity. As
mentioned earlier, the difference between U µ[I] and U µ[I ′] arises
because the energy–momentum tensor of a spatially confined gas
is not conserved. It is also a reason for the existence of various
temperature Lorentz transformation laws.

Entropy
Having at hand the state variables ‘energy’ U 0 and ‘momen-
tum’ U, one still needs ‘entropy’. For a Jüttner gas, one can
define the entropy density four-current24,25 by (h = Planck’s con-
stant, units kB = 1)

sµ(t ,x)= −N
∫

d3p
p0

pµf ln(h3f ) (9)

The specific shape of equation (9) is tightly linked to the ex-
ponential form of the Jüttner distribution equation (3). In fact,
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Σ , and can be described by a Σ -time-independent, normalized
one-particle phase-space probability density function (PDF)

f (t ,x,p)= ϕ(x,p)= "(x)φJ(p) (3a)

with Jüttner momentum distribution20,21

φJ(p)=Z−1exp(−βp0), β > 0 (3b)

Z = 4πm3K2(βm)/(βm) is the normalization constant, Kn(z)
is the nth modified Bessel function of the second kind22 and
p0 = (m2 +p2)1/2 is the particle energy. Later, the distribution pa-
rameter β will be identified with the inverse thermodynamic (rest)
temperature of the gas. The exact functional form of the spatial
density " in equation (3a) is irrelevant, as long as " is normalizable
(that is, restricted to a finite spatial volume set V⊂R3 in Σ ). For
simplicity, we may consider a spatially homogeneous gas enclosed
in a stationary cubic boxV=[−L/2,L/2]3 inΣ , corresponding to

"(x)=
{
V −1, if x∈V
0, if x $∈V (3c)

Here,V =L3 is theΣ -simultaneously measured (Lebesgue) volume
of V in Σ .

The phase-space PDF f is a Lorentz scalar23. Thus, the current
density jµ and energy–momentum tensor θµν can be constructed
from f by:

jµ(t ,x)=N
∫

d3p
p0

f pµ (4a)

θµν(t ,x)=N
∫

d3p
p0

f pµpν (4b)

where d3p/p0 is the Lorentz-invariant integration measure in
relativistic momentum space. Concretely, for equation (3) we
have (jα)= (",0) and

θµν =N "

{ 〈p0〉, µ = ν = 0
β−1, µ = ν = 1,2,3
0, µ $= ν

(5)

where 〈p0〉=3β−1+mK1(βm)/K2(βm) is themean energy per par-
ticle. One readily verifies that ∂α jα ≡ 0, whereas ∂µθµi =β−1∂i" $= 0
at the boundary ofV, in agreement with equation (1). Confinement
generates stress—the importance of this seemingly trivial statement
shall be seen immediately.

Isochronous state variables
The traditional versions of relativistic thermodynamics7–12,14 are re-
covered from equations (3)–(5) by inserting isochronous spacetime
hypersurfaces into equation (2). To see this, consider an inertial
frame Σ ′, moving at velocity w along the x1-axis of the lab-frame
Σ . An event E with coordinates (ξ 0,ξ) in Σ and (ξ ′0,ξ′) in
Σ ′ defines isochronous hyperplanes I(ξ 0) and I ′(ξ ′0) in Σ and
Σ ′, respectively, by

I(ξ 0) := { (t ,x) | t = ξ 0 } (6a)

I ′(ξ ′0) := { (t ′,x′) | t ′ = ξ ′0 } (6b)

If Σ and Σ ′ are in relative motion, these hyperplanes differ from
each other, I(ξ 0) $= I ′(ξ ′0), see Fig. 1. Inserting H = I(ξ 0) into
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Figure 1 |Non-local thermodynamic quantities depend on the underlying
hypersurface in Minkowski spacetime.When particles ‘P1’ and ‘P2’
interact with each other or with a confining structure (grey) they change
their momentum. Hence, different hyperplanes sample different
many-particle momentum states. Traditional formulations of relativistic
thermodynamics introduce global state variables as integrals over
isochronous hyperplanes (dotted), whereas a photograph taken at the
spacetime event E or E ′ records the state of the system along the
corresponding backward-lightcone C(E ) or C(E ′).

equation (2), we obtain the lab-isochronous energy–momentum
vector U µ[I] in Σ :

(U µ[I])=N (〈p0〉,0) (7)

On the other hand, choosing H = I ′[ξ ′0] yields theΣ ′-isochronous
energy–momentum vectorU ′µ[I ′] inΣ ′:
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U ′µ[I ′]

)
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γ (〈p0〉+w2β−1), µ = 0
−γw(〈p0〉+β−1), µ = 1
0, µ > 1

(8)

where γ := (1 − w2)−1/2. Applying a Lorentz transformation
with −w to equation (8), we find the corresponding energy–
momentum in Σ

(U µ[I ′])=N (〈p0〉,−wβ−1,0,0)

Hence, the energy–momentum vectors equations (7) and (8) are
not related by a Lorentz transformation. In fact, U µ[I] and
U µ[I ′] are connected by

(U µ[I ′])= (U µ[I])+Nβ−1(0,−w,0,0)

reflecting the underlying hypersurface and observer velocity. As
mentioned earlier, the difference between U µ[I] and U µ[I ′] arises
because the energy–momentum tensor of a spatially confined gas
is not conserved. It is also a reason for the existence of various
temperature Lorentz transformation laws.

Entropy
Having at hand the state variables ‘energy’ U 0 and ‘momen-
tum’ U, one still needs ‘entropy’. For a Jüttner gas, one can
define the entropy density four-current24,25 by (h = Planck’s con-
stant, units kB = 1)

sµ(t ,x)= −N
∫

d3p
p0

pµf ln(h3f ) (9)

The specific shape of equation (9) is tightly linked to the ex-
ponential form of the Jüttner distribution equation (3). In fact,
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ticle. One readily verifies that ∂α jα ≡ 0, whereas ∂µθµi =β−1∂i" $= 0
at the boundary ofV, in agreement with equation (1). Confinement
generates stress—the importance of this seemingly trivial statement
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hypersurfaces into equation (2). To see this, consider an inertial
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Figure 1 |Non-local thermodynamic quantities depend on the underlying
hypersurface in Minkowski spacetime.When particles ‘P1’ and ‘P2’
interact with each other or with a confining structure (grey) they change
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equation (2), we obtain the lab-isochronous energy–momentum
vector U µ[I] in Σ :

(U µ[I])=N (〈p0〉,0) (7)

On the other hand, choosing H = I ′[ξ ′0] yields theΣ ′-isochronous
energy–momentum vectorU ′µ[I ′] inΣ ′:

(
U ′µ[I ′]

)
=N
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γ (〈p0〉+w2β−1), µ = 0
−γw(〈p0〉+β−1), µ = 1
0, µ > 1
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where γ := (1 − w2)−1/2. Applying a Lorentz transformation
with −w to equation (8), we find the corresponding energy–
momentum in Σ

(U µ[I ′])=N (〈p0〉,−wβ−1,0,0)

Hence, the energy–momentum vectors equations (7) and (8) are
not related by a Lorentz transformation. In fact, U µ[I] and
U µ[I ′] are connected by

(U µ[I ′])= (U µ[I])+Nβ−1(0,−w,0,0)

reflecting the underlying hypersurface and observer velocity. As
mentioned earlier, the difference between U µ[I] and U µ[I ′] arises
because the energy–momentum tensor of a spatially confined gas
is not conserved. It is also a reason for the existence of various
temperature Lorentz transformation laws.

Entropy
Having at hand the state variables ‘energy’ U 0 and ‘momen-
tum’ U, one still needs ‘entropy’. For a Jüttner gas, one can
define the entropy density four-current24,25 by (h = Planck’s con-
stant, units kB = 1)

sµ(t ,x)= −N
∫

d3p
p0

pµf ln(h3f ) (9)

The specific shape of equation (9) is tightly linked to the ex-
ponential form of the Jüttner distribution equation (3). In fact,
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with Jüttner momentum distribution20,21

φJ(p)=Z−1exp(−βp0), β > 0 (3b)

Z = 4πm3K2(βm)/(βm) is the normalization constant, Kn(z)
is the nth modified Bessel function of the second kind22 and
p0 = (m2 +p2)1/2 is the particle energy. Later, the distribution pa-
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density " in equation (3a) is irrelevant, as long as " is normalizable
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V −1, if x∈V
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Here,V =L3 is theΣ -simultaneously measured (Lebesgue) volume
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density jµ and energy–momentum tensor θµν can be constructed
from f by:
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∫
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f pµ (4a)
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∫
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where d3p/p0 is the Lorentz-invariant integration measure in
relativistic momentum space. Concretely, for equation (3) we
have (jα)= (",0) and

θµν =N "

{ 〈p0〉, µ = ν = 0
β−1, µ = ν = 1,2,3
0, µ $= ν

(5)

where 〈p0〉=3β−1+mK1(βm)/K2(βm) is themean energy per par-
ticle. One readily verifies that ∂α jα ≡ 0, whereas ∂µθµi =β−1∂i" $= 0
at the boundary ofV, in agreement with equation (1). Confinement
generates stress—the importance of this seemingly trivial statement
shall be seen immediately.

Isochronous state variables
The traditional versions of relativistic thermodynamics7–12,14 are re-
covered from equations (3)–(5) by inserting isochronous spacetime
hypersurfaces into equation (2). To see this, consider an inertial
frame Σ ′, moving at velocity w along the x1-axis of the lab-frame
Σ . An event E with coordinates (ξ 0,ξ) in Σ and (ξ ′0,ξ′) in
Σ ′ defines isochronous hyperplanes I(ξ 0) and I ′(ξ ′0) in Σ and
Σ ′, respectively, by

I(ξ 0) := { (t ,x) | t = ξ 0 } (6a)

I ′(ξ ′0) := { (t ′,x′) | t ′ = ξ ′0 } (6b)

If Σ and Σ ′ are in relative motion, these hyperplanes differ from
each other, I(ξ 0) $= I ′(ξ ′0), see Fig. 1. Inserting H = I(ξ 0) into
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Figure 1 |Non-local thermodynamic quantities depend on the underlying
hypersurface in Minkowski spacetime.When particles ‘P1’ and ‘P2’
interact with each other or with a confining structure (grey) they change
their momentum. Hence, different hyperplanes sample different
many-particle momentum states. Traditional formulations of relativistic
thermodynamics introduce global state variables as integrals over
isochronous hyperplanes (dotted), whereas a photograph taken at the
spacetime event E or E ′ records the state of the system along the
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equation (2), we obtain the lab-isochronous energy–momentum
vector U µ[I] in Σ :

(U µ[I])=N (〈p0〉,0) (7)

On the other hand, choosing H = I ′[ξ ′0] yields theΣ ′-isochronous
energy–momentum vectorU ′µ[I ′] inΣ ′:

(
U ′µ[I ′]

)
=N

{
γ (〈p0〉+w2β−1), µ = 0
−γw(〈p0〉+β−1), µ = 1
0, µ > 1

(8)

where γ := (1 − w2)−1/2. Applying a Lorentz transformation
with −w to equation (8), we find the corresponding energy–
momentum in Σ

(U µ[I ′])=N (〈p0〉,−wβ−1,0,0)

Hence, the energy–momentum vectors equations (7) and (8) are
not related by a Lorentz transformation. In fact, U µ[I] and
U µ[I ′] are connected by

(U µ[I ′])= (U µ[I])+Nβ−1(0,−w,0,0)

reflecting the underlying hypersurface and observer velocity. As
mentioned earlier, the difference between U µ[I] and U µ[I ′] arises
because the energy–momentum tensor of a spatially confined gas
is not conserved. It is also a reason for the existence of various
temperature Lorentz transformation laws.

Entropy
Having at hand the state variables ‘energy’ U 0 and ‘momen-
tum’ U, one still needs ‘entropy’. For a Jüttner gas, one can
define the entropy density four-current24,25 by (h = Planck’s con-
stant, units kB = 1)

sµ(t ,x)= −N
∫

d3p
p0

pµf ln(h3f ) (9)

The specific shape of equation (9) is tightly linked to the ex-
ponential form of the Jüttner distribution equation (3). In fact,
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with Jüttner momentum distribution20,21
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is the nth modified Bessel function of the second kind22 and
p0 = (m2 +p2)1/2 is the particle energy. Later, the distribution pa-
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temperature of the gas. The exact functional form of the spatial
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(that is, restricted to a finite spatial volume set V⊂R3 in Σ ). For
simplicity, we may consider a spatially homogeneous gas enclosed
in a stationary cubic boxV=[−L/2,L/2]3 inΣ , corresponding to
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from f by:
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where 〈p0〉=3β−1+mK1(βm)/K2(βm) is themean energy per par-
ticle. One readily verifies that ∂α jα ≡ 0, whereas ∂µθµi =β−1∂i" $= 0
at the boundary ofV, in agreement with equation (1). Confinement
generates stress—the importance of this seemingly trivial statement
shall be seen immediately.

Isochronous state variables
The traditional versions of relativistic thermodynamics7–12,14 are re-
covered from equations (3)–(5) by inserting isochronous spacetime
hypersurfaces into equation (2). To see this, consider an inertial
frame Σ ′, moving at velocity w along the x1-axis of the lab-frame
Σ . An event E with coordinates (ξ 0,ξ) in Σ and (ξ ′0,ξ′) in
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Figure 1 |Non-local thermodynamic quantities depend on the underlying
hypersurface in Minkowski spacetime.When particles ‘P1’ and ‘P2’
interact with each other or with a confining structure (grey) they change
their momentum. Hence, different hyperplanes sample different
many-particle momentum states. Traditional formulations of relativistic
thermodynamics introduce global state variables as integrals over
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equation (2), we obtain the lab-isochronous energy–momentum
vector U µ[I] in Σ :

(U µ[I])=N (〈p0〉,0) (7)

On the other hand, choosing H = I ′[ξ ′0] yields theΣ ′-isochronous
energy–momentum vectorU ′µ[I ′] inΣ ′:

(
U ′µ[I ′]

)
=N

{
γ (〈p0〉+w2β−1), µ = 0
−γw(〈p0〉+β−1), µ = 1
0, µ > 1

(8)

where γ := (1 − w2)−1/2. Applying a Lorentz transformation
with −w to equation (8), we find the corresponding energy–
momentum in Σ

(U µ[I ′])=N (〈p0〉,−wβ−1,0,0)

Hence, the energy–momentum vectors equations (7) and (8) are
not related by a Lorentz transformation. In fact, U µ[I] and
U µ[I ′] are connected by

(U µ[I ′])= (U µ[I])+Nβ−1(0,−w,0,0)

reflecting the underlying hypersurface and observer velocity. As
mentioned earlier, the difference between U µ[I] and U µ[I ′] arises
because the energy–momentum tensor of a spatially confined gas
is not conserved. It is also a reason for the existence of various
temperature Lorentz transformation laws.

Entropy
Having at hand the state variables ‘energy’ U 0 and ‘momen-
tum’ U, one still needs ‘entropy’. For a Jüttner gas, one can
define the entropy density four-current24,25 by (h = Planck’s con-
stant, units kB = 1)

sµ(t ,x)= −N
∫

d3p
p0

pµf ln(h3f ) (9)

The specific shape of equation (9) is tightly linked to the ex-
ponential form of the Jüttner distribution equation (3). In fact,
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1D Jüttner

φJ(p) ∝ exp[β(p2 + M2)1/2] (7)

Ansatz 3D Jüttner

f(t, x,p) = ϕ(x,p) = $(x) φJ(p), (8a)

with Jüttner momentum distribution [20, 21]

φJ(p) = Z−1 exp(−βp0), β > 0 (8b)

Z = 4πm3 K2(βm)/(βm) is the normalization constant, Kn(z) the nth modified Bessel function of the second kind [22],
and p0 = (m2 + p2)1/2 the particle energy.

f(t, x,p) = $(x) exp(−βp0) (8c)

Four vector currents

sµ(t, x) = −N

∫
d3p

p0
pµ f ln(h3f) ⇒ ∂νsν ≡ 0 (8d)

jµ(t, x) = N

∫
d3p

p0
f pµ ⇒ ∂νjν ≡ 0 (8e)

θµν(t, x) = N

∫
d3p

p0
f pµpν ⇒ ∂µθµi %≡0 (8f)

S[H] :=
∫

H
dσν sν (8g)

Uν [H] :=
∫

H
dσµ θµν %= Uν [H′] (8h)

H = I H = I′ H = C (8i)

I(ξ0) := { (t, x) | t = ξ0 } I′(ξ′0) := { (t′,x′) | t′ = ξ′0 } (8j)

Gas enclosed in a stationary cubic box V = [−L/2, L/2]3 in Σ, corresponding to

$(x) =

{
V −1 if x ∈ V
0 if x %∈ V

V = [−L/2, L/2]3 (8k)

V = L3 is the Σ-simultaneously measured (Lebesgue) volume of V ⊂ R3 in Σ. Explicit
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(11)
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1D Jüttner

φJ(p) ∝ exp[β(p2 + M2)1/2] (7)

Ansatz 3D Jüttner

f(t, x,p) = ϕ(x,p) = $(x) φJ(p), (8a)

with Jüttner momentum distribution [20, 21]
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Z = 4πm3 K2(βm)/(βm) is the normalization constant, Kn(z) the nth modified Bessel function of the second kind [22],
and p0 = (m2 + p2)1/2 the particle energy.
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I(ξ0) := { (t, x) | t = ξ0 } I′(ξ′0) := { (t′,x′) | t′ = ξ′0 } (8j)
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V = L3 is the Σ-simultaneously measured (Lebesgue) volume of V ⊂ R3 in Σ. Explicit
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0 ν = 1, 2, 3
(9)
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Σ , and can be described by a Σ -time-independent, normalized
one-particle phase-space probability density function (PDF)

f (t ,x,p)= ϕ(x,p)= "(x)φJ(p) (3a)

with Jüttner momentum distribution20,21

φJ(p)=Z−1exp(−βp0), β > 0 (3b)

Z = 4πm3K2(βm)/(βm) is the normalization constant, Kn(z)
is the nth modified Bessel function of the second kind22 and
p0 = (m2 +p2)1/2 is the particle energy. Later, the distribution pa-
rameter β will be identified with the inverse thermodynamic (rest)
temperature of the gas. The exact functional form of the spatial
density " in equation (3a) is irrelevant, as long as " is normalizable
(that is, restricted to a finite spatial volume set V⊂R3 in Σ ). For
simplicity, we may consider a spatially homogeneous gas enclosed
in a stationary cubic boxV=[−L/2,L/2]3 inΣ , corresponding to

"(x)=
{
V −1, if x∈V
0, if x $∈V (3c)

Here,V =L3 is theΣ -simultaneously measured (Lebesgue) volume
of V in Σ .

The phase-space PDF f is a Lorentz scalar23. Thus, the current
density jµ and energy–momentum tensor θµν can be constructed
from f by:

jµ(t ,x)=N
∫

d3p
p0

f pµ (4a)

θµν(t ,x)=N
∫

d3p
p0

f pµpν (4b)

where d3p/p0 is the Lorentz-invariant integration measure in
relativistic momentum space. Concretely, for equation (3) we
have (jα)= (",0) and

θµν =N "

{ 〈p0〉, µ = ν = 0
β−1, µ = ν = 1,2,3
0, µ $= ν

(5)

where 〈p0〉=3β−1+mK1(βm)/K2(βm) is themean energy per par-
ticle. One readily verifies that ∂α jα ≡ 0, whereas ∂µθµi =β−1∂i" $= 0
at the boundary ofV, in agreement with equation (1). Confinement
generates stress—the importance of this seemingly trivial statement
shall be seen immediately.

Isochronous state variables
The traditional versions of relativistic thermodynamics7–12,14 are re-
covered from equations (3)–(5) by inserting isochronous spacetime
hypersurfaces into equation (2). To see this, consider an inertial
frame Σ ′, moving at velocity w along the x1-axis of the lab-frame
Σ . An event E with coordinates (ξ 0,ξ) in Σ and (ξ ′0,ξ′) in
Σ ′ defines isochronous hyperplanes I(ξ 0) and I ′(ξ ′0) in Σ and
Σ ′, respectively, by

I(ξ 0) := { (t ,x) | t = ξ 0 } (6a)

I ′(ξ ′0) := { (t ′,x′) | t ′ = ξ ′0 } (6b)

If Σ and Σ ′ are in relative motion, these hyperplanes differ from
each other, I(ξ 0) $= I ′(ξ ′0), see Fig. 1. Inserting H = I(ξ 0) into

x

t

P1 P2

t = ξ0

t’ = ξ’0

Figure 1 |Non-local thermodynamic quantities depend on the underlying
hypersurface in Minkowski spacetime.When particles ‘P1’ and ‘P2’
interact with each other or with a confining structure (grey) they change
their momentum. Hence, different hyperplanes sample different
many-particle momentum states. Traditional formulations of relativistic
thermodynamics introduce global state variables as integrals over
isochronous hyperplanes (dotted), whereas a photograph taken at the
spacetime event E or E ′ records the state of the system along the
corresponding backward-lightcone C(E ) or C(E ′).

equation (2), we obtain the lab-isochronous energy–momentum
vector U µ[I] in Σ :

(U µ[I])=N (〈p0〉,0) (7)

On the other hand, choosing H = I ′[ξ ′0] yields theΣ ′-isochronous
energy–momentum vectorU ′µ[I ′] inΣ ′:

(
U ′µ[I ′]

)
=N

{
γ (〈p0〉+w2β−1), µ = 0
−γw(〈p0〉+β−1), µ = 1
0, µ > 1

(8)

where γ := (1 − w2)−1/2. Applying a Lorentz transformation
with −w to equation (8), we find the corresponding energy–
momentum in Σ

(U µ[I ′])=N (〈p0〉,−wβ−1,0,0)

Hence, the energy–momentum vectors equations (7) and (8) are
not related by a Lorentz transformation. In fact, U µ[I] and
U µ[I ′] are connected by

(U µ[I ′])= (U µ[I])+Nβ−1(0,−w,0,0)

reflecting the underlying hypersurface and observer velocity. As
mentioned earlier, the difference between U µ[I] and U µ[I ′] arises
because the energy–momentum tensor of a spatially confined gas
is not conserved. It is also a reason for the existence of various
temperature Lorentz transformation laws.

Entropy
Having at hand the state variables ‘energy’ U 0 and ‘momen-
tum’ U, one still needs ‘entropy’. For a Jüttner gas, one can
define the entropy density four-current24,25 by (h = Planck’s con-
stant, units kB = 1)

sµ(t ,x)= −N
∫

d3p
p0

pµf ln(h3f ) (9)

The specific shape of equation (9) is tightly linked to the ex-
ponential form of the Jüttner distribution equation (3). In fact,
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Non-local observables and lightcone-averaging in
relativistic thermodynamics
Jörn Dunkel1*, Peter Hänggi2 and Stefan Hilbert3

The unification of relativity and thermodynamics has been a subject of considerable debate over the past 100 years.
The reasons for this are twofold. First, thermodynamic variables are non-local quantities and therefore single out a
preferred class of hyperplanes in spacetime. Second, there exist different ways of defining heat and work in relativistic
systems and all of them seem equally plausible. These ambiguities have led, for example, to various proposals for the
Lorentz-transformation law of temperature. However, traditional ‘isochronous’ formulations of relativistic thermodynamics are
neither theoretically satisfactory nor experimentally feasible. Here, we demonstrate how these deficiencies can be resolved by
defining thermodynamic quantities with respect to the backward-lightcone of an observation event. This approach yields new
predictions that are, in principle, testable and allows for a straightforward extension of thermodynamics to general relativity.
Our theoretical considerations are illustrated through three-dimensional relativistic many-body simulations.

Thermodynamics, in the traditional sense, aims at describing
the state of a macroscopic system by means of a few
characteristic parameters {Ai} (refs 1–4). Typical candidates

for thermodynamic state variables {Ai} are either conserved
(extensive) quantities, for example, the particle number N and
internal energy U , or external control parameters that quantify
the breaking of symmetries1. Examples of the last of these
include the volume V of a confining vessel, indicating the
violation of translational invariance, or external magnetic fields,
which may break the spatial isotropy. Each extensive state
variable is accompanied by an intensive quantity ai = ∂S/Ai,
derived from a suitably defined entropy function(al) S({Ai}).
Representing an abstract mathematical theory of differential
forms4, thermodynamic concepts have been successfully applied
to vastly different areas, ranging from microscopic many-particle
systems2,3,5, where S is usually interpreted as an information
measure (canonical ensemble) or integrated phase-space volume
(microcanonical ensemble), to exotic objects such as black holes6,
where S is related to the black hole’s surface area.

As a coarse-grained macroscopic theory, thermodynamics is
inherently non-local in that it considers only certain global,
or averaged, properties of a physical system2,3. This is rather
unproblematic within non-relativistic Newtonian physics, where
statements such as ‘the total energy of a system at time t ’ are
unambiguously defined for arbitrary observers. In contrast—owing
to the absence of a universal time parameter—the non-local
character of thermodynamics has caused considerable confusion7–15

within Einstein’s theory of relativity16–19.
To illustrate the conceptual difficulties in relativistic thermo-

dynamics, consider a confined gas described by a particle current
density jµ(t ,x) and an energy–momentum tensor density θµν(t ,x).
If the gas is stationary in some inertial frameΣ , then jµ is conserved,
that is, ∂µjµ ≡ 0, but the divergence of θµν does not identically
vanish (owing to the pressure arising from the spatial confinement,
see the example below):

∂µθµi "≡ 0, i= 1,2,3 (1)
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Universitätsstraße 1, D-86135 Augsburg, Germany, 3Argelander-Institut für Astronomie, Universität Bonn, Auf dem Hügel 71, D-53121 Bonn, Germany.
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This means that space-like surface integrals over jµ are independent
of the underlying three-dimensional hypersurface H in (1+ 3)-
dimensional Minkowski spacetimeM4, whereas those over θµν do
depend on H. The latter fact is problematic because thermodynamic
state variables such as energy U 0 or momentum U= (U 1,U 2,U 3)
are usually defined as surface integrals over the energy–momentum
tensor (see theMethods section)16, that is,

U ν[H] :=
∫

H
dσµ θµν, µ,ν = 0,1,2,3 (2)

where, for a finite thermodynamic system, θµν is assumed to vanish
outside a bounded spatial region. Hence, the first task in relativistic
thermodynamics is to identify those hypersurfaces {H} that are
suitable for defining state variables. Subsequently, one still needs to
settle for appropriate definitions of entropy, heat and so on.

We shall begin by reviewing how these problems are tackled
in the most popular, competing versions of relativistic thermody-
namics, originally proposed by Planck7 and Einstein8, and Ott10
and Van Kampen9, respectively. A careful analysis shows that the
traditional approaches are neither conceptually satisfactory nor
experimentally feasible. The deficiencies can be cured by defining
thermodynamic quantities in terms of lightcone integrals. To clarify
these aspects, we consider a weakly interacting relativistic gas20.
Notwithstanding, the main conclusions apply to any confined
system that can be described by tensor densities jµ,θαβ,.... In the
second part, we shall discuss observable consequences such as the
apparent drift of distant objects that are, in fact, at rest relative to
the observer. This surprising effect—which should be accounted
for when estimating the velocities of very hot astrophysical ob-
jects from photographic data—will be illustrated by relativistic
many-particle simulations.

Model (Jüttner gas)
We consider an enclosed, dilute gas consisting ofN relativistic par-
ticles (rest massm; velocity v; momentum p=mv(1−v2)−1/2; speed
of light c =1). Let us assume the gas is stationary in the (‘lab’-)frame

NATURE PHYSICS | ADVANCE ONLINE PUBLICATION | www.nature.com/naturephysics 1

Nature Physics 5: 741 (2009)



ARTICLES NATURE PHYSICS DOI: 10.1038/NPHYS1395

Σ , and can be described by a Σ -time-independent, normalized
one-particle phase-space probability density function (PDF)

f (t ,x,p)= ϕ(x,p)= "(x)φJ(p) (3a)

with Jüttner momentum distribution20,21

φJ(p)=Z−1exp(−βp0), β > 0 (3b)

Z = 4πm3K2(βm)/(βm) is the normalization constant, Kn(z)
is the nth modified Bessel function of the second kind22 and
p0 = (m2 +p2)1/2 is the particle energy. Later, the distribution pa-
rameter β will be identified with the inverse thermodynamic (rest)
temperature of the gas. The exact functional form of the spatial
density " in equation (3a) is irrelevant, as long as " is normalizable
(that is, restricted to a finite spatial volume set V⊂R3 in Σ ). For
simplicity, we may consider a spatially homogeneous gas enclosed
in a stationary cubic boxV=[−L/2,L/2]3 inΣ , corresponding to

"(x)=
{
V −1, if x∈V
0, if x $∈V (3c)

Here,V =L3 is theΣ -simultaneously measured (Lebesgue) volume
of V in Σ .

The phase-space PDF f is a Lorentz scalar23. Thus, the current
density jµ and energy–momentum tensor θµν can be constructed
from f by:

jµ(t ,x)=N
∫

d3p
p0

f pµ (4a)

θµν(t ,x)=N
∫

d3p
p0

f pµpν (4b)

where d3p/p0 is the Lorentz-invariant integration measure in
relativistic momentum space. Concretely, for equation (3) we
have (jα)= (",0) and

θµν =N "

{ 〈p0〉, µ = ν = 0
β−1, µ = ν = 1,2,3
0, µ $= ν

(5)

where 〈p0〉=3β−1+mK1(βm)/K2(βm) is themean energy per par-
ticle. One readily verifies that ∂α jα ≡ 0, whereas ∂µθµi =β−1∂i" $= 0
at the boundary ofV, in agreement with equation (1). Confinement
generates stress—the importance of this seemingly trivial statement
shall be seen immediately.

Isochronous state variables
The traditional versions of relativistic thermodynamics7–12,14 are re-
covered from equations (3)–(5) by inserting isochronous spacetime
hypersurfaces into equation (2). To see this, consider an inertial
frame Σ ′, moving at velocity w along the x1-axis of the lab-frame
Σ . An event E with coordinates (ξ 0,ξ) in Σ and (ξ ′0,ξ′) in
Σ ′ defines isochronous hyperplanes I(ξ 0) and I ′(ξ ′0) in Σ and
Σ ′, respectively, by

I(ξ 0) := { (t ,x) | t = ξ 0 } (6a)

I ′(ξ ′0) := { (t ′,x′) | t ′ = ξ ′0 } (6b)

If Σ and Σ ′ are in relative motion, these hyperplanes differ from
each other, I(ξ 0) $= I ′(ξ ′0), see Fig. 1. Inserting H = I(ξ 0) into

x

t

P1 P2

t = ξ0

t’ = ξ’0

Figure 1 |Non-local thermodynamic quantities depend on the underlying
hypersurface in Minkowski spacetime.When particles ‘P1’ and ‘P2’
interact with each other or with a confining structure (grey) they change
their momentum. Hence, different hyperplanes sample different
many-particle momentum states. Traditional formulations of relativistic
thermodynamics introduce global state variables as integrals over
isochronous hyperplanes (dotted), whereas a photograph taken at the
spacetime event E or E ′ records the state of the system along the
corresponding backward-lightcone C(E ) or C(E ′).

equation (2), we obtain the lab-isochronous energy–momentum
vector U µ[I] in Σ :

(U µ[I])=N (〈p0〉,0) (7)

On the other hand, choosing H = I ′[ξ ′0] yields theΣ ′-isochronous
energy–momentum vectorU ′µ[I ′] inΣ ′:

(
U ′µ[I ′]

)
=N

{
γ (〈p0〉+w2β−1), µ = 0
−γw(〈p0〉+β−1), µ = 1
0, µ > 1

(8)

where γ := (1 − w2)−1/2. Applying a Lorentz transformation
with −w to equation (8), we find the corresponding energy–
momentum in Σ

(U µ[I ′])=N (〈p0〉,−wβ−1,0,0)

Hence, the energy–momentum vectors equations (7) and (8) are
not related by a Lorentz transformation. In fact, U µ[I] and
U µ[I ′] are connected by

(U µ[I ′])= (U µ[I])+Nβ−1(0,−w,0,0)

reflecting the underlying hypersurface and observer velocity. As
mentioned earlier, the difference between U µ[I] and U µ[I ′] arises
because the energy–momentum tensor of a spatially confined gas
is not conserved. It is also a reason for the existence of various
temperature Lorentz transformation laws.

Entropy
Having at hand the state variables ‘energy’ U 0 and ‘momen-
tum’ U, one still needs ‘entropy’. For a Jüttner gas, one can
define the entropy density four-current24,25 by (h = Planck’s con-
stant, units kB = 1)

sµ(t ,x)= −N
∫

d3p
p0

pµf ln(h3f ) (9)

The specific shape of equation (9) is tightly linked to the ex-
ponential form of the Jüttner distribution equation (3). In fact,
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Σ , and can be described by a Σ -time-independent, normalized
one-particle phase-space probability density function (PDF)

f (t ,x,p)= ϕ(x,p)= "(x)φJ(p) (3a)

with Jüttner momentum distribution20,21

φJ(p)=Z−1exp(−βp0), β > 0 (3b)

Z = 4πm3K2(βm)/(βm) is the normalization constant, Kn(z)
is the nth modified Bessel function of the second kind22 and
p0 = (m2 +p2)1/2 is the particle energy. Later, the distribution pa-
rameter β will be identified with the inverse thermodynamic (rest)
temperature of the gas. The exact functional form of the spatial
density " in equation (3a) is irrelevant, as long as " is normalizable
(that is, restricted to a finite spatial volume set V⊂R3 in Σ ). For
simplicity, we may consider a spatially homogeneous gas enclosed
in a stationary cubic boxV=[−L/2,L/2]3 inΣ , corresponding to

"(x)=
{
V −1, if x∈V
0, if x $∈V (3c)

Here,V =L3 is theΣ -simultaneously measured (Lebesgue) volume
of V in Σ .

The phase-space PDF f is a Lorentz scalar23. Thus, the current
density jµ and energy–momentum tensor θµν can be constructed
from f by:

jµ(t ,x)=N
∫

d3p
p0

f pµ (4a)

θµν(t ,x)=N
∫

d3p
p0

f pµpν (4b)

where d3p/p0 is the Lorentz-invariant integration measure in
relativistic momentum space. Concretely, for equation (3) we
have (jα)= (",0) and

θµν =N "

{ 〈p0〉, µ = ν = 0
β−1, µ = ν = 1,2,3
0, µ $= ν

(5)

where 〈p0〉=3β−1+mK1(βm)/K2(βm) is themean energy per par-
ticle. One readily verifies that ∂α jα ≡ 0, whereas ∂µθµi =β−1∂i" $= 0
at the boundary ofV, in agreement with equation (1). Confinement
generates stress—the importance of this seemingly trivial statement
shall be seen immediately.

Isochronous state variables
The traditional versions of relativistic thermodynamics7–12,14 are re-
covered from equations (3)–(5) by inserting isochronous spacetime
hypersurfaces into equation (2). To see this, consider an inertial
frame Σ ′, moving at velocity w along the x1-axis of the lab-frame
Σ . An event E with coordinates (ξ 0,ξ) in Σ and (ξ ′0,ξ′) in
Σ ′ defines isochronous hyperplanes I(ξ 0) and I ′(ξ ′0) in Σ and
Σ ′, respectively, by

I(ξ 0) := { (t ,x) | t = ξ 0 } (6a)

I ′(ξ ′0) := { (t ′,x′) | t ′ = ξ ′0 } (6b)

If Σ and Σ ′ are in relative motion, these hyperplanes differ from
each other, I(ξ 0) $= I ′(ξ ′0), see Fig. 1. Inserting H = I(ξ 0) into
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t = ξ0

t’ = ξ’0

Figure 1 |Non-local thermodynamic quantities depend on the underlying
hypersurface in Minkowski spacetime.When particles ‘P1’ and ‘P2’
interact with each other or with a confining structure (grey) they change
their momentum. Hence, different hyperplanes sample different
many-particle momentum states. Traditional formulations of relativistic
thermodynamics introduce global state variables as integrals over
isochronous hyperplanes (dotted), whereas a photograph taken at the
spacetime event E or E ′ records the state of the system along the
corresponding backward-lightcone C(E ) or C(E ′).

equation (2), we obtain the lab-isochronous energy–momentum
vector U µ[I] in Σ :

(U µ[I])=N (〈p0〉,0) (7)

On the other hand, choosing H = I ′[ξ ′0] yields theΣ ′-isochronous
energy–momentum vectorU ′µ[I ′] inΣ ′:

(
U ′µ[I ′]

)
=N

{
γ (〈p0〉+w2β−1), µ = 0
−γw(〈p0〉+β−1), µ = 1
0, µ > 1

(8)

where γ := (1 − w2)−1/2. Applying a Lorentz transformation
with −w to equation (8), we find the corresponding energy–
momentum in Σ

(U µ[I ′])=N (〈p0〉,−wβ−1,0,0)

Hence, the energy–momentum vectors equations (7) and (8) are
not related by a Lorentz transformation. In fact, U µ[I] and
U µ[I ′] are connected by

(U µ[I ′])= (U µ[I])+Nβ−1(0,−w,0,0)

reflecting the underlying hypersurface and observer velocity. As
mentioned earlier, the difference between U µ[I] and U µ[I ′] arises
because the energy–momentum tensor of a spatially confined gas
is not conserved. It is also a reason for the existence of various
temperature Lorentz transformation laws.

Entropy
Having at hand the state variables ‘energy’ U 0 and ‘momen-
tum’ U, one still needs ‘entropy’. For a Jüttner gas, one can
define the entropy density four-current24,25 by (h = Planck’s con-
stant, units kB = 1)

sµ(t ,x)= −N
∫

d3p
p0

pµf ln(h3f ) (9)

The specific shape of equation (9) is tightly linked to the ex-
ponential form of the Jüttner distribution equation (3). In fact,
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Σ , and can be described by a Σ -time-independent, normalized
one-particle phase-space probability density function (PDF)

f (t ,x,p)= ϕ(x,p)= "(x)φJ(p) (3a)

with Jüttner momentum distribution20,21

φJ(p)=Z−1exp(−βp0), β > 0 (3b)

Z = 4πm3K2(βm)/(βm) is the normalization constant, Kn(z)
is the nth modified Bessel function of the second kind22 and
p0 = (m2 +p2)1/2 is the particle energy. Later, the distribution pa-
rameter β will be identified with the inverse thermodynamic (rest)
temperature of the gas. The exact functional form of the spatial
density " in equation (3a) is irrelevant, as long as " is normalizable
(that is, restricted to a finite spatial volume set V⊂R3 in Σ ). For
simplicity, we may consider a spatially homogeneous gas enclosed
in a stationary cubic boxV=[−L/2,L/2]3 inΣ , corresponding to

"(x)=
{
V −1, if x∈V
0, if x $∈V (3c)

Here,V =L3 is theΣ -simultaneously measured (Lebesgue) volume
of V in Σ .

The phase-space PDF f is a Lorentz scalar23. Thus, the current
density jµ and energy–momentum tensor θµν can be constructed
from f by:

jµ(t ,x)=N
∫

d3p
p0

f pµ (4a)

θµν(t ,x)=N
∫

d3p
p0

f pµpν (4b)

where d3p/p0 is the Lorentz-invariant integration measure in
relativistic momentum space. Concretely, for equation (3) we
have (jα)= (",0) and

θµν =N "

{ 〈p0〉, µ = ν = 0
β−1, µ = ν = 1,2,3
0, µ $= ν

(5)

where 〈p0〉=3β−1+mK1(βm)/K2(βm) is themean energy per par-
ticle. One readily verifies that ∂α jα ≡ 0, whereas ∂µθµi =β−1∂i" $= 0
at the boundary ofV, in agreement with equation (1). Confinement
generates stress—the importance of this seemingly trivial statement
shall be seen immediately.

Isochronous state variables
The traditional versions of relativistic thermodynamics7–12,14 are re-
covered from equations (3)–(5) by inserting isochronous spacetime
hypersurfaces into equation (2). To see this, consider an inertial
frame Σ ′, moving at velocity w along the x1-axis of the lab-frame
Σ . An event E with coordinates (ξ 0,ξ) in Σ and (ξ ′0,ξ′) in
Σ ′ defines isochronous hyperplanes I(ξ 0) and I ′(ξ ′0) in Σ and
Σ ′, respectively, by

I(ξ 0) := { (t ,x) | t = ξ 0 } (6a)

I ′(ξ ′0) := { (t ′,x′) | t ′ = ξ ′0 } (6b)

If Σ and Σ ′ are in relative motion, these hyperplanes differ from
each other, I(ξ 0) $= I ′(ξ ′0), see Fig. 1. Inserting H = I(ξ 0) into
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Figure 1 |Non-local thermodynamic quantities depend on the underlying
hypersurface in Minkowski spacetime.When particles ‘P1’ and ‘P2’
interact with each other or with a confining structure (grey) they change
their momentum. Hence, different hyperplanes sample different
many-particle momentum states. Traditional formulations of relativistic
thermodynamics introduce global state variables as integrals over
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equation (2), we obtain the lab-isochronous energy–momentum
vector U µ[I] in Σ :

(U µ[I])=N (〈p0〉,0) (7)

On the other hand, choosing H = I ′[ξ ′0] yields theΣ ′-isochronous
energy–momentum vectorU ′µ[I ′] inΣ ′:

(
U ′µ[I ′]

)
=N

{
γ (〈p0〉+w2β−1), µ = 0
−γw(〈p0〉+β−1), µ = 1
0, µ > 1

(8)

where γ := (1 − w2)−1/2. Applying a Lorentz transformation
with −w to equation (8), we find the corresponding energy–
momentum in Σ

(U µ[I ′])=N (〈p0〉,−wβ−1,0,0)

Hence, the energy–momentum vectors equations (7) and (8) are
not related by a Lorentz transformation. In fact, U µ[I] and
U µ[I ′] are connected by

(U µ[I ′])= (U µ[I])+Nβ−1(0,−w,0,0)

reflecting the underlying hypersurface and observer velocity. As
mentioned earlier, the difference between U µ[I] and U µ[I ′] arises
because the energy–momentum tensor of a spatially confined gas
is not conserved. It is also a reason for the existence of various
temperature Lorentz transformation laws.

Entropy
Having at hand the state variables ‘energy’ U 0 and ‘momen-
tum’ U, one still needs ‘entropy’. For a Jüttner gas, one can
define the entropy density four-current24,25 by (h = Planck’s con-
stant, units kB = 1)

sµ(t ,x)= −N
∫

d3p
p0

pµf ln(h3f ) (9)

The specific shape of equation (9) is tightly linked to the ex-
ponential form of the Jüttner distribution equation (3). In fact,
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Σ , and can be described by a Σ -time-independent, normalized
one-particle phase-space probability density function (PDF)

f (t ,x,p)= ϕ(x,p)= "(x)φJ(p) (3a)

with Jüttner momentum distribution20,21

φJ(p)=Z−1exp(−βp0), β > 0 (3b)

Z = 4πm3K2(βm)/(βm) is the normalization constant, Kn(z)
is the nth modified Bessel function of the second kind22 and
p0 = (m2 +p2)1/2 is the particle energy. Later, the distribution pa-
rameter β will be identified with the inverse thermodynamic (rest)
temperature of the gas. The exact functional form of the spatial
density " in equation (3a) is irrelevant, as long as " is normalizable
(that is, restricted to a finite spatial volume set V⊂R3 in Σ ). For
simplicity, we may consider a spatially homogeneous gas enclosed
in a stationary cubic boxV=[−L/2,L/2]3 inΣ , corresponding to

"(x)=
{
V −1, if x∈V
0, if x $∈V (3c)

Here,V =L3 is theΣ -simultaneously measured (Lebesgue) volume
of V in Σ .

The phase-space PDF f is a Lorentz scalar23. Thus, the current
density jµ and energy–momentum tensor θµν can be constructed
from f by:

jµ(t ,x)=N
∫

d3p
p0

f pµ (4a)

θµν(t ,x)=N
∫

d3p
p0

f pµpν (4b)

where d3p/p0 is the Lorentz-invariant integration measure in
relativistic momentum space. Concretely, for equation (3) we
have (jα)= (",0) and

θµν =N "

{ 〈p0〉, µ = ν = 0
β−1, µ = ν = 1,2,3
0, µ $= ν

(5)

where 〈p0〉=3β−1+mK1(βm)/K2(βm) is themean energy per par-
ticle. One readily verifies that ∂α jα ≡ 0, whereas ∂µθµi =β−1∂i" $= 0
at the boundary ofV, in agreement with equation (1). Confinement
generates stress—the importance of this seemingly trivial statement
shall be seen immediately.

Isochronous state variables
The traditional versions of relativistic thermodynamics7–12,14 are re-
covered from equations (3)–(5) by inserting isochronous spacetime
hypersurfaces into equation (2). To see this, consider an inertial
frame Σ ′, moving at velocity w along the x1-axis of the lab-frame
Σ . An event E with coordinates (ξ 0,ξ) in Σ and (ξ ′0,ξ′) in
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Σ ′, respectively, by

I(ξ 0) := { (t ,x) | t = ξ 0 } (6a)
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Figure 1 |Non-local thermodynamic quantities depend on the underlying
hypersurface in Minkowski spacetime.When particles ‘P1’ and ‘P2’
interact with each other or with a confining structure (grey) they change
their momentum. Hence, different hyperplanes sample different
many-particle momentum states. Traditional formulations of relativistic
thermodynamics introduce global state variables as integrals over
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equation (2), we obtain the lab-isochronous energy–momentum
vector U µ[I] in Σ :

(U µ[I])=N (〈p0〉,0) (7)

On the other hand, choosing H = I ′[ξ ′0] yields theΣ ′-isochronous
energy–momentum vectorU ′µ[I ′] inΣ ′:

(
U ′µ[I ′]

)
=N

{
γ (〈p0〉+w2β−1), µ = 0
−γw(〈p0〉+β−1), µ = 1
0, µ > 1

(8)

where γ := (1 − w2)−1/2. Applying a Lorentz transformation
with −w to equation (8), we find the corresponding energy–
momentum in Σ

(U µ[I ′])=N (〈p0〉,−wβ−1,0,0)

Hence, the energy–momentum vectors equations (7) and (8) are
not related by a Lorentz transformation. In fact, U µ[I] and
U µ[I ′] are connected by

(U µ[I ′])= (U µ[I])+Nβ−1(0,−w,0,0)

reflecting the underlying hypersurface and observer velocity. As
mentioned earlier, the difference between U µ[I] and U µ[I ′] arises
because the energy–momentum tensor of a spatially confined gas
is not conserved. It is also a reason for the existence of various
temperature Lorentz transformation laws.

Entropy
Having at hand the state variables ‘energy’ U 0 and ‘momen-
tum’ U, one still needs ‘entropy’. For a Jüttner gas, one can
define the entropy density four-current24,25 by (h = Planck’s con-
stant, units kB = 1)

sµ(t ,x)= −N
∫

d3p
p0

pµf ln(h3f ) (9)

The specific shape of equation (9) is tightly linked to the ex-
ponential form of the Jüttner distribution equation (3). In fact,
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Z = 4πm3K2(βm)/(βm) is the normalization constant, Kn(z)
is the nth modified Bessel function of the second kind22 and
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simplicity, we may consider a spatially homogeneous gas enclosed
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Here,V =L3 is theΣ -simultaneously measured (Lebesgue) volume
of V in Σ .
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density jµ and energy–momentum tensor θµν can be constructed
from f by:
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∫
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have (jα)= (",0) and
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{ 〈p0〉, µ = ν = 0
β−1, µ = ν = 1,2,3
0, µ $= ν

(5)

where 〈p0〉=3β−1+mK1(βm)/K2(βm) is themean energy per par-
ticle. One readily verifies that ∂α jα ≡ 0, whereas ∂µθµi =β−1∂i" $= 0
at the boundary ofV, in agreement with equation (1). Confinement
generates stress—the importance of this seemingly trivial statement
shall be seen immediately.

Isochronous state variables
The traditional versions of relativistic thermodynamics7–12,14 are re-
covered from equations (3)–(5) by inserting isochronous spacetime
hypersurfaces into equation (2). To see this, consider an inertial
frame Σ ′, moving at velocity w along the x1-axis of the lab-frame
Σ . An event E with coordinates (ξ 0,ξ) in Σ and (ξ ′0,ξ′) in
Σ ′ defines isochronous hyperplanes I(ξ 0) and I ′(ξ ′0) in Σ and
Σ ′, respectively, by

I(ξ 0) := { (t ,x) | t = ξ 0 } (6a)
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If Σ and Σ ′ are in relative motion, these hyperplanes differ from
each other, I(ξ 0) $= I ′(ξ ′0), see Fig. 1. Inserting H = I(ξ 0) into
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Figure 1 |Non-local thermodynamic quantities depend on the underlying
hypersurface in Minkowski spacetime.When particles ‘P1’ and ‘P2’
interact with each other or with a confining structure (grey) they change
their momentum. Hence, different hyperplanes sample different
many-particle momentum states. Traditional formulations of relativistic
thermodynamics introduce global state variables as integrals over
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spacetime event E or E ′ records the state of the system along the
corresponding backward-lightcone C(E ) or C(E ′).

equation (2), we obtain the lab-isochronous energy–momentum
vector U µ[I] in Σ :

(U µ[I])=N (〈p0〉,0) (7)

On the other hand, choosing H = I ′[ξ ′0] yields theΣ ′-isochronous
energy–momentum vectorU ′µ[I ′] inΣ ′:

(
U ′µ[I ′]

)
=N

{
γ (〈p0〉+w2β−1), µ = 0
−γw(〈p0〉+β−1), µ = 1
0, µ > 1

(8)

where γ := (1 − w2)−1/2. Applying a Lorentz transformation
with −w to equation (8), we find the corresponding energy–
momentum in Σ

(U µ[I ′])=N (〈p0〉,−wβ−1,0,0)

Hence, the energy–momentum vectors equations (7) and (8) are
not related by a Lorentz transformation. In fact, U µ[I] and
U µ[I ′] are connected by

(U µ[I ′])= (U µ[I])+Nβ−1(0,−w,0,0)

reflecting the underlying hypersurface and observer velocity. As
mentioned earlier, the difference between U µ[I] and U µ[I ′] arises
because the energy–momentum tensor of a spatially confined gas
is not conserved. It is also a reason for the existence of various
temperature Lorentz transformation laws.

Entropy
Having at hand the state variables ‘energy’ U 0 and ‘momen-
tum’ U, one still needs ‘entropy’. For a Jüttner gas, one can
define the entropy density four-current24,25 by (h = Planck’s con-
stant, units kB = 1)

sµ(t ,x)= −N
∫

d3p
p0

pµf ln(h3f ) (9)

The specific shape of equation (9) is tightly linked to the ex-
ponential form of the Jüttner distribution equation (3). In fact,
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with Jüttner momentum distribution20,21
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Z = 4πm3K2(βm)/(βm) is the normalization constant, Kn(z)
is the nth modified Bessel function of the second kind22 and
p0 = (m2 +p2)1/2 is the particle energy. Later, the distribution pa-
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The phase-space PDF f is a Lorentz scalar23. Thus, the current
density jµ and energy–momentum tensor θµν can be constructed
from f by:
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f pµ (4a)
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∫
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f pµpν (4b)

where d3p/p0 is the Lorentz-invariant integration measure in
relativistic momentum space. Concretely, for equation (3) we
have (jα)= (",0) and

θµν =N "

{ 〈p0〉, µ = ν = 0
β−1, µ = ν = 1,2,3
0, µ $= ν

(5)

where 〈p0〉=3β−1+mK1(βm)/K2(βm) is themean energy per par-
ticle. One readily verifies that ∂α jα ≡ 0, whereas ∂µθµi =β−1∂i" $= 0
at the boundary ofV, in agreement with equation (1). Confinement
generates stress—the importance of this seemingly trivial statement
shall be seen immediately.
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The traditional versions of relativistic thermodynamics7–12,14 are re-
covered from equations (3)–(5) by inserting isochronous spacetime
hypersurfaces into equation (2). To see this, consider an inertial
frame Σ ′, moving at velocity w along the x1-axis of the lab-frame
Σ . An event E with coordinates (ξ 0,ξ) in Σ and (ξ ′0,ξ′) in
Σ ′ defines isochronous hyperplanes I(ξ 0) and I ′(ξ ′0) in Σ and
Σ ′, respectively, by

I(ξ 0) := { (t ,x) | t = ξ 0 } (6a)
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If Σ and Σ ′ are in relative motion, these hyperplanes differ from
each other, I(ξ 0) $= I ′(ξ ′0), see Fig. 1. Inserting H = I(ξ 0) into
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Figure 1 |Non-local thermodynamic quantities depend on the underlying
hypersurface in Minkowski spacetime.When particles ‘P1’ and ‘P2’
interact with each other or with a confining structure (grey) they change
their momentum. Hence, different hyperplanes sample different
many-particle momentum states. Traditional formulations of relativistic
thermodynamics introduce global state variables as integrals over
isochronous hyperplanes (dotted), whereas a photograph taken at the
spacetime event E or E ′ records the state of the system along the
corresponding backward-lightcone C(E ) or C(E ′).

equation (2), we obtain the lab-isochronous energy–momentum
vector U µ[I] in Σ :

(U µ[I])=N (〈p0〉,0) (7)

On the other hand, choosing H = I ′[ξ ′0] yields theΣ ′-isochronous
energy–momentum vectorU ′µ[I ′] inΣ ′:

(
U ′µ[I ′]

)
=N

{
γ (〈p0〉+w2β−1), µ = 0
−γw(〈p0〉+β−1), µ = 1
0, µ > 1

(8)

where γ := (1 − w2)−1/2. Applying a Lorentz transformation
with −w to equation (8), we find the corresponding energy–
momentum in Σ

(U µ[I ′])=N (〈p0〉,−wβ−1,0,0)

Hence, the energy–momentum vectors equations (7) and (8) are
not related by a Lorentz transformation. In fact, U µ[I] and
U µ[I ′] are connected by

(U µ[I ′])= (U µ[I])+Nβ−1(0,−w,0,0)

reflecting the underlying hypersurface and observer velocity. As
mentioned earlier, the difference between U µ[I] and U µ[I ′] arises
because the energy–momentum tensor of a spatially confined gas
is not conserved. It is also a reason for the existence of various
temperature Lorentz transformation laws.

Entropy
Having at hand the state variables ‘energy’ U 0 and ‘momen-
tum’ U, one still needs ‘entropy’. For a Jüttner gas, one can
define the entropy density four-current24,25 by (h = Planck’s con-
stant, units kB = 1)

sµ(t ,x)= −N
∫

d3p
p0

pµf ln(h3f ) (9)

The specific shape of equation (9) is tightly linked to the ex-
ponential form of the Jüttner distribution equation (3). In fact,
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Figure 1 |Non-local thermodynamic quantities depend on the underlying
hypersurface in Minkowski spacetime.When particles ‘P1’ and ‘P2’
interact with each other or with a confining structure (grey) they change
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many-particle momentum states. Traditional formulations of relativistic
thermodynamics introduce global state variables as integrals over
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where γ := (1 − w2)−1/2. Applying a Lorentz transformation
with −w to equation (8), we find the corresponding energy–
momentum in Σ

(U µ[I ′])=N (〈p0〉,−wβ−1,0,0)

Hence, the energy–momentum vectors equations (7) and (8) are
not related by a Lorentz transformation. In fact, U µ[I] and
U µ[I ′] are connected by

(U µ[I ′])= (U µ[I])+Nβ−1(0,−w,0,0)

reflecting the underlying hypersurface and observer velocity. As
mentioned earlier, the difference between U µ[I] and U µ[I ′] arises
because the energy–momentum tensor of a spatially confined gas
is not conserved. It is also a reason for the existence of various
temperature Lorentz transformation laws.

Entropy
Having at hand the state variables ‘energy’ U 0 and ‘momen-
tum’ U, one still needs ‘entropy’. For a Jüttner gas, one can
define the entropy density four-current24,25 by (h = Planck’s con-
stant, units kB = 1)

sµ(t ,x)= −N
∫

d3p
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pµf ln(h3f ) (9)

The specific shape of equation (9) is tightly linked to the ex-
ponential form of the Jüttner distribution equation (3). In fact,

2 NATURE PHYSICS | ADVANCE ONLINE PUBLICATION | www.nature.com/naturephysics

Nonlocal observables and lightcone-averaging in relativistic thermodynamics

Jörn Dunkel∗
Rudolf Peierls Centre for Theoretical Physics, University of Oxford,

1 Keble Road, Oxford OX1 3NP, United Kingdom

Peter Hänggi
Institut für Physik, Universität Augsburg, Universitätsstraße 1, D-86135 Augsburg, Germany
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The unification of relativity and thermodynamics has been a subject of considerable debate over
the last 100 years. The reasons for this are twofold: (i) Thermodynamic variables are nonlocal
quantities and, thus, single out a preferred class of hyperplanes in spacetime. (ii) There exist dif-
ferent, seemingly equally plausible ways of defining heat and work in relativistic systems. These
ambiguities led, for example, to various proposals for the Lorentz transformation law of temperature.
Traditional ‘isochronous’ formulations of relativistic thermodynamics are neither theoretically sat-
isfactory nor experimentally feasible. Here, we demonstrate how these deficiencies can be resolved
by defining thermodynamic quantities with respect to the backward-lightcone of an observation
event. This approach yields novel, testable predictions and allows for a straightforward-extension
of thermodynamics to General Relativity. Our theoretical considerations are illustrated through
three-dimensional relativistic many-body simulations.

PACS numbers:

N, U0, U , . . .

sµ(t, x), jµ(t, x), θµν(t, x), . . .

= N"

{
1, µ = 0
0, µ > 0

S[φ|ρ] =
∫

ddp φ(p) ln
[
φ(p)
ρ(p)

]
(1)

ε =
∫

ddp φ(p) p0 (2)

1 =
∫

ddp φ(p) (3)

ρ = ρ0 : φJ ∝ exp(−βp0) ⇔ f(t→∞) (4)

ρ ∝ 1
p0

: φMJ ∝
exp(−βp0)

p0
⇔ f̂(τ →∞) (5)

Temperature

T ′(w) = T (1− w2)α/2 α =






+1 Planck, Einstein
0 Landsberg, van Kampen
−1 Ott

(6)
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Σ , and can be described by a Σ -time-independent, normalized
one-particle phase-space probability density function (PDF)

f (t ,x,p)= ϕ(x,p)= "(x)φJ(p) (3a)

with Jüttner momentum distribution20,21

φJ(p)=Z−1exp(−βp0), β > 0 (3b)

Z = 4πm3K2(βm)/(βm) is the normalization constant, Kn(z)
is the nth modified Bessel function of the second kind22 and
p0 = (m2 +p2)1/2 is the particle energy. Later, the distribution pa-
rameter β will be identified with the inverse thermodynamic (rest)
temperature of the gas. The exact functional form of the spatial
density " in equation (3a) is irrelevant, as long as " is normalizable
(that is, restricted to a finite spatial volume set V⊂R3 in Σ ). For
simplicity, we may consider a spatially homogeneous gas enclosed
in a stationary cubic boxV=[−L/2,L/2]3 inΣ , corresponding to

"(x)=
{
V −1, if x∈V
0, if x $∈V (3c)

Here,V =L3 is theΣ -simultaneously measured (Lebesgue) volume
of V in Σ .

The phase-space PDF f is a Lorentz scalar23. Thus, the current
density jµ and energy–momentum tensor θµν can be constructed
from f by:

jµ(t ,x)=N
∫

d3p
p0

f pµ (4a)

θµν(t ,x)=N
∫

d3p
p0

f pµpν (4b)

where d3p/p0 is the Lorentz-invariant integration measure in
relativistic momentum space. Concretely, for equation (3) we
have (jα)= (",0) and

θµν =N "

{ 〈p0〉, µ = ν = 0
β−1, µ = ν = 1,2,3
0, µ $= ν

(5)

where 〈p0〉=3β−1+mK1(βm)/K2(βm) is themean energy per par-
ticle. One readily verifies that ∂α jα ≡ 0, whereas ∂µθµi =β−1∂i" $= 0
at the boundary ofV, in agreement with equation (1). Confinement
generates stress—the importance of this seemingly trivial statement
shall be seen immediately.

Isochronous state variables
The traditional versions of relativistic thermodynamics7–12,14 are re-
covered from equations (3)–(5) by inserting isochronous spacetime
hypersurfaces into equation (2). To see this, consider an inertial
frame Σ ′, moving at velocity w along the x1-axis of the lab-frame
Σ . An event E with coordinates (ξ 0,ξ) in Σ and (ξ ′0,ξ′) in
Σ ′ defines isochronous hyperplanes I(ξ 0) and I ′(ξ ′0) in Σ and
Σ ′, respectively, by

I(ξ 0) := { (t ,x) | t = ξ 0 } (6a)

I ′(ξ ′0) := { (t ′,x′) | t ′ = ξ ′0 } (6b)

If Σ and Σ ′ are in relative motion, these hyperplanes differ from
each other, I(ξ 0) $= I ′(ξ ′0), see Fig. 1. Inserting H = I(ξ 0) into

x

t

P1 P2

t = ξ0

t’ = ξ’0

Figure 1 |Non-local thermodynamic quantities depend on the underlying
hypersurface in Minkowski spacetime.When particles ‘P1’ and ‘P2’
interact with each other or with a confining structure (grey) they change
their momentum. Hence, different hyperplanes sample different
many-particle momentum states. Traditional formulations of relativistic
thermodynamics introduce global state variables as integrals over
isochronous hyperplanes (dotted), whereas a photograph taken at the
spacetime event E or E ′ records the state of the system along the
corresponding backward-lightcone C(E ) or C(E ′).

equation (2), we obtain the lab-isochronous energy–momentum
vector U µ[I] in Σ :

(U µ[I])=N (〈p0〉,0) (7)

On the other hand, choosing H = I ′[ξ ′0] yields theΣ ′-isochronous
energy–momentum vectorU ′µ[I ′] inΣ ′:

(
U ′µ[I ′]

)
=N

{
γ (〈p0〉+w2β−1), µ = 0
−γw(〈p0〉+β−1), µ = 1
0, µ > 1

(8)

where γ := (1 − w2)−1/2. Applying a Lorentz transformation
with −w to equation (8), we find the corresponding energy–
momentum in Σ

(U µ[I ′])=N (〈p0〉,−wβ−1,0,0)

Hence, the energy–momentum vectors equations (7) and (8) are
not related by a Lorentz transformation. In fact, U µ[I] and
U µ[I ′] are connected by

(U µ[I ′])= (U µ[I])+Nβ−1(0,−w,0,0)

reflecting the underlying hypersurface and observer velocity. As
mentioned earlier, the difference between U µ[I] and U µ[I ′] arises
because the energy–momentum tensor of a spatially confined gas
is not conserved. It is also a reason for the existence of various
temperature Lorentz transformation laws.

Entropy
Having at hand the state variables ‘energy’ U 0 and ‘momen-
tum’ U, one still needs ‘entropy’. For a Jüttner gas, one can
define the entropy density four-current24,25 by (h = Planck’s con-
stant, units kB = 1)

sµ(t ,x)= −N
∫

d3p
p0

pµf ln(h3f ) (9)

The specific shape of equation (9) is tightly linked to the ex-
ponential form of the Jüttner distribution equation (3). In fact,
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this combination (f , sµ) is just one among several probabilistic
models of thermodynamics; that is, there exist other pairings, for
example, based on Renyi-type entropies, that yield consistent ther-
modynamic relations as well26. However, inserting equations (3)
into (9), we find

sµ(t ,x)=N!

{
ln(VZ/h3)+β〈p0〉, ν = 0
0, ν > 0 (10)

Hence, the current equation (10) is stationary in Σ and satisfies
the conservation law

∂νsν ≡ 0 (11)

The associated thermodynamic entropy S is obtained by integrating
sµ over some space-like or light-like hyperplane H, yielding the
Lorentz-invariant quantity

S[H] :=
∫

H
dσν sν(t ,x) (12)

Equation (11) implies that the integral equation (12) is the same for
the hyperplanes I(ξ 0) and I ′(ξ ′0),

S[I] = S′[I] = S[I ′] = S′[I ′] (13)

Thus, there is little or no room for controversy about the transfor-
mation laws of entropy in this example. The integral equation (12)
ismost conveniently calculated along H = I(ξ 0) inΣ , yielding

S=
∫

d3x s0 =N ln(VZ/h3)+βN 〈p0〉

This can also be rewritten as

S′ = N ln(γV ′Z/h3)+βU ′0[I]/γ

= N ln(γV ′Z/h3)+βγ (U ′0[I ′]+wU ′1[I ′]) (14)

where V ′ = V /γ denotes the Lorentz-contracted (that is, Σ ′-
simultaneously measured) volume. More precisely, one should
write V ′ =V ′[I ′] and V =V [I] to reflect how volume is measured
(defined) in either frame.

Einstein–Planck theory
We are now ready to summarize the most common versions
of relativistic thermodynamics. Planck7 and Einstein8 propose to
use the Σ ′-synchronous four-vector U ′µ[I ′] from equation (8) as
thermodynamic energy–momentum state variables. Furthermore,
they choose to define heat Q′[I ′] and, thus, temperature T ′ in Σ ′

by the following postulated form of the first law of thermodynamics
(see equation (23) in Einstein’s paper8)

d̄Q′[I ′] :=T ′dS′ := dU ′0[I ′]−w ′dU ′1[I ′]+P ′dV ′ (15a)

where the intensive variable w ′ =−w is the constant x ′1-velocity of
the gas (container) in Σ ′ and P ′ is the pressure. Considering the
special case w ′ = 0 first, we see that equation (15a) is consistent
with the second line of equation (14) on identifying T = β−1 and
PV = Nβ−1; that is, the parameter β of the Jüttner distribution
equals the inverse rest temperature. Furthermore, for moving

systems with w ′ &= 0, we find that thermodynamic quantities in Σ
and Σ ′ are related by9

V ′ =V /γ , P ′ = P, S′ = S (15b)

U ′0[I ′] = γ
(
U 0[I]+w ′2 PV

)
(15c)

U ′1[I ′] = γw ′(U 0[I]+PV
)

(15d)

T ′ = γ −1 T = (1−w ′2)1/2 T (15e)

so that

T ′dS′ = d̄Q′[I ′] = γ −1d̄Q[I] = γ −1TdS (15f)

that is, within the Einstein–Planck formalism a moving body
appears cooler (although it seems that, in the later stages of his
life, Einstein changed27,28 his opinion about the transformation
laws of thermodynamic quantities). Equations (15) were criticized
in a posthumously published paper by Ott10 and, later, also by
Van Kampen9,29 and Landsberg11,12.

Ott’s versus Van Kampen’s theory
Ott10 and Van Kampen9 choose to formulate thermodynamic
relations in the moving frame Σ ′ in terms of the Σ -isochronous
energy–momentum vector U ′µ[I] = Λµ

νU ν[I]. They differ, how-
ever, as to how heat and work should be defined. Van Kampen9,29

replaces Planck’s version of the first law, equation (15a), by in-
troducing a covariant thermal energy–momentum transfer four-
vector Qµ by means of

d̄Qµ[I] := dU µ[I]− d̄Aµ[I] (16)

where, in the (lab) frame Σ , the non-thermal work vector Aµ[I] is
determined by (d̄Aµ[I]) := (−PdV ,0). Accordingly, in a moving
frame Σ ′, one then finds d̄Q′µ[I] = dU ′µ[I]− d̄A′µ[I], where by
means of a Lorentz transformation

dU ′µ[I] =w ′µ dU 0[I], d̄A′µ = −w ′µ PdV (17)

Here, (w ′µ) = (γ ,γw ′,0,0) denotes the velocity four-vector of
the gas (container) in Σ ′. Although essentially agreeing on
equations (16), (17) and on the scalar character of entropy, S′ = S,
VanKampen andOtt postulate different formulations of the second
law, respectively. Specifically, Ott10 defines the temperatureT ′ inΣ ′

by means of

T ′ dS′ := d̄Q′0 = γ d̄Q0 = γ T dS (18a)

which implies themodified temperature transformation law30–32

T ′ = γ T = (1−w ′2)−1/2 T (18b)

that is, according to Ott’s definition of heat and temperature,
a moving body appears hotter. Van Kampen9 argues that the
equations (18) are not well suited if one wishes to describe heat
and energy–momentum exchange between systems that move at
different velocities (hetero-tachic processes). To achieve a more
convenient description, he proposes to characterize the heat transfer
bymeans of a heat scalarQ′ =Q, defined by9,29

d̄Q′ := −w ′
µd̄Q

′µ = −wµd̄Qµ = d̄Q= d̄Q0
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The unification of relativity and thermodynamics has been a subject of considerable debate over
the last 100 years. The reasons for this are twofold: (i) Thermodynamic variables are nonlocal
quantities and, thus, single out a preferred class of hyperplanes in spacetime. (ii) There exist dif-
ferent, seemingly equally plausible ways of defining heat and work in relativistic systems. These
ambiguities led, for example, to various proposals for the Lorentz transformation law of temperature.
Traditional ‘isochronous’ formulations of relativistic thermodynamics are neither theoretically sat-
isfactory nor experimentally feasible. Here, we demonstrate how these deficiencies can be resolved
by defining thermodynamic quantities with respect to the backward-lightcone of an observation
event. This approach yields novel, testable predictions and allows for a straightforward-extension
of thermodynamics to General Relativity. Our theoretical considerations are illustrated through
three-dimensional relativistic many-body simulations.

PACS numbers:

N, U0, U , . . .

sµ(t, x), jµ(t, x), θµν(t, x), . . .

= N"

{
1, µ = 0
0, µ > 0

S[φ|ρ] =
∫

ddp φ(p) ln
[
φ(p)
ρ(p)

]
(1)

ε =
∫

ddp φ(p) p0 (2)

1 =
∫

ddp φ(p) (3)

ρ = ρ0 : φJ ∝ exp(−βp0) ⇔ f(t→∞) (4)

ρ ∝ 1
p0

: φMJ ∝
exp(−βp0)

p0
⇔ f̂(τ →∞) (5)

Temperature

T ′(w) = T (1− w2)α/2 α =






+1 Planck, Einstein
0 Landsberg, van Kampen
−1 Ott

(6)
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2

1D Jüttner

φJ(p) ∝ exp[β(p2 + M2)1/2] (7)

Ansatz 3D Jüttner

f(t, x,p) = ϕ(x,p) = $(x) φJ(p), (8a)

with Jüttner momentum distribution [20, 21]

φJ(p) = Z−1 exp(−βp0), β > 0 (8b)

Z = 4πm3 K2(βm)/(βm) is the normalization constant, Kn(z) the nth modified Bessel function of the second kind [22],
and p0 = (m2 + p2)1/2 the particle energy.

f(t, x,p) = $(x) exp(−βp0) (8c)

Four vector currents

sµ(t, x) = −N

∫
d3p

p0
pµ f ln(h3f) ⇒ ∂νsν ≡ 0 (8d)

jµ(t, x) = N

∫
d3p

p0
f pµ ⇒ ∂νjν ≡ 0 (8e)

θµν(t, x) = N

∫
d3p

p0
f pµpν ⇒ ∂µθµi %≡0 (8f)

S[H] :=
∫

H
dσν sν (8g)

Uν [H] :=
∫

H
dσµ θµν %= Uν [H′] (8h)

H = I H = I′ H = C (8i)

I(ξ0) := { (t, x) | t = ξ0 } I′(ξ′0) := { (t′,x′) | t′ = ξ′0 } (8j)

Gas enclosed in a stationary cubic box V = [−L/2, L/2]3 in Σ, corresponding to

$(x) =

{
V −1 if x ∈ V
0 if x %∈ V

V = [−L/2, L/2]3 (8k)

V = L3 is the Σ-simultaneously measured (Lebesgue) volume of V ⊂ R3 in Σ. Explicit

sµ(t, x) = N$

{
ln(V Z/h3) + β

〈
p0

〉
ν = 0

0 ν = 1, 2, 3
(9)

jα =

{
$ ν = 0
0 ν = 1, 2, 3

(10)

θµν = N $






〈
p0

〉
µ = ν = 0

β−1 µ = ν = 1, 2, 3
0 µ %= ν

(11)

where
〈
p0

〉
= 3β−1 + m

K1(βm)
K2(βm)

(12)
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Σ , and can be described by a Σ -time-independent, normalized
one-particle phase-space probability density function (PDF)

f (t ,x,p)= ϕ(x,p)= "(x)φJ(p) (3a)

with Jüttner momentum distribution20,21

φJ(p)=Z−1exp(−βp0), β > 0 (3b)

Z = 4πm3K2(βm)/(βm) is the normalization constant, Kn(z)
is the nth modified Bessel function of the second kind22 and
p0 = (m2 +p2)1/2 is the particle energy. Later, the distribution pa-
rameter β will be identified with the inverse thermodynamic (rest)
temperature of the gas. The exact functional form of the spatial
density " in equation (3a) is irrelevant, as long as " is normalizable
(that is, restricted to a finite spatial volume set V⊂R3 in Σ ). For
simplicity, we may consider a spatially homogeneous gas enclosed
in a stationary cubic boxV=[−L/2,L/2]3 inΣ , corresponding to

"(x)=
{
V −1, if x∈V
0, if x $∈V (3c)

Here,V =L3 is theΣ -simultaneously measured (Lebesgue) volume
of V in Σ .

The phase-space PDF f is a Lorentz scalar23. Thus, the current
density jµ and energy–momentum tensor θµν can be constructed
from f by:

jµ(t ,x)=N
∫

d3p
p0

f pµ (4a)

θµν(t ,x)=N
∫

d3p
p0

f pµpν (4b)

where d3p/p0 is the Lorentz-invariant integration measure in
relativistic momentum space. Concretely, for equation (3) we
have (jα)= (",0) and

θµν =N "

{ 〈p0〉, µ = ν = 0
β−1, µ = ν = 1,2,3
0, µ $= ν

(5)

where 〈p0〉=3β−1+mK1(βm)/K2(βm) is themean energy per par-
ticle. One readily verifies that ∂α jα ≡ 0, whereas ∂µθµi =β−1∂i" $= 0
at the boundary ofV, in agreement with equation (1). Confinement
generates stress—the importance of this seemingly trivial statement
shall be seen immediately.

Isochronous state variables
The traditional versions of relativistic thermodynamics7–12,14 are re-
covered from equations (3)–(5) by inserting isochronous spacetime
hypersurfaces into equation (2). To see this, consider an inertial
frame Σ ′, moving at velocity w along the x1-axis of the lab-frame
Σ . An event E with coordinates (ξ 0,ξ) in Σ and (ξ ′0,ξ′) in
Σ ′ defines isochronous hyperplanes I(ξ 0) and I ′(ξ ′0) in Σ and
Σ ′, respectively, by

I(ξ 0) := { (t ,x) | t = ξ 0 } (6a)

I ′(ξ ′0) := { (t ′,x′) | t ′ = ξ ′0 } (6b)

If Σ and Σ ′ are in relative motion, these hyperplanes differ from
each other, I(ξ 0) $= I ′(ξ ′0), see Fig. 1. Inserting H = I(ξ 0) into
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Figure 1 |Non-local thermodynamic quantities depend on the underlying
hypersurface in Minkowski spacetime.When particles ‘P1’ and ‘P2’
interact with each other or with a confining structure (grey) they change
their momentum. Hence, different hyperplanes sample different
many-particle momentum states. Traditional formulations of relativistic
thermodynamics introduce global state variables as integrals over
isochronous hyperplanes (dotted), whereas a photograph taken at the
spacetime event E or E ′ records the state of the system along the
corresponding backward-lightcone C(E ) or C(E ′).

equation (2), we obtain the lab-isochronous energy–momentum
vector U µ[I] in Σ :

(U µ[I])=N (〈p0〉,0) (7)

On the other hand, choosing H = I ′[ξ ′0] yields theΣ ′-isochronous
energy–momentum vectorU ′µ[I ′] inΣ ′:

(
U ′µ[I ′]

)
=N

{
γ (〈p0〉+w2β−1), µ = 0
−γw(〈p0〉+β−1), µ = 1
0, µ > 1

(8)

where γ := (1 − w2)−1/2. Applying a Lorentz transformation
with −w to equation (8), we find the corresponding energy–
momentum in Σ

(U µ[I ′])=N (〈p0〉,−wβ−1,0,0)

Hence, the energy–momentum vectors equations (7) and (8) are
not related by a Lorentz transformation. In fact, U µ[I] and
U µ[I ′] are connected by

(U µ[I ′])= (U µ[I])+Nβ−1(0,−w,0,0)

reflecting the underlying hypersurface and observer velocity. As
mentioned earlier, the difference between U µ[I] and U µ[I ′] arises
because the energy–momentum tensor of a spatially confined gas
is not conserved. It is also a reason for the existence of various
temperature Lorentz transformation laws.

Entropy
Having at hand the state variables ‘energy’ U 0 and ‘momen-
tum’ U, one still needs ‘entropy’. For a Jüttner gas, one can
define the entropy density four-current24,25 by (h = Planck’s con-
stant, units kB = 1)

sµ(t ,x)= −N
∫

d3p
p0

pµf ln(h3f ) (9)

The specific shape of equation (9) is tightly linked to the ex-
ponential form of the Jüttner distribution equation (3). In fact,
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Thermodynamics, in the traditional sense, aims at describing
the state of a macroscopic system by means of a few
characteristic parameters {Ai} (refs 1–4). Typical candidates

for thermodynamic state variables {Ai} are either conserved
(extensive) quantities, for example, the particle number N and
internal energy U , or external control parameters that quantify
the breaking of symmetries1. Examples of the last of these
include the volume V of a confining vessel, indicating the
violation of translational invariance, or external magnetic fields,
which may break the spatial isotropy. Each extensive state
variable is accompanied by an intensive quantity ai = ∂S/Ai,
derived from a suitably defined entropy function(al) S({Ai}).
Representing an abstract mathematical theory of differential
forms4, thermodynamic concepts have been successfully applied
to vastly different areas, ranging from microscopic many-particle
systems2,3,5, where S is usually interpreted as an information
measure (canonical ensemble) or integrated phase-space volume
(microcanonical ensemble), to exotic objects such as black holes6,
where S is related to the black hole’s surface area.

As a coarse-grained macroscopic theory, thermodynamics is
inherently non-local in that it considers only certain global,
or averaged, properties of a physical system2,3. This is rather
unproblematic within non-relativistic Newtonian physics, where
statements such as ‘the total energy of a system at time t ’ are
unambiguously defined for arbitrary observers. In contrast—owing
to the absence of a universal time parameter—the non-local
character of thermodynamics has caused considerable confusion7–15

within Einstein’s theory of relativity16–19.
To illustrate the conceptual difficulties in relativistic thermo-

dynamics, consider a confined gas described by a particle current
density jµ(t ,x) and an energy–momentum tensor density θµν(t ,x).
If the gas is stationary in some inertial frameΣ , then jµ is conserved,
that is, ∂µjµ ≡ 0, but the divergence of θµν does not identically
vanish (owing to the pressure arising from the spatial confinement,
see the example below):

∂µθµi "≡ 0, i= 1,2,3 (1)
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This means that space-like surface integrals over jµ are independent
of the underlying three-dimensional hypersurface H in (1+ 3)-
dimensional Minkowski spacetimeM4, whereas those over θµν do
depend on H. The latter fact is problematic because thermodynamic
state variables such as energy U 0 or momentum U= (U 1,U 2,U 3)
are usually defined as surface integrals over the energy–momentum
tensor (see theMethods section)16, that is,

U ν[H] :=
∫

H
dσµ θµν, µ,ν = 0,1,2,3 (2)

where, for a finite thermodynamic system, θµν is assumed to vanish
outside a bounded spatial region. Hence, the first task in relativistic
thermodynamics is to identify those hypersurfaces {H} that are
suitable for defining state variables. Subsequently, one still needs to
settle for appropriate definitions of entropy, heat and so on.

We shall begin by reviewing how these problems are tackled
in the most popular, competing versions of relativistic thermody-
namics, originally proposed by Planck7 and Einstein8, and Ott10
and Van Kampen9, respectively. A careful analysis shows that the
traditional approaches are neither conceptually satisfactory nor
experimentally feasible. The deficiencies can be cured by defining
thermodynamic quantities in terms of lightcone integrals. To clarify
these aspects, we consider a weakly interacting relativistic gas20.
Notwithstanding, the main conclusions apply to any confined
system that can be described by tensor densities jµ,θαβ,.... In the
second part, we shall discuss observable consequences such as the
apparent drift of distant objects that are, in fact, at rest relative to
the observer. This surprising effect—which should be accounted
for when estimating the velocities of very hot astrophysical ob-
jects from photographic data—will be illustrated by relativistic
many-particle simulations.

Model (Jüttner gas)
We consider an enclosed, dilute gas consisting ofN relativistic par-
ticles (rest massm; velocity v; momentum p=mv(1−v2)−1/2; speed
of light c =1). Let us assume the gas is stationary in the (‘lab’-)frame
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this combination (f , sµ) is just one among several probabilistic
models of thermodynamics; that is, there exist other pairings, for
example, based on Renyi-type entropies, that yield consistent ther-
modynamic relations as well26. However, inserting equations (3)
into (9), we find

sµ(t ,x)=N!

{
ln(VZ/h3)+β〈p0〉, ν = 0
0, ν > 0 (10)

Hence, the current equation (10) is stationary in Σ and satisfies
the conservation law

∂νsν ≡ 0 (11)

The associated thermodynamic entropy S is obtained by integrating
sµ over some space-like or light-like hyperplane H, yielding the
Lorentz-invariant quantity

S[H] :=
∫

H
dσν sν(t ,x) (12)

Equation (11) implies that the integral equation (12) is the same for
the hyperplanes I(ξ 0) and I ′(ξ ′0),

S[I] = S′[I] = S[I ′] = S′[I ′] (13)

Thus, there is little or no room for controversy about the transfor-
mation laws of entropy in this example. The integral equation (12)
ismost conveniently calculated along H = I(ξ 0) inΣ , yielding

S=
∫

d3x s0 =N ln(VZ/h3)+βN 〈p0〉

This can also be rewritten as

S′ = N ln(γV ′Z/h3)+βU ′0[I]/γ

= N ln(γV ′Z/h3)+βγ (U ′0[I ′]+wU ′1[I ′]) (14)

where V ′ = V /γ denotes the Lorentz-contracted (that is, Σ ′-
simultaneously measured) volume. More precisely, one should
write V ′ =V ′[I ′] and V =V [I] to reflect how volume is measured
(defined) in either frame.

Einstein–Planck theory
We are now ready to summarize the most common versions
of relativistic thermodynamics. Planck7 and Einstein8 propose to
use the Σ ′-synchronous four-vector U ′µ[I ′] from equation (8) as
thermodynamic energy–momentum state variables. Furthermore,
they choose to define heat Q′[I ′] and, thus, temperature T ′ in Σ ′

by the following postulated form of the first law of thermodynamics
(see equation (23) in Einstein’s paper8)

d̄Q′[I ′] :=T ′dS′ := dU ′0[I ′]−w ′dU ′1[I ′]+P ′dV ′ (15a)

where the intensive variable w ′ =−w is the constant x ′1-velocity of
the gas (container) in Σ ′ and P ′ is the pressure. Considering the
special case w ′ = 0 first, we see that equation (15a) is consistent
with the second line of equation (14) on identifying T = β−1 and
PV = Nβ−1; that is, the parameter β of the Jüttner distribution
equals the inverse rest temperature. Furthermore, for moving

systems with w ′ &= 0, we find that thermodynamic quantities in Σ
and Σ ′ are related by9

V ′ =V /γ , P ′ = P, S′ = S (15b)

U ′0[I ′] = γ
(
U 0[I]+w ′2 PV

)
(15c)

U ′1[I ′] = γw ′(U 0[I]+PV
)

(15d)

T ′ = γ −1 T = (1−w ′2)1/2 T (15e)

so that

T ′dS′ = d̄Q′[I ′] = γ −1d̄Q[I] = γ −1TdS (15f)

that is, within the Einstein–Planck formalism a moving body
appears cooler (although it seems that, in the later stages of his
life, Einstein changed27,28 his opinion about the transformation
laws of thermodynamic quantities). Equations (15) were criticized
in a posthumously published paper by Ott10 and, later, also by
Van Kampen9,29 and Landsberg11,12.

Ott’s versus Van Kampen’s theory
Ott10 and Van Kampen9 choose to formulate thermodynamic
relations in the moving frame Σ ′ in terms of the Σ -isochronous
energy–momentum vector U ′µ[I] = Λµ

νU ν[I]. They differ, how-
ever, as to how heat and work should be defined. Van Kampen9,29

replaces Planck’s version of the first law, equation (15a), by in-
troducing a covariant thermal energy–momentum transfer four-
vector Qµ by means of

d̄Qµ[I] := dU µ[I]− d̄Aµ[I] (16)

where, in the (lab) frame Σ , the non-thermal work vector Aµ[I] is
determined by (d̄Aµ[I]) := (−PdV ,0). Accordingly, in a moving
frame Σ ′, one then finds d̄Q′µ[I] = dU ′µ[I]− d̄A′µ[I], where by
means of a Lorentz transformation

dU ′µ[I] =w ′µ dU 0[I], d̄A′µ = −w ′µ PdV (17)

Here, (w ′µ) = (γ ,γw ′,0,0) denotes the velocity four-vector of
the gas (container) in Σ ′. Although essentially agreeing on
equations (16), (17) and on the scalar character of entropy, S′ = S,
VanKampen andOtt postulate different formulations of the second
law, respectively. Specifically, Ott10 defines the temperatureT ′ inΣ ′

by means of

T ′ dS′ := d̄Q′0 = γ d̄Q0 = γ T dS (18a)

which implies themodified temperature transformation law30–32

T ′ = γ T = (1−w ′2)−1/2 T (18b)

that is, according to Ott’s definition of heat and temperature,
a moving body appears hotter. Van Kampen9 argues that the
equations (18) are not well suited if one wishes to describe heat
and energy–momentum exchange between systems that move at
different velocities (hetero-tachic processes). To achieve a more
convenient description, he proposes to characterize the heat transfer
bymeans of a heat scalarQ′ =Q, defined by9,29

d̄Q′ := −w ′
µd̄Q

′µ = −wµd̄Qµ = d̄Q= d̄Q0
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Thermodynamics, in the traditional sense, aims at describing
the state of a macroscopic system by means of a few
characteristic parameters {Ai} (refs 1–4). Typical candidates

for thermodynamic state variables {Ai} are either conserved
(extensive) quantities, for example, the particle number N and
internal energy U , or external control parameters that quantify
the breaking of symmetries1. Examples of the last of these
include the volume V of a confining vessel, indicating the
violation of translational invariance, or external magnetic fields,
which may break the spatial isotropy. Each extensive state
variable is accompanied by an intensive quantity ai = ∂S/Ai,
derived from a suitably defined entropy function(al) S({Ai}).
Representing an abstract mathematical theory of differential
forms4, thermodynamic concepts have been successfully applied
to vastly different areas, ranging from microscopic many-particle
systems2,3,5, where S is usually interpreted as an information
measure (canonical ensemble) or integrated phase-space volume
(microcanonical ensemble), to exotic objects such as black holes6,
where S is related to the black hole’s surface area.

As a coarse-grained macroscopic theory, thermodynamics is
inherently non-local in that it considers only certain global,
or averaged, properties of a physical system2,3. This is rather
unproblematic within non-relativistic Newtonian physics, where
statements such as ‘the total energy of a system at time t ’ are
unambiguously defined for arbitrary observers. In contrast—owing
to the absence of a universal time parameter—the non-local
character of thermodynamics has caused considerable confusion7–15

within Einstein’s theory of relativity16–19.
To illustrate the conceptual difficulties in relativistic thermo-

dynamics, consider a confined gas described by a particle current
density jµ(t ,x) and an energy–momentum tensor density θµν(t ,x).
If the gas is stationary in some inertial frameΣ , then jµ is conserved,
that is, ∂µjµ ≡ 0, but the divergence of θµν does not identically
vanish (owing to the pressure arising from the spatial confinement,
see the example below):

∂µθµi "≡ 0, i= 1,2,3 (1)

1Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, UK, 2Institut für Physik, Universität Augsburg,
Universitätsstraße 1, D-86135 Augsburg, Germany, 3Argelander-Institut für Astronomie, Universität Bonn, Auf dem Hügel 71, D-53121 Bonn, Germany.
*e-mail: jorn.dunkel@physics.ox.ac.uk.

This means that space-like surface integrals over jµ are independent
of the underlying three-dimensional hypersurface H in (1+ 3)-
dimensional Minkowski spacetime M4, whereas those over θµν do
depend on H. The latter fact is problematic because thermodynamic
state variables such as energy U 0 or momentum U= (U 1,U 2,U 3)
are usually defined as surface integrals over the energy–momentum
tensor (see theMethods section)16, that is,

U ν[H] :=
∫

H
dσµ θµν, µ,ν = 0,1,2,3 (2)

where, for a finite thermodynamic system, θµν is assumed to vanish
outside a bounded spatial region. Hence, the first task in relativistic
thermodynamics is to identify those hypersurfaces {H} that are
suitable for defining state variables. Subsequently, one still needs to
settle for appropriate definitions of entropy, heat and so on.

We shall begin by reviewing how these problems are tackled
in the most popular, competing versions of relativistic thermody-
namics, originally proposed by Planck7 and Einstein8, and Ott10
and Van Kampen9, respectively. A careful analysis shows that the
traditional approaches are neither conceptually satisfactory nor
experimentally feasible. The deficiencies can be cured by defining
thermodynamic quantities in terms of lightcone integrals. To clarify
these aspects, we consider a weakly interacting relativistic gas20.
Notwithstanding, the main conclusions apply to any confined
system that can be described by tensor densities jµ,θαβ,.... In the
second part, we shall discuss observable consequences such as the
apparent drift of distant objects that are, in fact, at rest relative to
the observer. This surprising effect—which should be accounted
for when estimating the velocities of very hot astrophysical ob-
jects from photographic data—will be illustrated by relativistic
many-particle simulations.

Model (Jüttner gas)
We consider an enclosed, dilute gas consisting ofN relativistic par-
ticles (rest massm; velocity v; momentum p=mv(1−v2)−1/2; speed
of light c =1). Let us assume the gas is stationary in the (‘lab’-)frame

NATURE PHYSICS | ADVANCE ONLINE PUBLICATION | www.nature.com/naturephysics 1

ARTICLES
PUBLISHED ONLINE: 20 SEPTEMBER 2009 | DOI: 10.1038/NPHYS1395

Non-local observables and lightcone-averaging in
relativistic thermodynamics
Jörn Dunkel1*, Peter Hänggi2 and Stefan Hilbert3

The unification of relativity and thermodynamics has been a subject of considerable debate over the past 100 years.
The reasons for this are twofold. First, thermodynamic variables are non-local quantities and therefore single out a
preferred class of hyperplanes in spacetime. Second, there exist different ways of defining heat and work in relativistic
systems and all of them seem equally plausible. These ambiguities have led, for example, to various proposals for the
Lorentz-transformation law of temperature. However, traditional ‘isochronous’ formulations of relativistic thermodynamics are
neither theoretically satisfactory nor experimentally feasible. Here, we demonstrate how these deficiencies can be resolved by
defining thermodynamic quantities with respect to the backward-lightcone of an observation event. This approach yields new
predictions that are, in principle, testable and allows for a straightforward extension of thermodynamics to general relativity.
Our theoretical considerations are illustrated through three-dimensional relativistic many-body simulations.

Thermodynamics, in the traditional sense, aims at describing
the state of a macroscopic system by means of a few
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the breaking of symmetries1. Examples of the last of these
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violation of translational invariance, or external magnetic fields,
which may break the spatial isotropy. Each extensive state
variable is accompanied by an intensive quantity ai = ∂S/Ai,
derived from a suitably defined entropy function(al) S({Ai}).
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where S is related to the black hole’s surface area.

As a coarse-grained macroscopic theory, thermodynamics is
inherently non-local in that it considers only certain global,
or averaged, properties of a physical system2,3. This is rather
unproblematic within non-relativistic Newtonian physics, where
statements such as ‘the total energy of a system at time t ’ are
unambiguously defined for arbitrary observers. In contrast—owing
to the absence of a universal time parameter—the non-local
character of thermodynamics has caused considerable confusion7–15

within Einstein’s theory of relativity16–19.
To illustrate the conceptual difficulties in relativistic thermo-

dynamics, consider a confined gas described by a particle current
density jµ(t ,x) and an energy–momentum tensor density θµν(t ,x).
If the gas is stationary in some inertial frameΣ , then jµ is conserved,
that is, ∂µjµ ≡ 0, but the divergence of θµν does not identically
vanish (owing to the pressure arising from the spatial confinement,
see the example below):

∂µθµi "≡ 0, i= 1,2,3 (1)
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This means that space-like surface integrals over jµ are independent
of the underlying three-dimensional hypersurface H in (1+ 3)-
dimensional Minkowski spacetimeM4, whereas those over θµν do
depend on H. The latter fact is problematic because thermodynamic
state variables such as energy U 0 or momentum U= (U 1,U 2,U 3)
are usually defined as surface integrals over the energy–momentum
tensor (see theMethods section)16, that is,

U ν[H] :=
∫

H
dσµ θµν, µ,ν = 0,1,2,3 (2)

where, for a finite thermodynamic system, θµν is assumed to vanish
outside a bounded spatial region. Hence, the first task in relativistic
thermodynamics is to identify those hypersurfaces {H} that are
suitable for defining state variables. Subsequently, one still needs to
settle for appropriate definitions of entropy, heat and so on.

We shall begin by reviewing how these problems are tackled
in the most popular, competing versions of relativistic thermody-
namics, originally proposed by Planck7 and Einstein8, and Ott10
and Van Kampen9, respectively. A careful analysis shows that the
traditional approaches are neither conceptually satisfactory nor
experimentally feasible. The deficiencies can be cured by defining
thermodynamic quantities in terms of lightcone integrals. To clarify
these aspects, we consider a weakly interacting relativistic gas20.
Notwithstanding, the main conclusions apply to any confined
system that can be described by tensor densities jµ,θαβ,.... In the
second part, we shall discuss observable consequences such as the
apparent drift of distant objects that are, in fact, at rest relative to
the observer. This surprising effect—which should be accounted
for when estimating the velocities of very hot astrophysical ob-
jects from photographic data—will be illustrated by relativistic
many-particle simulations.

Model (Jüttner gas)
We consider an enclosed, dilute gas consisting ofN relativistic par-
ticles (rest massm; velocity v; momentum p=mv(1−v2)−1/2; speed
of light c =1). Let us assume the gas is stationary in the (‘lab’-)frame
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1D Jüttner

φJ(p) ∝ exp[β(p2 + M2)1/2] (7)

Ansatz 3D Jüttner

f(t, x,p) = ϕ(x,p) = $(x) φJ(p), (8a)

with Jüttner momentum distribution [20, 21]

φJ(p) = Z−1 exp(−βp0), β > 0 (8b)

Z = 4πm3 K2(βm)/(βm) is the normalization constant, Kn(z) the nth modified Bessel function of the second kind [22],
and p0 = (m2 + p2)1/2 the particle energy.

f(t, x,p) = $(x) exp(−βp0) (8c)

Four vector currents

sµ(t, x) = −N

∫
d3p

p0
pµ f ln(h3f) ⇒ ∂νsν ≡ 0 (8d)

jµ(t, x) = N

∫
d3p

p0
f pµ ⇒ ∂νjν ≡ 0 (8e)

θµν(t, x) = N

∫
d3p

p0
f pµpν ⇒ ∂µθµi %≡0 (8f)

N[H] :=
∫

H
dσν jν = N[H′] (8g)

S[H] :=
∫

H
dσν sν = S[H′] (8h)

Uν [H] :=
∫

H
dσµ θµν %= Uν [H′] (8i)

Explicitly

N[H] :=
∫

H
dσν jν = N

∫

t=ξ0
ddx $ = N (8j)

Identities

N[H′] = N′[H] = N[H′] = N′[H′] (8k)

H = I H = I′ H = C (8l)

I(ξ0) := { (t, x) | t = ξ0 } I′(ξ′0) := { (t′,x′) | t′ = ξ′0 } (8m)

Gas enclosed in a stationary cubic box V = [−L/2, L/2]3 in Σ, corresponding to

$(x) =

{
V −1 if x ∈ V
0 if x %∈ V

V = [−L/2, L/2]3 (8n)

V = L3 is the Σ-simultaneously measured (Lebesgue) volume of V ⊂ R3 in Σ. Explicit

sµ(t, x) = N$

{
ln(V Z/h3) + β

〈
p0

〉
ν = 0

0 ν = 1, 2, 3
(9)
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H
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this combination (f , sµ) is just one among several probabilistic
models of thermodynamics; that is, there exist other pairings, for
example, based on Renyi-type entropies, that yield consistent ther-
modynamic relations as well26. However, inserting equations (3)
into (9), we find

sµ(t ,x)=N!

{
ln(VZ/h3)+β〈p0〉, ν = 0
0, ν > 0 (10)

Hence, the current equation (10) is stationary in Σ and satisfies
the conservation law

∂νsν ≡ 0 (11)

The associated thermodynamic entropy S is obtained by integrating
sµ over some space-like or light-like hyperplane H, yielding the
Lorentz-invariant quantity

S[H] :=
∫

H
dσν sν(t ,x) (12)

Equation (11) implies that the integral equation (12) is the same for
the hyperplanes I(ξ 0) and I ′(ξ ′0),

S[I] = S′[I] = S[I ′] = S′[I ′] (13)

Thus, there is little or no room for controversy about the transfor-
mation laws of entropy in this example. The integral equation (12)
ismost conveniently calculated along H = I(ξ 0) inΣ , yielding

S=
∫

d3x s0 =N ln(VZ/h3)+βN 〈p0〉

This can also be rewritten as

S′ = N ln(γV ′Z/h3)+βU ′0[I]/γ

= N ln(γV ′Z/h3)+βγ (U ′0[I ′]+wU ′1[I ′]) (14)

where V ′ = V /γ denotes the Lorentz-contracted (that is, Σ ′-
simultaneously measured) volume. More precisely, one should
write V ′ =V ′[I ′] and V =V [I] to reflect how volume is measured
(defined) in either frame.

Einstein–Planck theory
We are now ready to summarize the most common versions
of relativistic thermodynamics. Planck7 and Einstein8 propose to
use the Σ ′-synchronous four-vector U ′µ[I ′] from equation (8) as
thermodynamic energy–momentum state variables. Furthermore,
they choose to define heat Q′[I ′] and, thus, temperature T ′ in Σ ′

by the following postulated form of the first law of thermodynamics
(see equation (23) in Einstein’s paper8)

d̄Q′[I ′] :=T ′dS′ := dU ′0[I ′]−w ′dU ′1[I ′]+P ′dV ′ (15a)

where the intensive variable w ′ =−w is the constant x ′1-velocity of
the gas (container) in Σ ′ and P ′ is the pressure. Considering the
special case w ′ = 0 first, we see that equation (15a) is consistent
with the second line of equation (14) on identifying T = β−1 and
PV = Nβ−1; that is, the parameter β of the Jüttner distribution
equals the inverse rest temperature. Furthermore, for moving

systems with w ′ &= 0, we find that thermodynamic quantities in Σ
and Σ ′ are related by9

V ′ =V /γ , P ′ = P, S′ = S (15b)

U ′0[I ′] = γ
(
U 0[I]+w ′2 PV

)
(15c)

U ′1[I ′] = γw ′(U 0[I]+PV
)

(15d)

T ′ = γ −1 T = (1−w ′2)1/2 T (15e)

so that

T ′dS′ = d̄Q′[I ′] = γ −1d̄Q[I] = γ −1TdS (15f)

that is, within the Einstein–Planck formalism a moving body
appears cooler (although it seems that, in the later stages of his
life, Einstein changed27,28 his opinion about the transformation
laws of thermodynamic quantities). Equations (15) were criticized
in a posthumously published paper by Ott10 and, later, also by
Van Kampen9,29 and Landsberg11,12.

Ott’s versus Van Kampen’s theory
Ott10 and Van Kampen9 choose to formulate thermodynamic
relations in the moving frame Σ ′ in terms of the Σ -isochronous
energy–momentum vector U ′µ[I] = Λµ

νU ν[I]. They differ, how-
ever, as to how heat and work should be defined. Van Kampen9,29

replaces Planck’s version of the first law, equation (15a), by in-
troducing a covariant thermal energy–momentum transfer four-
vector Qµ by means of

d̄Qµ[I] := dU µ[I]− d̄Aµ[I] (16)

where, in the (lab) frame Σ , the non-thermal work vector Aµ[I] is
determined by (d̄Aµ[I]) := (−PdV ,0). Accordingly, in a moving
frame Σ ′, one then finds d̄Q′µ[I] = dU ′µ[I]− d̄A′µ[I], where by
means of a Lorentz transformation

dU ′µ[I] =w ′µ dU 0[I], d̄A′µ = −w ′µ PdV (17)

Here, (w ′µ) = (γ ,γw ′,0,0) denotes the velocity four-vector of
the gas (container) in Σ ′. Although essentially agreeing on
equations (16), (17) and on the scalar character of entropy, S′ = S,
VanKampen andOtt postulate different formulations of the second
law, respectively. Specifically, Ott10 defines the temperatureT ′ inΣ ′

by means of

T ′ dS′ := d̄Q′0 = γ d̄Q0 = γ T dS (18a)

which implies themodified temperature transformation law30–32

T ′ = γ T = (1−w ′2)−1/2 T (18b)

that is, according to Ott’s definition of heat and temperature,
a moving body appears hotter. Van Kampen9 argues that the
equations (18) are not well suited if one wishes to describe heat
and energy–momentum exchange between systems that move at
different velocities (hetero-tachic processes). To achieve a more
convenient description, he proposes to characterize the heat transfer
bymeans of a heat scalarQ′ =Q, defined by9,29

d̄Q′ := −w ′
µd̄Q

′µ = −wµd̄Qµ = d̄Q= d̄Q0
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Non-local observables and lightcone-averaging in
relativistic thermodynamics
Jörn Dunkel1*, Peter Hänggi2 and Stefan Hilbert3

The unification of relativity and thermodynamics has been a subject of considerable debate over the past 100 years.
The reasons for this are twofold. First, thermodynamic variables are non-local quantities and therefore single out a
preferred class of hyperplanes in spacetime. Second, there exist different ways of defining heat and work in relativistic
systems and all of them seem equally plausible. These ambiguities have led, for example, to various proposals for the
Lorentz-transformation law of temperature. However, traditional ‘isochronous’ formulations of relativistic thermodynamics are
neither theoretically satisfactory nor experimentally feasible. Here, we demonstrate how these deficiencies can be resolved by
defining thermodynamic quantities with respect to the backward-lightcone of an observation event. This approach yields new
predictions that are, in principle, testable and allows for a straightforward extension of thermodynamics to general relativity.
Our theoretical considerations are illustrated through three-dimensional relativistic many-body simulations.

Thermodynamics, in the traditional sense, aims at describing
the state of a macroscopic system by means of a few
characteristic parameters {Ai} (refs 1–4). Typical candidates

for thermodynamic state variables {Ai} are either conserved
(extensive) quantities, for example, the particle number N and
internal energy U , or external control parameters that quantify
the breaking of symmetries1. Examples of the last of these
include the volume V of a confining vessel, indicating the
violation of translational invariance, or external magnetic fields,
which may break the spatial isotropy. Each extensive state
variable is accompanied by an intensive quantity ai = ∂S/Ai,
derived from a suitably defined entropy function(al) S({Ai}).
Representing an abstract mathematical theory of differential
forms4, thermodynamic concepts have been successfully applied
to vastly different areas, ranging from microscopic many-particle
systems2,3,5, where S is usually interpreted as an information
measure (canonical ensemble) or integrated phase-space volume
(microcanonical ensemble), to exotic objects such as black holes6,
where S is related to the black hole’s surface area.

As a coarse-grained macroscopic theory, thermodynamics is
inherently non-local in that it considers only certain global,
or averaged, properties of a physical system2,3. This is rather
unproblematic within non-relativistic Newtonian physics, where
statements such as ‘the total energy of a system at time t ’ are
unambiguously defined for arbitrary observers. In contrast—owing
to the absence of a universal time parameter—the non-local
character of thermodynamics has caused considerable confusion7–15

within Einstein’s theory of relativity16–19.
To illustrate the conceptual difficulties in relativistic thermo-

dynamics, consider a confined gas described by a particle current
density jµ(t ,x) and an energy–momentum tensor density θµν(t ,x).
If the gas is stationary in some inertial frameΣ , then jµ is conserved,
that is, ∂µjµ ≡ 0, but the divergence of θµν does not identically
vanish (owing to the pressure arising from the spatial confinement,
see the example below):

∂µθµi "≡ 0, i= 1,2,3 (1)

1Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, UK, 2Institut für Physik, Universität Augsburg,
Universitätsstraße 1, D-86135 Augsburg, Germany, 3Argelander-Institut für Astronomie, Universität Bonn, Auf dem Hügel 71, D-53121 Bonn, Germany.
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This means that space-like surface integrals over jµ are independent
of the underlying three-dimensional hypersurface H in (1+ 3)-
dimensional Minkowski spacetime M4, whereas those over θµν do
depend on H. The latter fact is problematic because thermodynamic
state variables such as energy U 0 or momentum U= (U 1,U 2,U 3)
are usually defined as surface integrals over the energy–momentum
tensor (see theMethods section)16, that is,

U ν[H] :=
∫

H
dσµ θµν, µ,ν = 0,1,2,3 (2)

where, for a finite thermodynamic system, θµν is assumed to vanish
outside a bounded spatial region. Hence, the first task in relativistic
thermodynamics is to identify those hypersurfaces {H} that are
suitable for defining state variables. Subsequently, one still needs to
settle for appropriate definitions of entropy, heat and so on.

We shall begin by reviewing how these problems are tackled
in the most popular, competing versions of relativistic thermody-
namics, originally proposed by Planck7 and Einstein8, and Ott10
and Van Kampen9, respectively. A careful analysis shows that the
traditional approaches are neither conceptually satisfactory nor
experimentally feasible. The deficiencies can be cured by defining
thermodynamic quantities in terms of lightcone integrals. To clarify
these aspects, we consider a weakly interacting relativistic gas20.
Notwithstanding, the main conclusions apply to any confined
system that can be described by tensor densities jµ,θαβ,.... In the
second part, we shall discuss observable consequences such as the
apparent drift of distant objects that are, in fact, at rest relative to
the observer. This surprising effect—which should be accounted
for when estimating the velocities of very hot astrophysical ob-
jects from photographic data—will be illustrated by relativistic
many-particle simulations.

Model (Jüttner gas)
We consider an enclosed, dilute gas consisting ofN relativistic par-
ticles (rest massm; velocity v; momentum p=mv(1−v2)−1/2; speed
of light c =1). Let us assume the gas is stationary in the (‘lab’-)frame
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This means that space-like surface integrals over jµ are independent
of the underlying three-dimensional hypersurface H in (1+ 3)-
dimensional Minkowski spacetimeM4, whereas those over θµν do
depend on H. The latter fact is problematic because thermodynamic
state variables such as energy U 0 or momentum U= (U 1,U 2,U 3)
are usually defined as surface integrals over the energy–momentum
tensor (see theMethods section)16, that is,

U ν[H] :=
∫

H
dσµ θµν, µ,ν = 0,1,2,3 (2)

where, for a finite thermodynamic system, θµν is assumed to vanish
outside a bounded spatial region. Hence, the first task in relativistic
thermodynamics is to identify those hypersurfaces {H} that are
suitable for defining state variables. Subsequently, one still needs to
settle for appropriate definitions of entropy, heat and so on.

We shall begin by reviewing how these problems are tackled
in the most popular, competing versions of relativistic thermody-
namics, originally proposed by Planck7 and Einstein8, and Ott10
and Van Kampen9, respectively. A careful analysis shows that the
traditional approaches are neither conceptually satisfactory nor
experimentally feasible. The deficiencies can be cured by defining
thermodynamic quantities in terms of lightcone integrals. To clarify
these aspects, we consider a weakly interacting relativistic gas20.
Notwithstanding, the main conclusions apply to any confined
system that can be described by tensor densities jµ,θαβ,.... In the
second part, we shall discuss observable consequences such as the
apparent drift of distant objects that are, in fact, at rest relative to
the observer. This surprising effect—which should be accounted
for when estimating the velocities of very hot astrophysical ob-
jects from photographic data—will be illustrated by relativistic
many-particle simulations.

Model (Jüttner gas)
We consider an enclosed, dilute gas consisting ofN relativistic par-
ticles (rest massm; velocity v; momentum p=mv(1−v2)−1/2; speed
of light c =1). Let us assume the gas is stationary in the (‘lab’-)frame
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1D Jüttner

φJ(p) ∝ exp[β(p2 + M2)1/2] (7)

Ansatz 3D Jüttner

f(t, x,p) = ϕ(x,p) = $(x) φJ(p), (8a)

with Jüttner momentum distribution [20, 21]

φJ(p) = Z−1 exp(−βp0), β > 0 (8b)

Z = 4πm3 K2(βm)/(βm) is the normalization constant, Kn(z) the nth modified Bessel function of the second kind [22],
and p0 = (m2 + p2)1/2 the particle energy.

f(t, x,p) = $(x) exp(−βp0) (8c)

Four vector currents

sµ(t, x) = −N

∫
d3p

p0
pµ f ln(h3f) ⇒ ∂νsν ≡ 0 (8d)

jµ(t, x) = N

∫
d3p

p0
f pµ ⇒ ∂νjν ≡ 0 (8e)

θµν(t, x) = N

∫
d3p

p0
f pµpν ⇒ ∂µθµi %≡0 (8f)

N[H] :=
∫

H
dσν jν = N[H′] (8g)

S[H] :=
∫

H
dσν sν = S[H′] (8h)

Uν [H] :=
∫

H
dσµ θµν %= Uν [H′] (8i)

Explicitly

N[H] :=
∫

H
dσν jν = N

∫

t=ξ0
ddx $ = N (8j)

Identities

N[H′] = N′[H] = N[H′] = N′[H′] (8k)

H = I H = I′ H = C (8l)

I(ξ0) := { (t, x) | t = ξ0 } I′(ξ′0) := { (t′,x′) | t′ = ξ′0 } (8m)

Gas enclosed in a stationary cubic box V = [−L/2, L/2]3 in Σ, corresponding to

$(x) =

{
V −1 if x ∈ V
0 if x %∈ V

V = [−L/2, L/2]3 (8n)

V = L3 is the Σ-simultaneously measured (Lebesgue) volume of V ⊂ R3 in Σ. Explicit

sµ(t, x) = N$

{
ln(V Z/h3) + β

〈
p0

〉
ν = 0

0 ν = 1, 2, 3
(9)
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ρ = ρ0 : φJ ∝ exp(−βp0) ⇔ f(t→∞) (4)

ρ ∝ 1
p0

: φMJ ∝
exp(−βp0)

p0
⇔ f̂(τ →∞) (5)

Temperature

T ′(w) = T (1− w2)α/2 α =






+1 Planck, Einstein
0 Landsberg, van Kampen
−1 Ott
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with Jüttner momentum distribution [? ? ]
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], and p0 = (m2 + p2)1/2 the particle energy.
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〉
(8k)
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S[H] = S′[H] = S′[H′] = S[H′] (8m)
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1D Jüttner

φJ(p) ∝ exp[β(p2 + M2)1/2] (7)

Ansatz 3D Jüttner

f(t, x,p) = ϕ(x,p) = '(x) φJ(p), (8a)

with Jüttner momentum distribution [? ? ]

φJ(p) = Z−1 exp(−βp0), β > 0 (8b)

Z = 4πm3 K2(βm)/(βm) is the normalization constant, Kn(z) the nth modified Bessel function of the second kind [?
], and p0 = (m2 + p2)1/2 the particle energy.

f(t, x,p) = '(x) exp(−βp0) (8c)

Four vector currents
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∫
d3p

p0
pµ f ln(h3f) ⇒ ∂νsν ≡ 0 (8d)

jµ(t, x) = N

∫
d3p

p0
f pµ ⇒ ∂νjν ≡ 0 (8e)

θµν(t, x) = N

∫
d3p

p0
f pµpν ⇒ ∂µθµi (≡0 (8f)

N[H] :=
∫

H
dσν jν = N[H′] (8g)

S[H] :=
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H
dσν sν = S[H′] (8h)

Uν [H] :=
∫

H
dσµ θµν (= Uν [H′] (8i)

Explicitly

N[{t = ξ0}] =
∫

t=ξ0

dσ0 j0 =
∫

t=ξ0
d3x j0 = N (8j)

S[{t = ξ0}] =
∫

t=ξ0
dσ0 s0 =

∫

t=ξ0
d3x s0 = N ln(V Z/h3) + βN
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p0
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(8k)

Identities

N[H] = N′[H] = N′[H′] = N[H′] (8l)

S[H] = S′[H] = S′[H′] = S[H′] (8m)
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Λν
µUµ[H] = U′ν [H] != U′ν [H′] = Λν

µUµ[H′] (8n)

H = I H = I′ H = C (8o)

H = I(ξ0) := { (t, x) | t = ξ0 } I′(ξ′0) := { (t′,x′) | t′ = ξ′0 } (8p)

Gas enclosed in a stationary cubic box V = [−L/2, L/2]3 in Σ, corresponding to

"(x) =

{
V −1 if x ∈ V
0 if x !∈ V

V = [−L/2, L/2]3 (8q)

V = L3 is the Σ-simultaneously measured (Lebesgue) volume of V ⊂ R3 in Σ. Explicit

sµ(t, x) = N"

{
ln(V Z/h3) + β

〈
p0

〉
ν = 0

0 ν = 1, 2, 3
(9)

jα =

{
" ν = 0
0 ν = 1, 2, 3

(10)

θµν = N "






〈
p0

〉
µ = ν = 0

β−1 µ = ν = 1, 2, 3
0 µ != ν

(11)

where
〈
p0

〉
= 3β−1 + m

K1(βm)
K2(βm)

(12)

Isochronous state variables.– Consider an inertial frame Σ′, moving at velocity w along the x1-axis of the lab-frame
Σ. An event E with coordinates (ξ0, ξ) in Σ and (ξ′0, ξ′) in Σ′ defines isochronous hyperplanes I(ξ0) and I′(ξ′0) in Σ
and Σ′, respectively, by

If Σ and Σ′ are in relative motion, these hyperplanes differ from each other, I(ξ0) != I′(ξ′0), see Fig. ??. Inserting
H = I[ξ0] into Eq. (??), we obtain the lab-isochronous energy-momentum vector Uµ[I] in Σ:

Uµ[I] = N

{〈
p0

〉
µ = 0

0 µ = 1, 2, 3
(13)

On the other hand, choosing H = I′[ξ′0] yields the Σ′-isochronous energy-momentum vector U′µ[I′] in Σ′:

U′µ[I′] = N






γ(
〈
p0

〉
+ w2β−1) µ = 0

−γw(
〈
p0

〉
+ β−1) µ = 1

0 µ > 1
(14a)

where γ := (1 − w2)−1/2. Applying a Lorentz transformation with −w to Eq. (??), we find the corresponding
energy-momentum in Σ

Uµ[I′] = N(
〈
p0

〉
,−wβ−1, 0, 0) (14b)

Hence, the energy-momentum vectors (??) and (??) are not related by a Lorentz transformation. In fact, Uµ[I] and
Uµ[I′] are connected by

(Uµ[I′]) = (Uµ[I]) + Nβ−1(0,−w, 0, 0) (14c)

reflecting the underlying hypersurface and observer velocity. As mentioned earlier, the difference between U′µ[I′] and
Uµ[I′] arises because the energy-momentum tensor of a spatially confined gas is not conserved. It is also a reason for
the existence of various temperature Lorentz transformation laws.
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Hence, the energy-momentum vectors (7) and (8a) are
not related by a Lorentz transformation. In fact, Uµ[I]
and Uµ[I′] are connected by

(Uµ[I′]) = (Uµ[I]) + Nβ−1(0, w, 0, 0), (8c)

reflecting the underlying hypersurface and observer ve-
locity. As mentioned earlier, the difference between
U′µ[I′] and Uµ[I′] arises because the energy-momentum
tensor of a spatially confined gas is not conserved. It
is also a reason for the existence of various temperature
Lorentz transformation laws.

Entropy.– Having at hand the state variables ‘en-
ergy’ U0 and ‘momentum’ U, one still needs ‘entropy’.
For a Jüttner gas, one can define the entropy density
four-current [24, 25] by (units kB = 1)

sµ(t, x) = −N

∫
d3p

p0
pµ f ln(h3f). (9)

The specific shape (9) is tightly linked to the exponential
form of the Jüttner distribution (3). In fact, this com-
bination (f, sµ) is just one amongst several probabilistic
models of thermodynamics; i.e., there exist other pair-
ings, e.g., based on Renyi-type entropies, that yield con-
sistent thermodynamic relations as well [26]. However,
inserting (3) into (9), we find

sµ(t, x) = N"

{
ln(V Z/h3) + β

〈
p0

〉
, ν = 0,

0, ν > 0.
(10)

Hence, the current (10) is stationary in Σ and satisfies
the conservation law

∂νsν ≡ 0. (11)

The associated thermodynamic entropy S is obtained by
integrating sµ over some space-like or light-like hyper-
plane H, yielding the Lorentz invariant quantity

S[H] :=
∫

H
dσν sν(t, x). (12)

Equation (11) implies that the integral (12) is the same
for the hyperplanes I(ξ0) and I′(ξ′0),

S[I] = S′[I] = S[I′] = S′[I′]. (13)

Thus, there is little or no room for controversy about
the transformation laws of entropy in this example. The
integral (12) is most conveniently calculated along H =
I[ξ0] in Σ, yielding

S =
∫

d3x s0 = N ln(V Z/h3) + βN
〈
p0

〉
. (14)

This can also be rewritten as

S′ = N ln(γV ′Z/!3) + βU′0[I]/γ (15)
= N ln(γV ′Z/!3) + βγ(U′0[I′] + wU′1[I′]),

where V ′ = V/γ denotes the Lorentz contracted (i.e.,
Σ′-simultaneously measured) volume [41].

Einstein-Planck theory.– We are now ready to sum-
marize the most common versions of relativistic thermo-
dynamics. Planck [7] and Einstein [8] propose to use
the Σ′-synchronous four-vector U′µ[I′] from Eq. (8a) as
thermodynamic energy-momentum state variables. Fur-
thermore, they choose to define heat Q′[I′] and, thus,
temperature T′ in Σ′ by the following postulated form of
first law of thermodynamics [42]

d̄Q′[I′] := T′dS′ := dU′0[I′]− w′dU′1[I′] + P′dV ′, (16a)

where the intensive variable w′ = −w is the constant x′1-
velocity of the gas (container) in Σ′, and P′ the pressure.
Considering the special case w′ = 0 first, we see that
Eq. (16a) is consistent with the second line of Eq. (15)
upon identifying T = β−1 and PV = Nβ−1; i.e., the
parameter β of the Jüttner distribution equals the inverse
rest temperature. Furthermore, for moving systems with
w′ #= 0, we find that thermodynamic quantities in Σ and
Σ′ are related by [43]

V ′ = V/γ, P′ = P, S′ = S, (16b)
U′0[I′] = γ

(
U0[I] + w′2 PV

)
, (16c)

U′1[I′] = γw′ (U0[I] + PV
)
, (16d)

T′ = γ−1 T = (1− w′2)1/2 T, (16e)

i.e., within the Einstein-Planck formalism a moving body
appears cooler [44]. Equations (16) were criticized in a
posthumously published paper by Ott [10] and, later, also
by van Kampen [9, 27] and Landsberg [11, 12].

Ott’s and van Kampen’s theory.– Ott [10] and Van
Kampen [9] choose to formulate thermodynamic relations
in the moving frame Σ′ in terms of the Σ-isochronous
energy-momentum vector U′µ[I] = Λµ

νUν [I]. They dif-
fer, however, as to how heat and work should be de-
fined. Van Kampen [9, 27] replaces Planck’s version of
the first law, Eq. (16a), by introducing a covariant ther-
mal energy-momentum transfer four-vector Qµ via

d̄Qµ[I] := dUµ[I]− d̄Aµ[I], (17)

where, in the (lab) frame Σ, the non-thermal work vector
Aµ[I] is determined by (d̄Aµ[I]) := (−PdV,0). Accord-
ingly, in a moving frame Σ′ one then finds d̄Q′µ[I] =
dU′µ[I]−d̄A′µ[I], where by means of a Lorentz transfor-
mation

dU′µ[I] = w′µ dU0[I], d̄A′µ = −w′µ PdV. (18)

Here, (w′µ) = (γ, γw′, 0, 0) denotes the velocity four-
vector of the gas (container) in Σ′. While essentially
agreeing on Eqs. (17), (18), and on the scalar character of
entropy S′ = S, van Kampen and Ott postulate different
formulations of the second law, respectively. Specifically,
Ott [10] defines the temperature T′ in Σ′ via

T′ dS′ := d̄Q′0 = γ d̄Q0 = γ T dS, (19a)

which implies the modified temperature transformation
law [45]

T′ = γ T = (1− w′2)−1/2 T; (19b)
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Hence, the energy-momentum vectors (7) and (8a) are
not related by a Lorentz transformation. In fact, Uµ[I]
and Uµ[I′] are connected by

(Uµ[I′]) = (Uµ[I]) + Nβ−1(0, w, 0, 0), (8c)

reflecting the underlying hypersurface and observer ve-
locity. As mentioned earlier, the difference between
U′µ[I′] and Uµ[I′] arises because the energy-momentum
tensor of a spatially confined gas is not conserved. It
is also a reason for the existence of various temperature
Lorentz transformation laws.

Entropy.– Having at hand the state variables ‘en-
ergy’ U0 and ‘momentum’ U, one still needs ‘entropy’.
For a Jüttner gas, one can define the entropy density
four-current [24, 25] by (units kB = 1)

sµ(t, x) = −N

∫
d3p

p0
pµ f ln(h3f). (9)

The specific shape (9) is tightly linked to the exponential
form of the Jüttner distribution (3). In fact, this com-
bination (f, sµ) is just one amongst several probabilistic
models of thermodynamics; i.e., there exist other pair-
ings, e.g., based on Renyi-type entropies, that yield con-
sistent thermodynamic relations as well [26]. However,
inserting (3) into (9), we find

sµ(t, x) = N"

{
ln(V Z/h3) + β

〈
p0

〉
, ν = 0,

0, ν > 0.
(10)

Hence, the current (10) is stationary in Σ and satisfies
the conservation law

∂νsν ≡ 0. (11)

The associated thermodynamic entropy S is obtained by
integrating sµ over some space-like or light-like hyper-
plane H, yielding the Lorentz invariant quantity

S[H] :=
∫

H
dσν sν(t, x). (12)

Equation (11) implies that the integral (12) is the same
for the hyperplanes I(ξ0) and I′(ξ′0),

S[I] = S′[I] = S[I′] = S′[I′]. (13)

Thus, there is little or no room for controversy about
the transformation laws of entropy in this example. The
integral (12) is most conveniently calculated along H =
I[ξ0] in Σ, yielding

S =
∫

d3x s0 = N ln(V Z/h3) + βN
〈
p0

〉
. (14)

This can also be rewritten as

S′ = N ln(γV ′Z/!3) + βU′0[I]/γ (15)
= N ln(γV ′Z/!3) + βγ(U′0[I′] + wU′1[I′]),

where V ′ = V/γ denotes the Lorentz contracted (i.e.,
Σ′-simultaneously measured) volume [41].

Einstein-Planck theory.– We are now ready to sum-
marize the most common versions of relativistic thermo-
dynamics. Planck [7] and Einstein [8] propose to use
the Σ′-synchronous four-vector U′µ[I′] from Eq. (8a) as
thermodynamic energy-momentum state variables. Fur-
thermore, they choose to define heat Q′[I′] and, thus,
temperature T′ in Σ′ by the following postulated form of
first law of thermodynamics [42]

d̄Q′[I′] := T′dS′ := dU′0[I′]− w′dU′1[I′] + P′dV ′, (16a)

where the intensive variable w′ = −w is the constant x′1-
velocity of the gas (container) in Σ′, and P′ the pressure.
Considering the special case w′ = 0 first, we see that
Eq. (16a) is consistent with the second line of Eq. (15)
upon identifying T = β−1 and PV = Nβ−1; i.e., the
parameter β of the Jüttner distribution equals the inverse
rest temperature. Furthermore, for moving systems with
w′ #= 0, we find that thermodynamic quantities in Σ and
Σ′ are related by [43]

V ′ = V/γ, P′ = P, S′ = S, (16b)
U′0[I′] = γ

(
U0[I] + w′2 PV

)
, (16c)

U′1[I′] = γw′ (U0[I] + PV
)
, (16d)

T′ = γ−1 T = (1− w′2)1/2 T, (16e)

i.e., within the Einstein-Planck formalism a moving body
appears cooler [44]. Equations (16) were criticized in a
posthumously published paper by Ott [10] and, later, also
by van Kampen [9, 27] and Landsberg [11, 12].

Ott’s and van Kampen’s theory.– Ott [10] and Van
Kampen [9] choose to formulate thermodynamic relations
in the moving frame Σ′ in terms of the Σ-isochronous
energy-momentum vector U′µ[I] = Λµ

νUν [I]. They dif-
fer, however, as to how heat and work should be de-
fined. Van Kampen [9, 27] replaces Planck’s version of
the first law, Eq. (16a), by introducing a covariant ther-
mal energy-momentum transfer four-vector Qµ via

d̄Qµ[I] := dUµ[I]− d̄Aµ[I], (17)

where, in the (lab) frame Σ, the non-thermal work vector
Aµ[I] is determined by (d̄Aµ[I]) := (−PdV,0). Accord-
ingly, in a moving frame Σ′ one then finds d̄Q′µ[I] =
dU′µ[I]−d̄A′µ[I], where by means of a Lorentz transfor-
mation

dU′µ[I] = w′µ dU0[I], d̄A′µ = −w′µ PdV. (18)

Here, (w′µ) = (γ, γw′, 0, 0) denotes the velocity four-
vector of the gas (container) in Σ′. While essentially
agreeing on Eqs. (17), (18), and on the scalar character of
entropy S′ = S, van Kampen and Ott postulate different
formulations of the second law, respectively. Specifically,
Ott [10] defines the temperature T′ in Σ′ via

T′ dS′ := d̄Q′0 = γ d̄Q0 = γ T dS, (19a)

which implies the modified temperature transformation
law [45]

T′ = γ T = (1− w′2)−1/2 T; (19b)
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parameter β of the Jüttner distribution equals the inverse
rest temperature. Furthermore, for moving systems with
w′ #= 0, we find that thermodynamic quantities in Σ and
Σ′ are related by [43]

V ′ = V/γ, P′ = P, S′ = S, (16b)
U′0[I′] = γ

(
U0[I] + w′2 PV

)
, (16c)

U′1[I′] = γw′ (U0[I] + PV
)
, (16d)

T′ = γ−1 T = (1− w′2)1/2 T, (16e)

i.e., within the Einstein-Planck formalism a moving body
appears cooler [44]. Equations (16) were criticized in a
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fined. Van Kampen [9, 27] replaces Planck’s version of
the first law, Eq. (16a), by introducing a covariant ther-
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where, in the (lab) frame Σ, the non-thermal work vector
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ingly, in a moving frame Σ′ one then finds d̄Q′µ[I] =
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Here, (w′µ) = (γ, γw′, 0, 0) denotes the velocity four-
vector of the gas (container) in Σ′. While essentially
agreeing on Eqs. (17), (18), and on the scalar character of
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formulations of the second law, respectively. Specifically,
Ott [10] defines the temperature T′ in Σ′ via
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which implies the modified temperature transformation
law [45]

T′ = γ T = (1− w′2)−1/2 T; (19b)
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i.e., according to Ott’s definition of heat and temperature
a moving body appears hotter. Van Kampen [9] argues
that the Eqs. (19) are not well-suited if one wishes to
describe heat and energy-momentum exchange between
systems that move at different velocities (hetero-tachic
processes). To achieve a more convenient description, he
proposes to characterize the heat transfer by means of a
heat scalar Q′ = Q, defined by [9, 27]

d̄Q′ := −w′
µd̄Q′µ = −wµd̄Qµ = d̄Q = d̄Q0. (20a)

He then goes on to define temperature with respect to Q,

T′dS′ := d̄Q′ = d̄Q = TdS, (20b)

yielding yet another temperature transformation law:

T′ = T; (20c)

i.e., according to van Kampen’s definition a moving body
appears neither hotter nor colder. Adopting this conven-
tion, one can define an inverse temperature four-vector
β′

µ := T′−1 w′
µ = T−1 w′

µ and rewrite the second law in
the compact covariant form

dS′ = −β′
µd̄Q′µ. (21)

Discussion.– Evidently, whether a moving body ap-
pears hotter or not depends solely on how one defines
thermodynamic quantities. The formalisms of Ott [10]
and van Kampen [9, 27] are based on the same (lab-)
isochronous hyperplane I – they merely differ in their
respective temperature definitions [16]. By contrast, the
Einstein-Planck theory [7, 8] is based on an observer-
dependent isochronous hyperplane I′. While, in princi-
ple, there is nothing wrong with this, a conceptual down-
side of the latter approach is that the state variables en-
ergy and momentum, when measured in different frames,
are not connected by Lorentz transformations – or, put
differently: To experimentally determine, e.g., the ener-
gies U0[I] and U′0[I′], two observers need to perform non-
equivalent measurements [18], since measurements must
be performed Σ-simultaneously in the first case, but Σ′-
simultaneously in the second case. This might seem suf-
ficient for regarding either Ott’s or van Kampen’s (more
elegant) approach as preferable. However, before adopt-
ing this point of view, it is worthwhile to ask:

• Which formulation is feasible from an experimental
point of view?

• Which formalism provides a suitable conceptual
framework for extensions to general relativity [28,
29]?

Unfortunately, from an objective perspective, neither of
the above proposals fulfils these criteria. The reason is
that either formulation is based on simultaneously de-
fined averages. On the one hand, this means that it is
virtually impossible to directly measure the quantities
appearing in the theory; e.g., in order to determine U0[I]

one would have to determine the velocities of the particles
at time t = ξ0 in Σ, which requires either superluminal
information transport [18] or unrealistic efforts of trying
to reconstruct isochronous velocity data from recorded
trajectories. On the other hand, it is very difficult, if not
impossible, to transfer the concept of global isochronicity
to general relativity due to the absence of global inertial
frames in curved spacetime.

‘Photographic’ thermodynamics.– To overcome these
drawbacks, we propose to define relativistic thermody-
namic quantities by means of surface integrals along the
backward-lightcone C[E ], where E is the event of the ob-
servation, see Fig. 1. This is motivated by the following
facts: (i) A photograph taken by an observer O at the
event E reflects the state of the system along the light-
cone C[E ]. (ii) The hyperplane C[E ] is a relativistically
invariant object which is equally accessible for any in-
ertial observer; i.e., if another observer O′, who moves
relative to O, takes a snapshot at the same event E , then
the resulting picture will reflect the same state of the
system – although the ‘colors’ will be different due to
the Doppler effect caused by the observers’ relative mo-
tion [29]. (iii) The concept of lightcone-averaging can
be easily extended to general relativity. (iv) In the non-
relativistic limit c → ∞, the lightcone flattens so that
photographic measurements become isochronous in any
frame in this limit. Thus, lightcone averages appear to be
the best-suited candidates if one wishes to characterize
relativistic many-particle systems by means of nonlocally
defined, macroscopic variables.

Mathematically, the backward-lightcones C[E ] in Σ
and C′[E ] in Σ′ are given by

C(E ) := { (t, x) | t = ξ0 − |x− ξ| }, (22a)
C′(E ) := { (t′,x′) | t′ = ξ′0 − |x′ − ξ′| }. (22b)

Unlike the isochronous hyperplanes I(ξ0) and I′(ξ′0),
the lightcones describe the same set of spacetime events,
C(E ) = C′(E ). Fixing H = C(E ) in Eq. (2), we find (see
App. B)

U0[C] = N
〈
p0

〉
, (23a)

Ui[C] =
N

β

∫
d3x

xi − ξi

|x− ξ| #(x), (23b)

Unlike U[I] and U[I′], the vector U[C] depends on the
space coordinates ξ of the observation event E . Light-
cones are Lorentz-invariant objects, implying that Uµ[C]
and U′µ[C′] are directly linked by a Lorentz transforma-
tion, i.e., U′µ[C′] = Λµ

νUν [C]. Moreover, for a spatially
homogeneous Jüttner gas, it is straightforward to com-
pute the entropy S[C] as [cf. Eq. (15)]

S[C] = N ln(V Z/!3) + βU0[C]
= N ln(γV ′Z/!3) + βγ(U′0[C]− w′U′1[C])
= S′[C], (24)

where, additionally, S[C] = S[I] due to the conservation
law (11). Thus, depending on which definition of heat
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i.e., according to Ott’s definition of heat and temperature
a moving body appears hotter. Van Kampen [9] argues
that the Eqs. (19) are not well-suited if one wishes to
describe heat and energy-momentum exchange between
systems that move at different velocities (hetero-tachic
processes). To achieve a more convenient description, he
proposes to characterize the heat transfer by means of a
heat scalar Q′ = Q, defined by [9, 27]

d̄Q′ := −w′
µd̄Q′µ = −wµd̄Qµ = d̄Q = d̄Q0. (20a)

He then goes on to define temperature with respect to Q,

T′dS′ := d̄Q′ = d̄Q = TdS, (20b)

yielding yet another temperature transformation law:

T′ = T; (20c)

i.e., according to van Kampen’s definition a moving body
appears neither hotter nor colder. Adopting this conven-
tion, one can define an inverse temperature four-vector
β′

µ := T′−1 w′
µ = T−1 w′

µ and rewrite the second law in
the compact covariant form

dS′ = −β′
µd̄Q′µ. (21)

Discussion.– Evidently, whether a moving body ap-
pears hotter or not depends solely on how one defines
thermodynamic quantities. The formalisms of Ott [10]
and van Kampen [9, 27] are based on the same (lab-)
isochronous hyperplane I – they merely differ in their
respective temperature definitions [16]. By contrast, the
Einstein-Planck theory [7, 8] is based on an observer-
dependent isochronous hyperplane I′. While, in princi-
ple, there is nothing wrong with this, a conceptual down-
side of the latter approach is that the state variables en-
ergy and momentum, when measured in different frames,
are not connected by Lorentz transformations – or, put
differently: To experimentally determine, e.g., the ener-
gies U0[I] and U′0[I′], two observers need to perform non-
equivalent measurements [18], since measurements must
be performed Σ-simultaneously in the first case, but Σ′-
simultaneously in the second case. This might seem suf-
ficient for regarding either Ott’s or van Kampen’s (more
elegant) approach as preferable. However, before adopt-
ing this point of view, it is worthwhile to ask:

• Which formulation is feasible from an experimental
point of view?

• Which formalism provides a suitable conceptual
framework for extensions to general relativity [28,
29]?

Unfortunately, from an objective perspective, neither of
the above proposals fulfils these criteria. The reason is
that either formulation is based on simultaneously de-
fined averages. On the one hand, this means that it is
virtually impossible to directly measure the quantities
appearing in the theory; e.g., in order to determine U0[I]

one would have to determine the velocities of the particles
at time t = ξ0 in Σ, which requires either superluminal
information transport [18] or unrealistic efforts of trying
to reconstruct isochronous velocity data from recorded
trajectories. On the other hand, it is very difficult, if not
impossible, to transfer the concept of global isochronicity
to general relativity due to the absence of global inertial
frames in curved spacetime.

‘Photographic’ thermodynamics.– To overcome these
drawbacks, we propose to define relativistic thermody-
namic quantities by means of surface integrals along the
backward-lightcone C[E ], where E is the event of the ob-
servation, see Fig. 1. This is motivated by the following
facts: (i) A photograph taken by an observer O at the
event E reflects the state of the system along the light-
cone C[E ]. (ii) The hyperplane C[E ] is a relativistically
invariant object which is equally accessible for any in-
ertial observer; i.e., if another observer O′, who moves
relative to O, takes a snapshot at the same event E , then
the resulting picture will reflect the same state of the
system – although the ‘colors’ will be different due to
the Doppler effect caused by the observers’ relative mo-
tion [29]. (iii) The concept of lightcone-averaging can
be easily extended to general relativity. (iv) In the non-
relativistic limit c → ∞, the lightcone flattens so that
photographic measurements become isochronous in any
frame in this limit. Thus, lightcone averages appear to be
the best-suited candidates if one wishes to characterize
relativistic many-particle systems by means of nonlocally
defined, macroscopic variables.

Mathematically, the backward-lightcones C[E ] in Σ
and C′[E ] in Σ′ are given by

C(E ) := { (t, x) | t = ξ0 − |x− ξ| }, (22a)
C′(E ) := { (t′,x′) | t′ = ξ′0 − |x′ − ξ′| }. (22b)

Unlike the isochronous hyperplanes I(ξ0) and I′(ξ′0),
the lightcones describe the same set of spacetime events,
C(E ) = C′(E ). Fixing H = C(E ) in Eq. (2), we find (see
App. B)

U0[C] = N
〈
p0

〉
, (23a)

Ui[C] =
N

β

∫
d3x

xi − ξi

|x− ξ| #(x), (23b)

Unlike U[I] and U[I′], the vector U[C] depends on the
space coordinates ξ of the observation event E . Light-
cones are Lorentz-invariant objects, implying that Uµ[C]
and U′µ[C′] are directly linked by a Lorentz transforma-
tion, i.e., U′µ[C′] = Λµ

νUν [C]. Moreover, for a spatially
homogeneous Jüttner gas, it is straightforward to com-
pute the entropy S[C] as [cf. Eq. (15)]

S[C] = N ln(V Z/!3) + βU0[C]
= N ln(γV ′Z/!3) + βγ(U′0[C]− w′U′1[C])
= S′[C], (24)

where, additionally, S[C] = S[I] due to the conservation
law (11). Thus, depending on which definition of heat
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where, in the (lab) frame Σ, the non-thermal work vector Aµ[I] is determined by (d̄Aµ[I]) := (−PdV,0). Accordingly,
in a moving frame Σ′ one then finds d̄Q′µ[I] = dU′µ[I]− d̄A′µ[I], where by means of a Lorentz transformation

dU′µ[I] = w′µ dU0[I] d̄A′µ = −w′µ PdV (21)

Here, (w′µ) = (γ, γw′, 0, 0) denotes the velocity four-vector of the gas (container) in Σ′. While essentially agreeing on
Eqs. (20), (21), and on the scalar character of entropy S′ = S, van Kampen and Ott postulate different formulations
of the second law, respectively. Specifically, Ott [10] defines the temperature T′ in Σ′ via

T′ dS′ := d̄Q′0 = γ d̄Q0 = γ T dS (22a)

which implies the modified temperature transformation law [45]

T′ = γ T = (1− w′2)−1/2 T (22b)

i.e., according to Ott’s definition of heat and temperature a moving body appears hotter. Van Kampen [9] argues that
the Eqs. (22) are not well-suited if one wishes to describe heat and energy-momentum exchange between systems
that move at different velocities (hetero-tachic processes). To achieve a more convenient description, he proposes to
characterize the heat transfer by means of a heat scalar Q′ = Q, defined by [9, 27]

d̄Q′ := −w′
µd̄Q′µ = −wµd̄Qµ = d̄Q = d̄Q0 (23a)

He then goes on to define temperature with respect to Q,

T′dS′ := d̄Q′ = d̄Q = TdS (23b)

yielding yet another temperature transformation law:

T′ = T (23c)

i.e., according to van Kampen’s definition a moving body appears neither hotter nor colder. Adopting this convention,
one can define an inverse temperature four-vector β′

µ := T′−1 w′
µ = T−1 w′

µ and rewrite the second law in the compact
covariant form

dS′ = −β′
µd̄Q′µ. (24)

Discussion.– Evidently, whether a moving body appears hotter or not depends solely on how one defines
thermodynamic quantities. The formalisms of Ott [10] and van Kampen [9, 27] are based on the same (lab-)
isochronous hyperplane I – they merely differ in their respective temperature definitions [16]. By contrast, the
Einstein-Planck theory [7, 8] is based on an observer-dependent isochronous hyperplane I′. While, in principle, there
is nothing wrong with this, a conceptual downside of the latter approach is that the state variables energy and mo-
mentum, when measured in different frames, are not connected by Lorentz transformations – or, put differently: To
experimentally determine, e.g., the energies U0[I] and U′0[I′], two observers need to perform non-equivalent mea-
surements [18], since measurements must be performed Σ-simultaneously in the first case, but Σ′- simultaneously in
the second case. This might seem sufficient for regarding either Ott’s or van Kampen’s (more elegant) approach as
preferable. However, before adopting this point of view, it is worthwhile to ask:

• Which formulation is feasible from an experimental point of view?

• Which formalism provides a suitable conceptual framework for extensions to general relativity [28, 29]?

Unfortunately, from an objective perspective, neither of the above proposals fulfils these criteria. The reason is that
either formulation is based on simultaneously defined averages. On the one hand, this means that it is virtually
impossible to directly measure the quantities appearing in the theory; e.g., in order to determine U0[I] one would
have to determine the velocities of the particles at time t = ξ0 in Σ, which requires either superluminal information
transport [18] or unrealistic efforts of trying to reconstruct isochronous velocity data from recorded trajectories. On
the other hand, it is very difficult, if not impossible, to transfer the concept of global isochronicity to general relativity
due to the absence of global inertial frames in curved spacetime.
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FIG. 1: The different hypersurfaces as defined in Eq. (??) and (25). The worldlines of two particles are labeled by “P1” and
“P2”; the worldlines of the container walls correspond to vertical lines at x = −L/2 and x = L/2 (dashed lines), respectively.
Assume a lab observer, resting at position x = 0 in Σ, takes a photograph of the system at the spacetime event E with
coordinates (t, x) = (ξ0, 0) in Σ. This photograph will reflect the state of the system along the backward-lightcone C(E ).

Einstein-Planck theory.– We are now ready to summarize the most common versions of relativistic thermodynam-
ics. Planck [7] and Einstein [8] propose to use the Σ′-synchronous four-vector U′µ[I′] from Eq. (14a) as thermodynamic
energy-momentum state variables. Furthermore, they choose to define heat Q′[I′] and, thus, temperature T′ in Σ′ by
the following postulated form of first law of thermodynamics [42]

d̄Q′[I′] := T′dS′ := dU′0[I′]− w′dU′1[I′] + P′dV ′ (19a)
(19b)

T′ dS′ := d̄Q′0[I′] = γ−1 d̄Q0[I] = γ−1 T dS γ = (1− w2)−1/2 (19c)

where the intensive variable w′ = −w is the constant x′1-velocity of the gas (container) in Σ′, and P′ the pressure.
Considering the special case w′ = 0 first, we see that Eq. (19a) is consistent with the second line of Eq. (18) upon
identifying T = β−1 and PV = Nβ−1; i.e., the parameter β of the Jüttner distribution equals the inverse rest
temperature. Furthermore, for moving systems with w′ "= 0, we find that thermodynamic quantities in Σ and Σ′ are
related by [43]

V ′ = V/γ, P′ = P, S′ = S (19d)
U′0[I′] = γ

(
U0[I] + w′2 PV

)
(19e)

U′1[I′] = γw′ (U0[I] + PV
)

(19f)

T′ = γ−1 T = (1− w′2)1/2 T (19g)

i.e., within the Einstein-Planck formalism a moving body appears cooler [44]. Equations (19) were criticized in a
posthumously published paper by Ott [10] and, later, also by van Kampen [9, 27] and Landsberg [11, 12].

Ott’s and van Kampen’s theory.– Ott [10] and Van Kampen [9] choose to formulate thermodynamic relations in
the moving frame Σ′ in terms of the Σ-isochronous energy-momentum vector U′µ[I] = Λµ

νUν [I]. They differ, however,
as to how heat and work should be defined. Van Kampen [9, 27] replaces Planck’s version of the first law, Eq. (19a),
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Assume a lab observer, resting at position x = 0 in Σ, takes a photograph of the system at the spacetime event E with
coordinates (t, x) = (ξ0, 0) in Σ. This photograph will reflect the state of the system along the backward-lightcone C(E ).

Einstein-Planck theory.– We are now ready to summarize the most common versions of relativistic thermodynam-
ics. Planck [7] and Einstein [8] propose to use the Σ′-synchronous four-vector U′µ[I′] from Eq. (14a) as thermodynamic
energy-momentum state variables. Furthermore, they choose to define heat Q′[I′] and, thus, temperature T′ in Σ′ by
the following postulated form of first law of thermodynamics [42]

d̄Q′[I′] := T′dS′ := dU′0[I′]− w′dU′1[I′] + P′dV ′ (19a)
(19b)

T′ dS′ := d̄Q′0[I′] = γ−1 d̄Q0[I] = γ−1 T dS γ = (1− w′2)−1/2 (19c)

where the intensive variable w′ = −w is the constant x′1-velocity of the gas (container) in Σ′, and P′ the pressure.
Considering the special case w′ = 0 first, we see that Eq. (19a) is consistent with the second line of Eq. (18) upon
identifying T = β−1 and PV = Nβ−1; i.e., the parameter β of the Jüttner distribution equals the inverse rest
temperature. Furthermore, for moving systems with w′ "= 0, we find that thermodynamic quantities in Σ and Σ′ are
related by [43]

V ′ = V/γ, P′ = P, S′ = S (19d)
U′0[I′] = γ

(
U0[I] + w′2 PV

)
(19e)

U′1[I′] = γw′ (U0[I] + PV
)

(19f)

T′ = γ−1 T = (1− w′2)1/2 T (19g)

i.e., within the Einstein-Planck formalism a moving body appears cooler [44]. Equations (19) were criticized in a
posthumously published paper by Ott [10] and, later, also by van Kampen [9, 27] and Landsberg [11, 12].

Ott’s and van Kampen’s theory.– Ott [10] and Van Kampen [9] choose to formulate thermodynamic relations in
the moving frame Σ′ in terms of the Σ-isochronous energy-momentum vector U′µ[I] = Λµ

νUν [I]. They differ, however,
as to how heat and work should be defined. Van Kampen [9, 27] replaces Planck’s version of the first law, Eq. (19a),
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Hence, the energy-momentum vectors (7) and (8a) are
not related by a Lorentz transformation. In fact, Uµ[I]
and Uµ[I′] are connected by

(Uµ[I′]) = (Uµ[I]) + Nβ−1(0, w, 0, 0), (8c)

reflecting the underlying hypersurface and observer ve-
locity. As mentioned earlier, the difference between
U′µ[I′] and Uµ[I′] arises because the energy-momentum
tensor of a spatially confined gas is not conserved. It
is also a reason for the existence of various temperature
Lorentz transformation laws.

Entropy.– Having at hand the state variables ‘en-
ergy’ U0 and ‘momentum’ U, one still needs ‘entropy’.
For a Jüttner gas, one can define the entropy density
four-current [24, 25] by (units kB = 1)

sµ(t, x) = −N

∫
d3p

p0
pµ f ln(h3f). (9)

The specific shape (9) is tightly linked to the exponential
form of the Jüttner distribution (3). In fact, this com-
bination (f, sµ) is just one amongst several probabilistic
models of thermodynamics; i.e., there exist other pair-
ings, e.g., based on Renyi-type entropies, that yield con-
sistent thermodynamic relations as well [26]. However,
inserting (3) into (9), we find

sµ(t, x) = N"

{
ln(V Z/h3) + β

〈
p0

〉
, ν = 0,

0, ν > 0.
(10)

Hence, the current (10) is stationary in Σ and satisfies
the conservation law

∂νsν ≡ 0. (11)

The associated thermodynamic entropy S is obtained by
integrating sµ over some space-like or light-like hyper-
plane H, yielding the Lorentz invariant quantity

S[H] :=
∫

H
dσν sν(t, x). (12)

Equation (11) implies that the integral (12) is the same
for the hyperplanes I(ξ0) and I′(ξ′0),

S[I] = S′[I] = S[I′] = S′[I′]. (13)

Thus, there is little or no room for controversy about
the transformation laws of entropy in this example. The
integral (12) is most conveniently calculated along H =
I[ξ0] in Σ, yielding

S =
∫

d3x s0 = N ln(V Z/h3) + βN
〈
p0

〉
. (14)

This can also be rewritten as

S′ = N ln(γV ′Z/!3) + βU′0[I]/γ (15)
= N ln(γV ′Z/!3) + βγ(U′0[I′] + wU′1[I′]),

where V ′ = V/γ denotes the Lorentz contracted (i.e.,
Σ′-simultaneously measured) volume [41].

Einstein-Planck theory.– We are now ready to sum-
marize the most common versions of relativistic thermo-
dynamics. Planck [7] and Einstein [8] propose to use
the Σ′-synchronous four-vector U′µ[I′] from Eq. (8a) as
thermodynamic energy-momentum state variables. Fur-
thermore, they choose to define heat Q′[I′] and, thus,
temperature T′ in Σ′ by the following postulated form of
first law of thermodynamics [42]

d̄Q′[I′] := T′dS′ := dU′0[I′]− w′dU′1[I′] + P′dV ′, (16a)

where the intensive variable w′ = −w is the constant x′1-
velocity of the gas (container) in Σ′, and P′ the pressure.
Considering the special case w′ = 0 first, we see that
Eq. (16a) is consistent with the second line of Eq. (15)
upon identifying T = β−1 and PV = Nβ−1; i.e., the
parameter β of the Jüttner distribution equals the inverse
rest temperature. Furthermore, for moving systems with
w′ #= 0, we find that thermodynamic quantities in Σ and
Σ′ are related by [43]

V ′ = V/γ, P′ = P, S′ = S, (16b)
U′0[I′] = γ

(
U0[I] + w′2 PV

)
, (16c)

U′1[I′] = γw′ (U0[I] + PV
)
, (16d)

T′ = γ−1 T = (1− w′2)1/2 T, (16e)

i.e., within the Einstein-Planck formalism a moving body
appears cooler [44]. Equations (16) were criticized in a
posthumously published paper by Ott [10] and, later, also
by van Kampen [9, 27] and Landsberg [11, 12].

Ott’s and van Kampen’s theory.– Ott [10] and Van
Kampen [9] choose to formulate thermodynamic relations
in the moving frame Σ′ in terms of the Σ-isochronous
energy-momentum vector U′µ[I] = Λµ

νUν [I]. They dif-
fer, however, as to how heat and work should be de-
fined. Van Kampen [9, 27] replaces Planck’s version of
the first law, Eq. (16a), by introducing a covariant ther-
mal energy-momentum transfer four-vector Qµ via

d̄Qµ[I] := dUµ[I]− d̄Aµ[I], (17)

where, in the (lab) frame Σ, the non-thermal work vector
Aµ[I] is determined by (d̄Aµ[I]) := (−PdV,0). Accord-
ingly, in a moving frame Σ′ one then finds d̄Q′µ[I] =
dU′µ[I]−d̄A′µ[I], where by means of a Lorentz transfor-
mation

dU′µ[I] = w′µ dU0[I], d̄A′µ = −w′µ PdV. (18)

Here, (w′µ) = (γ, γw′, 0, 0) denotes the velocity four-
vector of the gas (container) in Σ′. While essentially
agreeing on Eqs. (17), (18), and on the scalar character of
entropy S′ = S, van Kampen and Ott postulate different
formulations of the second law, respectively. Specifically,
Ott [10] defines the temperature T′ in Σ′ via

T′ dS′ := d̄Q′0 = γ d̄Q0 = γ T dS, (19a)

which implies the modified temperature transformation
law [45]

T′ = γ T = (1− w′2)−1/2 T; (19b)
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Hence, the energy-momentum vectors (7) and (8a) are
not related by a Lorentz transformation. In fact, Uµ[I]
and Uµ[I′] are connected by

(Uµ[I′]) = (Uµ[I]) + Nβ−1(0, w, 0, 0), (8c)

reflecting the underlying hypersurface and observer ve-
locity. As mentioned earlier, the difference between
U′µ[I′] and Uµ[I′] arises because the energy-momentum
tensor of a spatially confined gas is not conserved. It
is also a reason for the existence of various temperature
Lorentz transformation laws.

Entropy.– Having at hand the state variables ‘en-
ergy’ U0 and ‘momentum’ U, one still needs ‘entropy’.
For a Jüttner gas, one can define the entropy density
four-current [24, 25] by (units kB = 1)

sµ(t, x) = −N

∫
d3p

p0
pµ f ln(h3f). (9)

The specific shape (9) is tightly linked to the exponential
form of the Jüttner distribution (3). In fact, this com-
bination (f, sµ) is just one amongst several probabilistic
models of thermodynamics; i.e., there exist other pair-
ings, e.g., based on Renyi-type entropies, that yield con-
sistent thermodynamic relations as well [26]. However,
inserting (3) into (9), we find

sµ(t, x) = N"

{
ln(V Z/h3) + β

〈
p0

〉
, ν = 0,

0, ν > 0.
(10)

Hence, the current (10) is stationary in Σ and satisfies
the conservation law

∂νsν ≡ 0. (11)

The associated thermodynamic entropy S is obtained by
integrating sµ over some space-like or light-like hyper-
plane H, yielding the Lorentz invariant quantity

S[H] :=
∫

H
dσν sν(t, x). (12)

Equation (11) implies that the integral (12) is the same
for the hyperplanes I(ξ0) and I′(ξ′0),

S[I] = S′[I] = S[I′] = S′[I′]. (13)

Thus, there is little or no room for controversy about
the transformation laws of entropy in this example. The
integral (12) is most conveniently calculated along H =
I[ξ0] in Σ, yielding

S =
∫

d3x s0 = N ln(V Z/h3) + βN
〈
p0

〉
. (14)

This can also be rewritten as

S′ = N ln(γV ′Z/!3) + βU′0[I]/γ (15)
= N ln(γV ′Z/!3) + βγ(U′0[I′] + wU′1[I′]),

where V ′ = V/γ denotes the Lorentz contracted (i.e.,
Σ′-simultaneously measured) volume [41].

Einstein-Planck theory.– We are now ready to sum-
marize the most common versions of relativistic thermo-
dynamics. Planck [7] and Einstein [8] propose to use
the Σ′-synchronous four-vector U′µ[I′] from Eq. (8a) as
thermodynamic energy-momentum state variables. Fur-
thermore, they choose to define heat Q′[I′] and, thus,
temperature T′ in Σ′ by the following postulated form of
first law of thermodynamics [42]

d̄Q′[I′] := T′dS′ := dU′0[I′]− w′dU′1[I′] + P′dV ′, (16a)

where the intensive variable w′ = −w is the constant x′1-
velocity of the gas (container) in Σ′, and P′ the pressure.
Considering the special case w′ = 0 first, we see that
Eq. (16a) is consistent with the second line of Eq. (15)
upon identifying T = β−1 and PV = Nβ−1; i.e., the
parameter β of the Jüttner distribution equals the inverse
rest temperature. Furthermore, for moving systems with
w′ #= 0, we find that thermodynamic quantities in Σ and
Σ′ are related by [43]

V ′ = V/γ, P′ = P, S′ = S, (16b)
U′0[I′] = γ

(
U0[I] + w′2 PV

)
, (16c)

U′1[I′] = γw′ (U0[I] + PV
)
, (16d)

T′ = γ−1 T = (1− w′2)1/2 T, (16e)

i.e., within the Einstein-Planck formalism a moving body
appears cooler [44]. Equations (16) were criticized in a
posthumously published paper by Ott [10] and, later, also
by van Kampen [9, 27] and Landsberg [11, 12].

Ott’s and van Kampen’s theory.– Ott [10] and Van
Kampen [9] choose to formulate thermodynamic relations
in the moving frame Σ′ in terms of the Σ-isochronous
energy-momentum vector U′µ[I] = Λµ

νUν [I]. They dif-
fer, however, as to how heat and work should be de-
fined. Van Kampen [9, 27] replaces Planck’s version of
the first law, Eq. (16a), by introducing a covariant ther-
mal energy-momentum transfer four-vector Qµ via

d̄Qµ[I] := dUµ[I]− d̄Aµ[I], (17)

where, in the (lab) frame Σ, the non-thermal work vector
Aµ[I] is determined by (d̄Aµ[I]) := (−PdV,0). Accord-
ingly, in a moving frame Σ′ one then finds d̄Q′µ[I] =
dU′µ[I]−d̄A′µ[I], where by means of a Lorentz transfor-
mation

dU′µ[I] = w′µ dU0[I], d̄A′µ = −w′µ PdV. (18)

Here, (w′µ) = (γ, γw′, 0, 0) denotes the velocity four-
vector of the gas (container) in Σ′. While essentially
agreeing on Eqs. (17), (18), and on the scalar character of
entropy S′ = S, van Kampen and Ott postulate different
formulations of the second law, respectively. Specifically,
Ott [10] defines the temperature T′ in Σ′ via

T′ dS′ := d̄Q′0 = γ d̄Q0 = γ T dS, (19a)

which implies the modified temperature transformation
law [45]

T′ = γ T = (1− w′2)−1/2 T; (19b)

x

t

(0, 0)

E

C(E )

t = ξ0

t′ = ξ′0

L/2−L/2

P1 P2

Eddington / Ott Landsberg / van Kampen

hotter

cooler

T’=T
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Σ , and can be described by a Σ -time-independent, normalized
one-particle phase-space probability density function (PDF)

f (t ,x,p)= ϕ(x,p)= "(x)φJ(p) (3a)

with Jüttner momentum distribution20,21

φJ(p)=Z−1exp(−βp0), β > 0 (3b)

Z = 4πm3K2(βm)/(βm) is the normalization constant, Kn(z)
is the nth modified Bessel function of the second kind22 and
p0 = (m2 +p2)1/2 is the particle energy. Later, the distribution pa-
rameter β will be identified with the inverse thermodynamic (rest)
temperature of the gas. The exact functional form of the spatial
density " in equation (3a) is irrelevant, as long as " is normalizable
(that is, restricted to a finite spatial volume set V⊂R3 in Σ ). For
simplicity, we may consider a spatially homogeneous gas enclosed
in a stationary cubic boxV=[−L/2,L/2]3 inΣ , corresponding to

"(x)=
{
V −1, if x∈V
0, if x $∈V (3c)

Here,V =L3 is theΣ -simultaneously measured (Lebesgue) volume
of V in Σ .

The phase-space PDF f is a Lorentz scalar23. Thus, the current
density jµ and energy–momentum tensor θµν can be constructed
from f by:

jµ(t ,x)=N
∫

d3p
p0

f pµ (4a)

θµν(t ,x)=N
∫

d3p
p0

f pµpν (4b)

where d3p/p0 is the Lorentz-invariant integration measure in
relativistic momentum space. Concretely, for equation (3) we
have (jα)= (",0) and

θµν =N "

{ 〈p0〉, µ = ν = 0
β−1, µ = ν = 1,2,3
0, µ $= ν

(5)

where 〈p0〉=3β−1+mK1(βm)/K2(βm) is themean energy per par-
ticle. One readily verifies that ∂α jα ≡ 0, whereas ∂µθµi =β−1∂i" $= 0
at the boundary ofV, in agreement with equation (1). Confinement
generates stress—the importance of this seemingly trivial statement
shall be seen immediately.

Isochronous state variables
The traditional versions of relativistic thermodynamics7–12,14 are re-
covered from equations (3)–(5) by inserting isochronous spacetime
hypersurfaces into equation (2). To see this, consider an inertial
frame Σ ′, moving at velocity w along the x1-axis of the lab-frame
Σ . An event E with coordinates (ξ 0,ξ) in Σ and (ξ ′0,ξ′) in
Σ ′ defines isochronous hyperplanes I(ξ 0) and I ′(ξ ′0) in Σ and
Σ ′, respectively, by

I(ξ 0) := { (t ,x) | t = ξ 0 } (6a)

I ′(ξ ′0) := { (t ′,x′) | t ′ = ξ ′0 } (6b)

If Σ and Σ ′ are in relative motion, these hyperplanes differ from
each other, I(ξ 0) $= I ′(ξ ′0), see Fig. 1. Inserting H = I(ξ 0) into

x

t

P1 P2

t = ξ0

t’ = ξ’0

Figure 1 |Non-local thermodynamic quantities depend on the underlying
hypersurface in Minkowski spacetime.When particles ‘P1’ and ‘P2’
interact with each other or with a confining structure (grey) they change
their momentum. Hence, different hyperplanes sample different
many-particle momentum states. Traditional formulations of relativistic
thermodynamics introduce global state variables as integrals over
isochronous hyperplanes (dotted), whereas a photograph taken at the
spacetime event E or E ′ records the state of the system along the
corresponding backward-lightcone C(E ) or C(E ′).

equation (2), we obtain the lab-isochronous energy–momentum
vector U µ[I] in Σ :

(U µ[I])=N (〈p0〉,0) (7)

On the other hand, choosing H = I ′[ξ ′0] yields theΣ ′-isochronous
energy–momentum vectorU ′µ[I ′] inΣ ′:

(
U ′µ[I ′]

)
=N

{
γ (〈p0〉+w2β−1), µ = 0
−γw(〈p0〉+β−1), µ = 1
0, µ > 1

(8)

where γ := (1 − w2)−1/2. Applying a Lorentz transformation
with −w to equation (8), we find the corresponding energy–
momentum in Σ

(U µ[I ′])=N (〈p0〉,−wβ−1,0,0)

Hence, the energy–momentum vectors equations (7) and (8) are
not related by a Lorentz transformation. In fact, U µ[I] and
U µ[I ′] are connected by

(U µ[I ′])= (U µ[I])+Nβ−1(0,−w,0,0)

reflecting the underlying hypersurface and observer velocity. As
mentioned earlier, the difference between U µ[I] and U µ[I ′] arises
because the energy–momentum tensor of a spatially confined gas
is not conserved. It is also a reason for the existence of various
temperature Lorentz transformation laws.

Entropy
Having at hand the state variables ‘energy’ U 0 and ‘momen-
tum’ U, one still needs ‘entropy’. For a Jüttner gas, one can
define the entropy density four-current24,25 by (h = Planck’s con-
stant, units kB = 1)

sµ(t ,x)= −N
∫

d3p
p0

pµf ln(h3f ) (9)

The specific shape of equation (9) is tightly linked to the ex-
ponential form of the Jüttner distribution equation (3). In fact,
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we choose, we again end up with either Ott’s or van
Kampen’s temperature transformation law. Since, unlike
their isochronous counterparts, the quantities Uµ[C] are
experimentally accessible, we shall next address implica-
tions for present and future astrophysical observations.

Observable consequences.– Let us assume that an ide-
alized photograph, taken by an observer O at E , encodes
both the positions and velocities (e.g., from Doppler
shifts) of a confined gas. If O is at rest relative to the gas,
then the mean values of the energy and momentum sam-
pled from the photographic data will converge to Uµ[C]
given by Eq. (23). Equation (23a) implies that it does not
matter for an observer at rest in Σ whether energy values
are sampled from a photograph or from Σ-simultaneously
collected (i.e., reconstructed) data.

The situation is different, when estimating the mean
momentum from photographic data. Equation (23b) im-
plies that the lightcone-average depends on the observer
position ξ [46]. A distinguished ‘photographic center-of-
mass’ position ξ∗ in Σ can defined by

Ui[C]
∣∣
ξ=ξ∗

= 0 , i = 1, 2, 3. (25)

For example, if ! is symmetric with respect to the origin
of Σ, then ξ∗ = 0. This would correspond to a lightcone
as drawn in Fig. 1. In this (and only this) case, we find
U′1[C] = w′U′0[C] and, thus, lightcone thermodynamics
reduces to the Ott-van Kampen formalism.

To illustrate how Ui[C] generally depends on the ob-
server’s position, let us consider a gas with density pro-
file (3c). For a stationary observer at a position ξ far
away from V, we can approximate |x − ξ| "| ξ| in
Eq. (23b), yielding [47]

Ui[C] = − ξi

|ξ|NT. (26)

Hence, a distant observer O who naively estimates Ui[C]
from photographic data could erroneously conclude that
the gas is moving away with a momentum vector propor-
tional to the temperature. Reinstating constants c and
kB, this relativistic effect becomes neglible if mc2 # kBT,
but – given the rapid improvement of telescopes and
spectrographs [30] – it should be taken into considera-
tion when estimating the velocities of astrophysical ob-
jects from photographs in the future. In particular, since
Lorentz transformations mix energy and spatial momen-
tum components, for a moving observer O′ both U′0[C]
and U′i[C] will be affected, see Fig. 4. In principle, simi-
lar phenomena arise whenever one is limited to photo-
graphic observations of partial components in distant
compound systems (e.g., the gas in a galaxy), if the
energy-momentum tensor of this partial component is not
conserved. At present, it is an open problem whether or
not these effects may even be amplified in curved space-
time geometries.

Numerical results.– The preceding theoretical consid-
erations can be illustrated by (1+3)-dimensional rela-
tivistic many-body simulations. Compared with the non-
relativistic case, simulations of relativistic many-particle
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FIG. 2: The distribution of the particle energy p0 in the rest
frame of the gas for various values of the mean particle energy˙
p0

¸
: The distribution measured in our simulations (symbols)

is compared to the Jüttner distribution (3b) (lines).
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FIG. 3: The lightcone momentum U1[C] as a function of gas
temperature β−1 for an observer resting either at the center of
the gas container, ξ = 0, or far away from it, ξ → (−∞, 0, 0).
Symbols indicate values measured in the simulations, and
lines the theoretical predicted curves.

systems are more difficult because particle collisions can-
not be modeled by simple interaction potentials any-
more [31, 32]. Generalizing recently proposed lower-
dimensional algorithms [21, 33], our computer experi-
ments are based on hard-sphere-type interactions in the
two-particle center-of-mass frame (see App. C details).
This model is fully relativistic in the low-to-intermediate
density regime [48]. Figures 2–4 depict results of simula-
tions with N = 1000 particles. Initially, all particles are
randomly distributed in a cubic box with same energy p0,
but random velocity directions. After a few collisions per
particle, the energy distribution relaxes to the Jüttner
distribution (3b), see Fig. 2, which confirms that our col-
lision algorithm works correctly in this density regime.
The thermodynamic energy-momentum vector U′µ[H] is
determined by recording each particles’ momentum as its
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i.e., according to Ott’s definition of heat and temperature
a moving body appears hotter. Van Kampen [9] argues
that the Eqs. (19) are not well-suited if one wishes to
describe heat and energy-momentum exchange between
systems that move at different velocities (hetero-tachic
processes). To achieve a more convenient description, he
proposes to characterize the heat transfer by means of a
heat scalar Q′ = Q, defined by [9, 27]

d̄Q′ := −w′
µd̄Q′µ = −wµd̄Qµ = d̄Q = d̄Q0. (20a)

He then goes on to define temperature with respect to Q,

T′dS′ := d̄Q′ = d̄Q = TdS, (20b)

yielding yet another temperature transformation law:

T′ = T; (20c)

i.e., according to van Kampen’s definition a moving body
appears neither hotter nor colder. Adopting this conven-
tion, one can define an inverse temperature four-vector
β′

µ := T′−1 w′
µ = T−1 w′

µ and rewrite the second law in
the compact covariant form

dS′ = −β′
µd̄Q′µ. (21)

Discussion.– Evidently, whether a moving body ap-
pears hotter or not depends solely on how one defines
thermodynamic quantities. The formalisms of Ott [10]
and van Kampen [9, 27] are based on the same (lab-)
isochronous hyperplane I – they merely differ in their
respective temperature definitions [16]. By contrast, the
Einstein-Planck theory [7, 8] is based on an observer-
dependent isochronous hyperplane I′. While, in princi-
ple, there is nothing wrong with this, a conceptual down-
side of the latter approach is that the state variables en-
ergy and momentum, when measured in different frames,
are not connected by Lorentz transformations – or, put
differently: To experimentally determine, e.g., the ener-
gies U0[I] and U′0[I′], two observers need to perform non-
equivalent measurements [18], since measurements must
be performed Σ-simultaneously in the first case, but Σ′-
simultaneously in the second case. This might seem suf-
ficient for regarding either Ott’s or van Kampen’s (more
elegant) approach as preferable. However, before adopt-
ing this point of view, it is worthwhile to ask:

• Which formulation is feasible from an experimental
point of view?

• Which formalism provides a suitable conceptual
framework for extensions to general relativity [28,
29]?

Unfortunately, from an objective perspective, neither of
the above proposals fulfils these criteria. The reason is
that either formulation is based on simultaneously de-
fined averages. On the one hand, this means that it is
virtually impossible to directly measure the quantities
appearing in the theory; e.g., in order to determine U0[I]

one would have to determine the velocities of the particles
at time t = ξ0 in Σ, which requires either superluminal
information transport [18] or unrealistic efforts of trying
to reconstruct isochronous velocity data from recorded
trajectories. On the other hand, it is very difficult, if not
impossible, to transfer the concept of global isochronicity
to general relativity due to the absence of global inertial
frames in curved spacetime.

‘Photographic’ thermodynamics.– To overcome these
drawbacks, we propose to define relativistic thermody-
namic quantities by means of surface integrals along the
backward-lightcone C[E ], where E is the event of the ob-
servation, see Fig. 1. This is motivated by the following
facts: (i) A photograph taken by an observer O at the
event E reflects the state of the system along the light-
cone C[E ]. (ii) The hyperplane C[E ] is a relativistically
invariant object which is equally accessible for any in-
ertial observer; i.e., if another observer O′, who moves
relative to O, takes a snapshot at the same event E , then
the resulting picture will reflect the same state of the
system – although the ‘colors’ will be different due to
the Doppler effect caused by the observers’ relative mo-
tion [29]. (iii) The concept of lightcone-averaging can
be easily extended to general relativity. (iv) In the non-
relativistic limit c → ∞, the lightcone flattens so that
photographic measurements become isochronous in any
frame in this limit. Thus, lightcone averages appear to be
the best-suited candidates if one wishes to characterize
relativistic many-particle systems by means of nonlocally
defined, macroscopic variables.

Mathematically, the backward-lightcones C[E ] in Σ
and C′[E ] in Σ′ are given by

C(E ) := { (t, x) | t = ξ0 − |x− ξ| }, (22a)
C′(E ) := { (t′,x′) | t′ = ξ′0 − |x′ − ξ′| }. (22b)

Unlike the isochronous hyperplanes I(ξ0) and I′(ξ′0),
the lightcones describe the same set of spacetime events,
C(E ) = C′(E ). Fixing H = C(E ) in Eq. (2), we find (see
App. B)

U0[C] = N
〈
p0

〉
, (23a)

Ui[C] =
N

β

∫
d3x

xi − ξi

|x− ξ| #(x), (23b)

Unlike U[I] and U[I′], the vector U[C] depends on the
space coordinates ξ of the observation event E . Light-
cones are Lorentz-invariant objects, implying that Uµ[C]
and U′µ[C′] are directly linked by a Lorentz transforma-
tion, i.e., U′µ[C′] = Λµ

νUν [C]. Moreover, for a spatially
homogeneous Jüttner gas, it is straightforward to com-
pute the entropy S[C] as [cf. Eq. (15)]

S[C] = N ln(V Z/!3) + βU0[C]
= N ln(γV ′Z/!3) + βγ(U′0[C]− w′U′1[C])
= S′[C], (24)

where, additionally, S[C] = S[I] due to the conservation
law (11). Thus, depending on which definition of heat
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Observable consequences.– Let us assume that an idealized photograph, taken by an observer O at E , encodes
both the positions and velocities (e.g., from Doppler shifts) of a confined gas. If O is at rest relative to the gas,
then the mean values of the energy and momentum sampled from the photographic data will converge to Uµ[C] given
by Eq. (26). Equation (26a) implies that it does not matter for an observer at rest in Σ whether energy values are
sampled from a photograph or from Σ-simultaneously collected (i.e., reconstructed) data.

The situation is different, when estimating the mean momentum from photographic data. Equation (26b) implies
that the lightcone-average depends on the observer position ξ [46]. A distinguished ‘photographic center-of-mass’
position ξ∗ in Σ can defined by

Ui[C]
∣∣
ξ=ξ∗

= 0 , i = 1, 2, 3. (28)

For example, if ! is symmetric with respect to the origin of Σ, then ξ∗ = 0. This would correspond to a lightcone as
drawn in Fig. 1. In this (and only this) case, we find U′1[C] = w′U′0[C] and, thus, lightcone thermodynamics reduces
to the Ott-van Kampen formalism.

To illustrate how Ui[C] generally depends on the observer’s position, let us consider a gas with density profile (8i).
For a stationary observer at a position ξ far away from V, we can approximate |x−ξ| " |ξ| in Eq. (26b), yielding [47]

Ui[C] = − ξi

|ξ|NkBT (29)

Hence, a distant observer O who naively estimates Ui[C] from photographic data could erroneously conclude that
the gas is moving away with a momentum vector proportional to the temperature. Reinstating constants c and
kB, this relativistic effect becomes neglible if mc2 # kBT, but – given the rapid improvement of telescopes and
spectrographs [30] – it should be taken into consideration when estimating the velocities of astrophysical objects
from photographs in the future. In particular, since Lorentz transformations mix energy and spatial momentum
components, for a moving observer O′ both U′0[C] and U′i[C] will be affected, see Fig. 4. In principle, similar
phenomena arise whenever one is limited to photographic observations of partial components in distant compound
systems (e.g., the gas in a galaxy), if the energy-momentum tensor of this partial component is not conserved. At
present, it is an open problem whether or not these effects may even be amplified in curved spacetime geometries.

Numerical results.– The preceding theoretical considerations can be illustrated by (1+3)-dimensional relativistic
many-body simulations. Compared with the nonrelativistic case, simulations of relativistic many-particle systems
are more difficult because particle collisions cannot be modeled by simple interaction potentials anymore [31, 32].
Generalizing recently proposed lower-dimensional algorithms [21, 33], our computer experiments are based on hard-
sphere-type interactions in the two-particle center-of-mass frame (see App. C details). This model is fully relativistic
in the low-to-intermediate density regime [48]. Figures 2–4 depict results of simulations with N = 1000 particles.
Initially, all particles are randomly distributed in a cubic box with same energy p0, but random velocity directions.
After a few collisions per particle, the energy distribution relaxes to the Jüttner distribution (8b), see Fig. 2, which
confirms that our collision algorithm works correctly in this density regime. The thermodynamic energy-momentum
vector U′µ[H] is determined by recording each particles’ momentum as its trajectory passes through the corresponding
hyperplane. We first consider an observer O who is at rest relative to the gas. As predicted by Eq. (29) we find
that, if the location of O deviates from the center of the box, a photo made by O yields a non-zero momentum
Ui ∝ β−1, see blue line in Fig. 3. For comparison, Fig. 4 shows the results for a moving observer O′ (speed w),
obtained by isochronous sampling along different hyperplanes I′(w), or photographic sampling along the backward-
lightcones C(E ). Again, as predicted by the theory, the resulting overall energy-momentum does not only depend on
the observer velocity, but also on the underlying hypersurface and, in particular, on the observer’s position. Although
our study still neglects quantum processes and gravity, which play an important role in real astrophysical systems,
the results suggest that one needs to be very careful when reconstructing the velocities of hot, relativistic objects from
photographic measurements.

Conclusions.– Sometimes, discussions of relativistic thermodynamics start by postulating a set of macroscopic
state variables, whose thermodynamics relations (and Lorentz transformations laws) are subsequently deduced by
plausibility considerations. Unfortunately, this approach – although quite successful in nonrelativistic physics – is
intrinsically limited in a relativistic framework, as it conceals the actual source for conceptual difficulties, namely, the
nonlocal character of thermodynamic quantities. The above analysis may provide guidance for constructing consistent
relativistic thermodynamic theories for more complex systems, e.g., based on (non-)conserved tensor densities as
derivable from classical or quantum Lagrangians. Care is required when integrating such densities to obtain global
thermodynamic state variables, since conservation laws may be violated due to confinement, so that averages may vary
depending on the underlying hyperplane(s). Within a conceptually satisfying and experimentally feasible framework,
thermostatistical averaging procedures should be defined over lightcones rather than isochronous hypersurfaces. To
put it somewhat provocatively, the isochronous definition of nonlocal quantities, as adopted in traditional formulations
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Discussion.– Evidently, whether a moving body appears hotter or not depends solely on how one defines
thermodynamic quantities. The formalisms of Ott [10] and van Kampen [9, 27] are based on the same (lab-)
isochronous hyperplane I – they merely differ in their respective temperature definitions [16]. By contrast, the
Einstein-Planck theory [7, 8] is based on an observer-dependent isochronous hyperplane I′. While, in principle, there
is nothing wrong with this, a conceptual downside of the latter approach is that the state variables energy and mo-
mentum, when measured in different frames, are not connected by Lorentz transformations – or, put differently: To
experimentally determine, e.g., the energies U0[I] and U′0[I′], two observers need to perform non-equivalent mea-
surements [18], since measurements must be performed Σ-simultaneously in the first case, but Σ′- simultaneously in
the second case. This might seem sufficient for regarding either Ott’s or van Kampen’s (more elegant) approach as
preferable. However, before adopting this point of view, it is worthwhile to ask:

• Which formulation is feasible from an experimental point of view?

• Which formalism provides a suitable conceptual framework for extensions to general relativity [28, 29]?

Unfortunately, from an objective perspective, neither of the above proposals fulfils these criteria. The reason is that
either formulation is based on simultaneously defined averages. On the one hand, this means that it is virtually
impossible to directly measure the quantities appearing in the theory; e.g., in order to determine U0[I] one would
have to determine the velocities of the particles at time t = ξ0 in Σ, which requires either superluminal information
transport [18] or unrealistic efforts of trying to reconstruct isochronous velocity data from recorded trajectories. On
the other hand, it is very difficult, if not impossible, to transfer the concept of global isochronicity to general relativity
due to the absence of global inertial frames in curved spacetime.

‘Photographic’ thermodynamics.– To overcome these drawbacks, we propose to define relativistic thermodynamic
quantities by means of surface integrals along the backward-lightcone C[E ], where E is the event of the observation,
see Fig. 1. This is motivated by the following facts: (i) A photograph taken by an observer O at the event E reflects
the state of the system along the lightcone C[E ]. (ii) The hyperplane C[E ] is a relativistically invariant object which
is equally accessible for any inertial observer; i.e., if another observer O′, who moves relative to O, takes a snapshot
at the same event E , then the resulting picture will reflect the same state of the system – although the ‘colors’ will
be different due to the Doppler effect caused by the observers’ relative motion [29]. (iii) The concept of lightcone-
averaging can be easily extended to general relativity. (iv) In the nonrelativistic limit c→∞, the lightcone flattens so
that photographic measurements become isochronous in any frame in this limit. Thus, lightcone averages appear to
be the best-suited candidates if one wishes to characterize relativistic many-particle systems by means of nonlocally
defined, macroscopic variables.

Mathematically, the backward-lightcones C[E ] in Σ and C′[E ] in Σ′ are given by

C(E ) := { (t, x) | t = ξ0 − |x− ξ| } (25a)
C′(E ) := { (t′,x′) | t′ = ξ′0 − |x′ − ξ′| } (25b)

Unlike the isochronous hyperplanes I(ξ0) and I′(ξ′0), the lightcones describe the same set of spacetime events,
C(E ) = C′(E ). Fixing H = C(E ) in Eq. (8f), we find (see App. B)

U0[C] = N
〈
p0

〉
(26a)

Ui[C] =
N

β

∫
d3x

xi − ξi

|x− ξ| #(x) (26b)

Unlike U[I] and U[I′], the vector U[C] depends on the space coordinates ξ of the observation event E . Lightcones
are Lorentz-invariant objects, implying that Uµ[C] and U′µ[C′] are directly linked by a Lorentz transformation, i.e.,
U′µ[C′] = Λµ

νUν [C]. Moreover, for a spatially homogeneous Jüttner gas, it is straightforward to compute the entropy
S[C] as [cf. Eq. (18)]

S[C] = N ln(V Z/!3) + βU0[C]
= N ln(γV ′Z/!3) + βγ(U′0[C]− w′U′1[C])
= S′[C] (27)

where, additionally, S[C] = S[I] due to the conservation law (??). Thus, depending on which definition of heat we
choose, we again end up with either Ott’s or van Kampen’s temperature transformation law. Since, unlike their
isochronous counterparts, the quantities Uµ[C] are experimentally accessible, we shall next address implications for
present and future astrophysical observations.
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Σ , and can be described by a Σ -time-independent, normalized
one-particle phase-space probability density function (PDF)

f (t ,x,p)= ϕ(x,p)= "(x)φJ(p) (3a)

with Jüttner momentum distribution20,21

φJ(p)=Z−1exp(−βp0), β > 0 (3b)

Z = 4πm3K2(βm)/(βm) is the normalization constant, Kn(z)
is the nth modified Bessel function of the second kind22 and
p0 = (m2 +p2)1/2 is the particle energy. Later, the distribution pa-
rameter β will be identified with the inverse thermodynamic (rest)
temperature of the gas. The exact functional form of the spatial
density " in equation (3a) is irrelevant, as long as " is normalizable
(that is, restricted to a finite spatial volume set V⊂R3 in Σ ). For
simplicity, we may consider a spatially homogeneous gas enclosed
in a stationary cubic boxV=[−L/2,L/2]3 inΣ , corresponding to

"(x)=
{
V −1, if x∈V
0, if x $∈V (3c)

Here,V =L3 is theΣ -simultaneously measured (Lebesgue) volume
of V in Σ .

The phase-space PDF f is a Lorentz scalar23. Thus, the current
density jµ and energy–momentum tensor θµν can be constructed
from f by:

jµ(t ,x)=N
∫

d3p
p0

f pµ (4a)

θµν(t ,x)=N
∫

d3p
p0

f pµpν (4b)

where d3p/p0 is the Lorentz-invariant integration measure in
relativistic momentum space. Concretely, for equation (3) we
have (jα)= (",0) and

θµν =N "

{ 〈p0〉, µ = ν = 0
β−1, µ = ν = 1,2,3
0, µ $= ν

(5)

where 〈p0〉=3β−1+mK1(βm)/K2(βm) is themean energy per par-
ticle. One readily verifies that ∂α jα ≡ 0, whereas ∂µθµi =β−1∂i" $= 0
at the boundary ofV, in agreement with equation (1). Confinement
generates stress—the importance of this seemingly trivial statement
shall be seen immediately.

Isochronous state variables
The traditional versions of relativistic thermodynamics7–12,14 are re-
covered from equations (3)–(5) by inserting isochronous spacetime
hypersurfaces into equation (2). To see this, consider an inertial
frame Σ ′, moving at velocity w along the x1-axis of the lab-frame
Σ . An event E with coordinates (ξ 0,ξ) in Σ and (ξ ′0,ξ′) in
Σ ′ defines isochronous hyperplanes I(ξ 0) and I ′(ξ ′0) in Σ and
Σ ′, respectively, by

I(ξ 0) := { (t ,x) | t = ξ 0 } (6a)

I ′(ξ ′0) := { (t ′,x′) | t ′ = ξ ′0 } (6b)

If Σ and Σ ′ are in relative motion, these hyperplanes differ from
each other, I(ξ 0) $= I ′(ξ ′0), see Fig. 1. Inserting H = I(ξ 0) into

x

t

P1 P2

t = ξ0

t’ = ξ’0

Figure 1 |Non-local thermodynamic quantities depend on the underlying
hypersurface in Minkowski spacetime.When particles ‘P1’ and ‘P2’
interact with each other or with a confining structure (grey) they change
their momentum. Hence, different hyperplanes sample different
many-particle momentum states. Traditional formulations of relativistic
thermodynamics introduce global state variables as integrals over
isochronous hyperplanes (dotted), whereas a photograph taken at the
spacetime event E or E ′ records the state of the system along the
corresponding backward-lightcone C(E ) or C(E ′).

equation (2), we obtain the lab-isochronous energy–momentum
vector U µ[I] in Σ :

(U µ[I])=N (〈p0〉,0) (7)

On the other hand, choosing H = I ′[ξ ′0] yields theΣ ′-isochronous
energy–momentum vectorU ′µ[I ′] inΣ ′:

(
U ′µ[I ′]

)
=N

{
γ (〈p0〉+w2β−1), µ = 0
−γw(〈p0〉+β−1), µ = 1
0, µ > 1

(8)

where γ := (1 − w2)−1/2. Applying a Lorentz transformation
with −w to equation (8), we find the corresponding energy–
momentum in Σ

(U µ[I ′])=N (〈p0〉,−wβ−1,0,0)

Hence, the energy–momentum vectors equations (7) and (8) are
not related by a Lorentz transformation. In fact, U µ[I] and
U µ[I ′] are connected by

(U µ[I ′])= (U µ[I])+Nβ−1(0,−w,0,0)

reflecting the underlying hypersurface and observer velocity. As
mentioned earlier, the difference between U µ[I] and U µ[I ′] arises
because the energy–momentum tensor of a spatially confined gas
is not conserved. It is also a reason for the existence of various
temperature Lorentz transformation laws.

Entropy
Having at hand the state variables ‘energy’ U 0 and ‘momen-
tum’ U, one still needs ‘entropy’. For a Jüttner gas, one can
define the entropy density four-current24,25 by (h = Planck’s con-
stant, units kB = 1)

sµ(t ,x)= −N
∫

d3p
p0

pµf ln(h3f ) (9)

The specific shape of equation (9) is tightly linked to the ex-
ponential form of the Jüttner distribution equation (3). In fact,

2 NATURE PHYSICS | ADVANCE ONLINE PUBLICATION | www.nature.com/naturephysics

Nature Physics 5: 741 (2009)
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FIG. 4: Observed energy U′0 (a) and momentum U′1 (b) of the gas as a function of the observer speed w along the x1-axis,
either sampled from an isochronous hyperplane I′, or a lightcone C′. The mean particle energy is

˙
p0

¸
= 3m. The observer

using a lightcone is either at the center of the gas container (ξ = 0), far behind the container (ξ1 → −∞), or ahead of the
container (ξ1 → +∞). Simulation results are indicated by symbols, the theoretical prediction by lines.
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Summary (part 2)
 What “is” thermodynamics?

✓ non-local description in terms of symmetry (breaking) 
parameters

“Good” starting point in relativistic thermodynamics?
✓ (non-)conserved tensor densities, Noether currents

Origin of different temperature transformation laws?
✓ choice of space-time hyperplanes
✓ definition of heat, formulation of 1st/2nd law

How should one define thermodynamic observables in special 
and general relativity?

✓ invariant manifolds,  lightcone integrals

Observable consequence:  temperature-induced apparent drift

PRL 99: 170601(2007), Physics Reports 471:1 (2009), EPL 87: 30005 (2009), Nature Physics 5: 741 (2009)
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Part 3: Relativistic Brownian motion



Übersicht
Brownsche Bewegung - Historischer Überblick

Relativistische Diffusionsprozesse
Fazit

Jan Ingen-Housz (1730-1799)

1784/1785:

http://www.physik.uni-augsburg.de/theo1/hanggi/History/BM-History.html

Jörn Dunkel Diffusionsprozesse und Thermostatistik in der speziellen Relativitätstheorie
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“Brownian” motion



Übersicht
Brownsche Bewegung - Historischer Überblick

Relativistische Diffusionsprozesse
Fazit

Robert Brown (1773-1858)

1827: irreguläre Eigenbewegung von Pollen in Flüssigkeit

http://www.brianjford.com/wbbrownc.htm

Jörn Dunkel Diffusionsprozesse und Thermostatistik in der speziellen Relativitätstheorie
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irregular motion of pollen in fluid 
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Non-relativistic Brownian motion theory
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Übersicht
Brownsche Bewegung - Historischer Überblick

Relativistische Diffusionsprozesse
Fazit

Theorie der Brownschen Bewegung

W. Sutherland

(1858-1911)

Phil. Mag. 9: 781 (1905)

A. Einstein

(1879-1955)

Ann. Phys. 17: 549 (1905)

M. von Smoluchowski

(1872-1917)

Ann. Phys. 21: 756 (1906)

Möglichkeit zur experimentellen Bestimmung der Avogadro-Zahl N

Jörn Dunkel Diffusionsprozesse und Thermostatistik in der speziellen Relativitätstheorie

atomistic structure of matter !
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Übersicht
Brownsche Bewegung - Historischer Überblick

Relativistische Diffusionsprozesse
Fazit

Jean Baptiste Perrin (1870-1942, Nobelpreis 1926)

Mouvement brownien et réalité moléculaire, Annales de chimie et de
physique VIII 18, 5-114 (1909)

Les Atomes, Paris, Alcan (1913)

! colloidal particles of
radius 0.53µm

! successive positions
every 30 seconds
joined by straight line
segments

! mesh size is 3.2µm

Experimenteller Nachweis der atomistischen Struktur der Materie

Jörn Dunkel Diffusionsprozesse und Thermostatistik in der speziellen Relativitätstheorie

atomistic structure of matter
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Relativistic diffusion processes

 conceptually interesting
 random motion of particles in hot plasmas, 

heavy ion collision experiments, 
astrophysics, ...

Übersicht
Brownsche Bewegung - Historischer Überblick

Relativistische Diffusionsprozesse
Fazit

Motivation
Relativistische Langevin-Gleichungen
Relativistische Thermostatistik
Diffusion

Relativistische Diffusionsprozesse: Motivation

Generelle Fragestellung:

! Verallgemeinerung stochastischer bzw.
statistischer Konzepte im Rahmen der
Relativitätstheorie

Anwendungen:

! relativistische Teilchen in komplexen Medien/fluktuierenden Feldern

! MC Simulationen, Thermalisierungsprozesse, Approximation zur RBE

! heavy ion collisions
[van Hees et al., Phys. Rev. C 73: 034913 (2006); Rapp & van Hees, arXiv:0803.0901]

! astrophysikalische Plasmen [Dieckmann et al., New. J. Phys. 8: 40 (2006)]

Lopuszanski, Acta Phys. Polon. 12: 87
(1953)
Schay, PhD thesis (Princeton, 1961)
Hakim, J. Math. Phys. 6(10): 1482 (1965)
Dudley, Ark. Mat. Astron. Fis. 6: 241 (1965)

Debbasch et al., J. Stat. Phys. 88: 945 (1997)
Zygadlo, Phys. Lett. A 345: 323(2005)
Dunkel & Hänggi, Phys. Rev. E 71: 016124; 72: 036106 (2005)
Dunkel, Talkner & Hänggi, Phys. Rev. D 75: 043001 (2007)
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Relativistische Diffusionsprozesse
Fazit

Motivation
Relativistische Langevin-Gleichungen
Relativistische Thermostatistik
Diffusion

Relativistische Diffusionsprozesse: Motivation

Generelle Fragestellung:

! Verallgemeinerung stochastischer bzw.
statistischer Konzepte im Rahmen der
Relativitätstheorie

Anwendungen:

! relativistische Teilchen in komplexen Medien/fluktuierenden Feldern

! MC Simulationen, Thermalisierungsprozesse, Approximation zur RBE

! heavy ion collisions
[van Hees et al., Phys. Rev. C 73: 034913 (2006); Rapp & van Hees, arXiv:0803.0901]

! astrophysikalische Plasmen [Dieckmann et al., New. J. Phys. 8: 40 (2006)]

Lopuszanski, Acta Phys. Polon. 12: 87
(1953)
Schay, PhD thesis (Princeton, 1961)
Hakim, J. Math. Phys. 6(10): 1482 (1965)
Dudley, Ark. Mat. Astron. Fis. 6: 241 (1965)

Debbasch et al., J. Stat. Phys. 88: 945 (1997)
Zygadlo, Phys. Lett. A 345: 323(2005)
Dunkel & Hänggi, Phys. Rev. E 71: 016124; 72: 036106 (2005)
Dunkel, Talkner & Hänggi, Phys. Rev. D 75: 043001 (2007)

Jörn Dunkel Diffusionsprozesse und Thermostatistik in der speziellen Relativitätstheorie



classical diffusion (Markovian)

Author's personal copy

J. Dunkel, P. Hänggi / Physics Reports 471 (2009) 1–73 45

5. Non-Markovian diffusion processes in Minkowski spacetime

The preceding section has focused on relativistic Brownian motions in phase space. In the remainder we will discuss
relativistic diffusion models in Minkowski spacetime, i.e., continuous relativistic stochastic processes that do not explicitly
depend on the momentum coordinate. On the one hand, such spacetime processes may be constructed, for example, from
a Brownian motion process in phase space by integrating out the momentum coordinates. As a result of this averaging
procedure, the reduced process for the position coordinate will be non-Markovian. Alternatively, one can try to derive or
postulate a relativistic diffusion equation and/or diffusion propagators in spacetime on the basis of microscopic models [10,
28,153,366] or plausibility considerations [23]. Regardless of the approach adopted, in order to comply with the principles
of special relativity, the resulting spacetime process must be non-Markovian, in accordance with the results of Dudley
(Theorem11.3 in [333]) andHakim (Proposition 2 in [338]). Roughly speaking, thismeans that any relativistically acceptable
generalization of the classical diffusion equation (1) should be of at least second order in the time coordinate.

The construction and analysis of relativistic diffusion models in Minkowski spacetime poses an interesting problem
in its own right. Additionally, the investigation of these processes becomes relevant in view of potential analogies with
relativistic quantum theory [383,391], similar to the analogy between Schrödinger’s equation and the diffusion equation (1)
in the nonrelativistic case [501,502]. The present section intends to provide an overview over classical relativistic diffusion
models that have been discussed in the literature [10,23,27–29,337,366,367,379–381,391]. For this purpose, we first recall
basic properties of the Wiener (Gaussian) process, which constitutes the standard paradigm for nonrelativistic diffusions
in position space (Section 5.1). Subsequently, relativistic generalizations of the nonrelativistic diffusion equation (1) and/or
the nonrelativistic Gaussian diffusion propagator will be discussed [23].

5.1. Reminder: Nonrelativistic diffusion equation

We start by briefly summarizing a few relevant facts about the standard nonrelativistic diffusion equation [287,339,422,
502]

∂

∂t
" = D ∇2", t ≥ t0, (194)

where D > 0 denotes the spatial diffusion constant, and "(t, x) ≥ 0 the one-particle PDF for the particle positions
x ∈ Rd at time t . Within classical diffusion theory, Eq. (194) is postulated to describe the (overdamped) random motion
of a representative particle in a fluctuating environment (heat bath). In particular, Eq. (194) refers to the rest frame of the
bath.

There exist several well-known ways to motivate or derive the phenomenological diffusion equation (194) by means of
microscopic models (see, e.g., [287,339,422,502]). With regard to our subsequent discussion of relativistic alternatives, it is
useful to briefly consider a ‘hydrodynamic’ derivation [503], which starts from the continuity equation

∂

∂t
"(t, x) = −∇ · j(t, x), (195)

where j(t, x) denotes the current density vector. In order obtain a closed equation for the density ", the current j has to be
expressed in terms of ". One way of doing this is to postulate the following rather general ansatz {cf. Eq. (2.81) in [503]}

j(t, x) = −∇
∫ t

t0
dt ′ K(t − t ′) "(t ′, x), (196)

where, in general, K may be a memory kernel. However, considering for the moment the memory-less kernel function74

KF(t − t ′) := 2D δ(t − t ′), (197)
one finds

jF(t, x) = −D ∇"(t, x). (198)
Upon inserting this expression into the continuity equation (195), we recover the classical diffusion equation (194).

Now, it has been well-known for a long time that the diffusion equation (194) is in conflict with the postulates of special
relativity. To briefly illustrate this, we specialize to simplest case of d = 1 space dimensions, where ∇2 = ∂2/∂x2. In this
case, the propagator of Eq. (194) at times t > t0 is given by the Gaussian

p(t, x|t0, x0) =
[

1
4π D(t − t0)

]1/2

exp
[
− (x − x0)2

4D(t − t0)

]
. (199)

The propagator (199) represents the solution of Eq. (194) for the initial condition
"(t0, x) = δ(x − x0).

That is, if X(t) denotes the random path of a particle with fixed initial position X(t0) = x0, then p(t, x|t0, x0)dx gives

74 The factor ‘2’ in Eq. (197) appears because of the convention
∫ t
t0
dt ′ δ(t − t ′)f (t ′) = f (t)/2.

194 J Masoliver and G H Weiss

Figure 1. The development of the one-dimensional
solution to the telegrapher’s equation as a function of
time, showing the evolution from wave-like behaviour to
diffusive behaviour as well as the delta functions at the
extremes of p(x , t). The delta function contributions at
the endpoints are not included in the figure.

that the appropriate solution is a constant, µ1(t) = x0.
In a similar fashion we find that the second moment is
the solution to the equation

d2µ2

dt2
+ 1

T

dµ2

dt
= 2v2 (36)

subject to the initial conditions µ2(0) = x20 and
dµ2/dt |t=0 = 0. Again this simple differential equation
is readily solved, the solution being

µ2(t) = x20 + 2v2T [t − T (1− e−t/T )]. (37)

When t " T this becomes µ2(t) ≈ x20 + v2t2 consistent
with a wave propagating at uniform speed. In the
opposite limit, t $ T , µ2(t) ≈ 2v2T t which is the
result obtained from a diffusion process.

4. Boundary conditions

It is well known that the boundary condition for the
diffusion equation which corresponds to an absorbing
boundary is p(!, t) = 0, where ! consists of all points

on the boundary. Likewise the reflecting boundary
condition requires that the normal component of the flux
into the boundary should be equal to zero. Because
the property of persistence inherent in the telegrapher’s
equation is analogous to the physical property of
momentum it is necessary to take into account the
direction in which the particle is travelling in deriving
boundary conditions. The analysis directed at finding an
exact form of the resulting boundary conditions in one
dimension is based on an examination of the functions
an(j) and bn(j) in equations (13) and (14).
To determine the form of the boundary condition it

is sufficient to consider a single point j = 0 and a
persistent random walk on the half-line j ! 0, thereafter
passing to the continuum limit. We can derive several
types of boundary conditions by assuming that when a
random walker reaches j = 0 it is either trapped there
with probability θ , provided that it is moving towards
the exterior of the line segment, or else it is reflected
back to the point from which it came with probability
1 − θ . The case of θ %= 0 or 1 corresponds to what
is termed in chemical physics the radiation boundary
condition. Suppose that the particle is reflected back to
j = 1 at step n + 1. At this step it must have come
from j = 0, and at the immediately preceding step it
must have been at j = 1. Hence we have the boundary
condition

an+1(1) = (1− θ)bn(0) (38)

or, in the continuum limit a(0, t) = (1 − θ)b(0, t).
However, it is not this boundary condition that is
interesting but rather the boundary condition to be
imposed on the function p(x, t |x0). At the boundary
equation (38) implies that

p(0, t) = a(0, t) + b(0, t) = (2− θ)b(0, t). (39)

We also have the relation

a(0, t) − b(0, t) = θb(0, t) = θ

2− θ
p(0, t). (40)

We finally return to equations (17) and (18),
subtracting the latter from the former. In this way we
find that a − b is related to the total density by

∂

∂t
(a − b) = −v

∂p

∂x
− 1

T
(a − b), (41)

which is to be evaluated at x = 0. The combination
of equations (40) and (41) yields a single (radiation)
boundary condition, [7], for the function p(x, t |x0):

v
∂p

∂x

∣∣∣∣
x=0

= θ

2− θ

(
∂

∂t
+ 1

T

)
p

∣∣∣∣
x=0

. (42)

The two most common boundary conditions correspond
to absorption and reflection. The boundary condition in
the case of trapping requires setting θ equal to unity.
The resulting boundary condition is quite unlike that
in the case of the diffusion equation, since it includes
derivatives with respect to both t and x. Parenthetically
we note that the trapping boundary condition is also
equivalent to setting a(0, t) = 0 which is understandable
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that point on, nonrelativistic statistical mechanics emerges without much difficulty [287,288]. Unfortunately, the situation
becomes significantlymore complicated in the relativistic case:Due to their finite propagation speed, relativistic interactions
should be modeled by means of fields that can exchange energy with the particles [6]. These fields add an infinite number
of degrees of freedom to the particle system. Eliminating the field variables from the dynamical equations may be possible
in some cases, but this procedure typically leads to retardation effects, i.e., the particles’ equations of motions become non-
local in time [220,221,244,245,249,250]. Thus, in special relativity it is usually very difficult or even impossible to develop a
consistent field-free Hamilton formalism of interacting particles.

In spite of the difficulties impeding a rigorous treatment of classical relativistic many-particle systems, considerable
progresswasmade during the second half of the past century in constructing an approximate relativistic kinetic theory [167,
225,255,289–309] based on relativistic Boltzmann equations for the one-particle phase space probability density functions
(PDFs).9 From such a kinetic theory, it is only a relatively small step to formulating a theory of relativistic Brownian motion
processes in terms of Fokker–Planck equations and Langevin equations. While the relativistic Boltzmann equation [311,
312] is a nonlinear partial integro-differential equation for the PDF, Fokker–Planck equations are linear partial differential
equations and, therefore, can be more easily solved or analyzed [73].

The present article focuses primarily on relativistic stochastic processes that are characterized by linear evolution
equations for their respective one-particle (transition) PDFs. The corresponding phenomenological theory of relativistic
Brownian motion and diffusion processes has experienced considerable progress during the past decade, with applications
in various areas of high-energy physics [315–322] and astrophysics [323–327]. From a general perspective, relativistic
stochastic processes provide a useful approach whenever one has to model the quasi-random behavior of relativistic
particles in a complex environment. Therefore, it may be expected that relativistic Brownian motion and diffusion concepts
will play an increasingly important role in future investigations of, e.g., thermalization and relaxation processes in
astrophysics [323–326] or high-energy collision experiments [315,316,318,319,328,329].

1.2. Relativistic diffusion processes: Problems and general strategies

According to our knowledge, the first detailed mathematical studies on relativistic diffusion processes were performed
independently by Łopuszaǹski [330], Rudberg [331], and Schay [332] between 1953 and 1961. In the 1960s and 70s their
pioneering work was further elaborated by Dudley who published a series of papers [333–336] that aimed at providing
an axiomatic approach to Lorentz invariant Markov processes [74] in phase space. Independently, a similar program was
pursued by Hakim [220–222,337,338], whose insightful analysis helped to elucidate the conceptual subtleties of relativistic
stochastic processes [338]. Dudley (Theorem 11.3 in [333]) and Hakim (Proposition 2 in [338]) proved the non-existence of
nontrivial10 Lorentz invariant Markov processes in Minkowski spacetime, as already suggested by Łopuszaǹski [330]. This
fundamental result implies that it is difficult to find acceptable relativistic generalizations of the well-known nonrelativistic
diffusion equation [287,339]

∂

∂t
" = D ∇2", (1)

where D > 0 is the diffusion constant and "(t, x) ≥ 0 the PDF for the particle positions x ∈ Rd at time t . In order to
circumvent this ‘no-go’ theorem for relativistic Markov processes in spacetime, one usually adopts either of the following
two strategies11:
• One considers non-Markovian diffusion processes X(t) in Minkowski spacetime [10,23,365–367].
• One constructs relativistically acceptable Markov processes in phase space by considering not only the position

coordinate X(t) of the diffusing particle, but also its momentum coordinate P(t) [11–22,24,26,31,32,220–222,332–338].

1.2.1. Non-Markovian diffusion models in Minkowski spacetime
A commonly considered ‘relativistic’ generalization of Eq. (1) is the telegraph equation [10,365–367]
12

τv

∂2

∂t2
" + ∂

∂t
" = D ∇2", (2)

aimed at constructing a relativistic quantum theory for interactingmany-particle systems [250–253]. For a detailed discussion of relativistic many-particle
theory, we refer to the insightful considerations in the original papers of Van Dam andWigner [249,250] and Hakim [220–222,224] as well as to the recent
review by Hakim and Sivak [286].
9 Comprehensive introductions to relativistic Boltzmann equations can be found in the textbooks by Stewart [310], de Groot et al. [311], and Cercignani

and Kremer [312], or also in the reviews by Ehlers [313] and Andréasson [314].
10 A diffusion process is considered as ‘nontrivial’ if a typical path has a non-constant, non-vanishing velocity.
11 The mathematical interest in relativistic diffusion processes increased in the 1980s and 1990s, when several authors [340–362] considered the
possibility of extending Nelson’s stochastic quantization approach [363] to the framework of special relativity. These studies, although interesting from a
mathematical point of view, appear to have relatively little physical relevance because Nelson’s stochastic dynamics [363] fails to reproduce the correct
quantum correlation functions even in the nonrelativistic case [364].
12 Masoliver and Weiss [10] discuss several possibilities of deriving Eq. (2) from different underlying models.
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5. Non-Markovian diffusion processes in Minkowski spacetime

The preceding section has focused on relativistic Brownian motions in phase space. In the remainder we will discuss
relativistic diffusion models in Minkowski spacetime, i.e., continuous relativistic stochastic processes that do not explicitly
depend on the momentum coordinate. On the one hand, such spacetime processes may be constructed, for example, from
a Brownian motion process in phase space by integrating out the momentum coordinates. As a result of this averaging
procedure, the reduced process for the position coordinate will be non-Markovian. Alternatively, one can try to derive or
postulate a relativistic diffusion equation and/or diffusion propagators in spacetime on the basis of microscopic models [10,
28,153,366] or plausibility considerations [23]. Regardless of the approach adopted, in order to comply with the principles
of special relativity, the resulting spacetime process must be non-Markovian, in accordance with the results of Dudley
(Theorem11.3 in [333]) andHakim (Proposition 2 in [338]). Roughly speaking, thismeans that any relativistically acceptable
generalization of the classical diffusion equation (1) should be of at least second order in the time coordinate.

The construction and analysis of relativistic diffusion models in Minkowski spacetime poses an interesting problem
in its own right. Additionally, the investigation of these processes becomes relevant in view of potential analogies with
relativistic quantum theory [383,391], similar to the analogy between Schrödinger’s equation and the diffusion equation (1)
in the nonrelativistic case [501,502]. The present section intends to provide an overview over classical relativistic diffusion
models that have been discussed in the literature [10,23,27–29,337,366,367,379–381,391]. For this purpose, we first recall
basic properties of the Wiener (Gaussian) process, which constitutes the standard paradigm for nonrelativistic diffusions
in position space (Section 5.1). Subsequently, relativistic generalizations of the nonrelativistic diffusion equation (1) and/or
the nonrelativistic Gaussian diffusion propagator will be discussed [23].

5.1. Reminder: Nonrelativistic diffusion equation

We start by briefly summarizing a few relevant facts about the standard nonrelativistic diffusion equation [287,339,422,
502]

∂

∂t
" = D ∇2", t ≥ t0, (194)

where D > 0 denotes the spatial diffusion constant, and "(t, x) ≥ 0 the one-particle PDF for the particle positions
x ∈ Rd at time t . Within classical diffusion theory, Eq. (194) is postulated to describe the (overdamped) random motion
of a representative particle in a fluctuating environment (heat bath). In particular, Eq. (194) refers to the rest frame of the
bath.

There exist several well-known ways to motivate or derive the phenomenological diffusion equation (194) by means of
microscopic models (see, e.g., [287,339,422,502]). With regard to our subsequent discussion of relativistic alternatives, it is
useful to briefly consider a ‘hydrodynamic’ derivation [503], which starts from the continuity equation

∂

∂t
"(t, x) = −∇ · j(t, x), (195)

where j(t, x) denotes the current density vector. In order obtain a closed equation for the density ", the current j has to be
expressed in terms of ". One way of doing this is to postulate the following rather general ansatz {cf. Eq. (2.81) in [503]}

j(t, x) = −∇
∫ t

t0
dt ′ K(t − t ′) "(t ′, x), (196)

where, in general, K may be a memory kernel. However, considering for the moment the memory-less kernel function74

KF(t − t ′) := 2D δ(t − t ′), (197)
one finds

jF(t, x) = −D ∇"(t, x). (198)
Upon inserting this expression into the continuity equation (195), we recover the classical diffusion equation (194).

Now, it has been well-known for a long time that the diffusion equation (194) is in conflict with the postulates of special
relativity. To briefly illustrate this, we specialize to simplest case of d = 1 space dimensions, where ∇2 = ∂2/∂x2. In this
case, the propagator of Eq. (194) at times t > t0 is given by the Gaussian

p(t, x|t0, x0) =
[

1
4π D(t − t0)

]1/2

exp
[
− (x − x0)2

4D(t − t0)

]
. (199)

The propagator (199) represents the solution of Eq. (194) for the initial condition
"(t0, x) = δ(x − x0).

That is, if X(t) denotes the random path of a particle with fixed initial position X(t0) = x0, then p(t, x|t0, x0)dx gives

74 The factor ‘2’ in Eq. (197) appears because of the convention
∫ t
t0
dt ′ δ(t − t ′)f (t ′) = f (t)/2.

194 J Masoliver and G H Weiss

Figure 1. The development of the one-dimensional
solution to the telegrapher’s equation as a function of
time, showing the evolution from wave-like behaviour to
diffusive behaviour as well as the delta functions at the
extremes of p(x , t). The delta function contributions at
the endpoints are not included in the figure.

that the appropriate solution is a constant, µ1(t) = x0.
In a similar fashion we find that the second moment is
the solution to the equation

d2µ2

dt2
+ 1

T

dµ2

dt
= 2v2 (36)

subject to the initial conditions µ2(0) = x20 and
dµ2/dt |t=0 = 0. Again this simple differential equation
is readily solved, the solution being

µ2(t) = x20 + 2v2T [t − T (1− e−t/T )]. (37)

When t " T this becomes µ2(t) ≈ x20 + v2t2 consistent
with a wave propagating at uniform speed. In the
opposite limit, t $ T , µ2(t) ≈ 2v2T t which is the
result obtained from a diffusion process.

4. Boundary conditions

It is well known that the boundary condition for the
diffusion equation which corresponds to an absorbing
boundary is p(!, t) = 0, where ! consists of all points

on the boundary. Likewise the reflecting boundary
condition requires that the normal component of the flux
into the boundary should be equal to zero. Because
the property of persistence inherent in the telegrapher’s
equation is analogous to the physical property of
momentum it is necessary to take into account the
direction in which the particle is travelling in deriving
boundary conditions. The analysis directed at finding an
exact form of the resulting boundary conditions in one
dimension is based on an examination of the functions
an(j) and bn(j) in equations (13) and (14).
To determine the form of the boundary condition it

is sufficient to consider a single point j = 0 and a
persistent random walk on the half-line j ! 0, thereafter
passing to the continuum limit. We can derive several
types of boundary conditions by assuming that when a
random walker reaches j = 0 it is either trapped there
with probability θ , provided that it is moving towards
the exterior of the line segment, or else it is reflected
back to the point from which it came with probability
1 − θ . The case of θ %= 0 or 1 corresponds to what
is termed in chemical physics the radiation boundary
condition. Suppose that the particle is reflected back to
j = 1 at step n + 1. At this step it must have come
from j = 0, and at the immediately preceding step it
must have been at j = 1. Hence we have the boundary
condition

an+1(1) = (1− θ)bn(0) (38)

or, in the continuum limit a(0, t) = (1 − θ)b(0, t).
However, it is not this boundary condition that is
interesting but rather the boundary condition to be
imposed on the function p(x, t |x0). At the boundary
equation (38) implies that

p(0, t) = a(0, t) + b(0, t) = (2− θ)b(0, t). (39)

We also have the relation

a(0, t) − b(0, t) = θb(0, t) = θ

2− θ
p(0, t). (40)

We finally return to equations (17) and (18),
subtracting the latter from the former. In this way we
find that a − b is related to the total density by

∂

∂t
(a − b) = −v

∂p

∂x
− 1

T
(a − b), (41)

which is to be evaluated at x = 0. The combination
of equations (40) and (41) yields a single (radiation)
boundary condition, [7], for the function p(x, t |x0):

v
∂p

∂x

∣∣∣∣
x=0

= θ

2− θ

(
∂

∂t
+ 1

T

)
p

∣∣∣∣
x=0

. (42)

The two most common boundary conditions correspond
to absorption and reflection. The boundary condition in
the case of trapping requires setting θ equal to unity.
The resulting boundary condition is quite unlike that
in the case of the diffusion equation, since it includes
derivatives with respect to both t and x. Parenthetically
we note that the trapping boundary condition is also
equivalent to setting a(0, t) = 0 which is understandable
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that point on, nonrelativistic statistical mechanics emerges without much difficulty [287,288]. Unfortunately, the situation
becomes significantlymore complicated in the relativistic case:Due to their finite propagation speed, relativistic interactions
should be modeled by means of fields that can exchange energy with the particles [6]. These fields add an infinite number
of degrees of freedom to the particle system. Eliminating the field variables from the dynamical equations may be possible
in some cases, but this procedure typically leads to retardation effects, i.e., the particles’ equations of motions become non-
local in time [220,221,244,245,249,250]. Thus, in special relativity it is usually very difficult or even impossible to develop a
consistent field-free Hamilton formalism of interacting particles.

In spite of the difficulties impeding a rigorous treatment of classical relativistic many-particle systems, considerable
progresswasmade during the second half of the past century in constructing an approximate relativistic kinetic theory [167,
225,255,289–309] based on relativistic Boltzmann equations for the one-particle phase space probability density functions
(PDFs).9 From such a kinetic theory, it is only a relatively small step to formulating a theory of relativistic Brownian motion
processes in terms of Fokker–Planck equations and Langevin equations. While the relativistic Boltzmann equation [311,
312] is a nonlinear partial integro-differential equation for the PDF, Fokker–Planck equations are linear partial differential
equations and, therefore, can be more easily solved or analyzed [73].

The present article focuses primarily on relativistic stochastic processes that are characterized by linear evolution
equations for their respective one-particle (transition) PDFs. The corresponding phenomenological theory of relativistic
Brownian motion and diffusion processes has experienced considerable progress during the past decade, with applications
in various areas of high-energy physics [315–322] and astrophysics [323–327]. From a general perspective, relativistic
stochastic processes provide a useful approach whenever one has to model the quasi-random behavior of relativistic
particles in a complex environment. Therefore, it may be expected that relativistic Brownian motion and diffusion concepts
will play an increasingly important role in future investigations of, e.g., thermalization and relaxation processes in
astrophysics [323–326] or high-energy collision experiments [315,316,318,319,328,329].

1.2. Relativistic diffusion processes: Problems and general strategies

According to our knowledge, the first detailed mathematical studies on relativistic diffusion processes were performed
independently by Łopuszaǹski [330], Rudberg [331], and Schay [332] between 1953 and 1961. In the 1960s and 70s their
pioneering work was further elaborated by Dudley who published a series of papers [333–336] that aimed at providing
an axiomatic approach to Lorentz invariant Markov processes [74] in phase space. Independently, a similar program was
pursued by Hakim [220–222,337,338], whose insightful analysis helped to elucidate the conceptual subtleties of relativistic
stochastic processes [338]. Dudley (Theorem 11.3 in [333]) and Hakim (Proposition 2 in [338]) proved the non-existence of
nontrivial10 Lorentz invariant Markov processes in Minkowski spacetime, as already suggested by Łopuszaǹski [330]. This
fundamental result implies that it is difficult to find acceptable relativistic generalizations of the well-known nonrelativistic
diffusion equation [287,339]

∂

∂t
" = D ∇2", (1)

where D > 0 is the diffusion constant and "(t, x) ≥ 0 the PDF for the particle positions x ∈ Rd at time t . In order to
circumvent this ‘no-go’ theorem for relativistic Markov processes in spacetime, one usually adopts either of the following
two strategies11:
• One considers non-Markovian diffusion processes X(t) in Minkowski spacetime [10,23,365–367].
• One constructs relativistically acceptable Markov processes in phase space by considering not only the position

coordinate X(t) of the diffusing particle, but also its momentum coordinate P(t) [11–22,24,26,31,32,220–222,332–338].

1.2.1. Non-Markovian diffusion models in Minkowski spacetime
A commonly considered ‘relativistic’ generalization of Eq. (1) is the telegraph equation [10,365–367]
12

τv

∂2

∂t2
" + ∂

∂t
" = D ∇2", (2)

aimed at constructing a relativistic quantum theory for interactingmany-particle systems [250–253]. For a detailed discussion of relativistic many-particle
theory, we refer to the insightful considerations in the original papers of Van Dam andWigner [249,250] and Hakim [220–222,224] as well as to the recent
review by Hakim and Sivak [286].
9 Comprehensive introductions to relativistic Boltzmann equations can be found in the textbooks by Stewart [310], de Groot et al. [311], and Cercignani

and Kremer [312], or also in the reviews by Ehlers [313] and Andréasson [314].
10 A diffusion process is considered as ‘nontrivial’ if a typical path has a non-constant, non-vanishing velocity.
11 The mathematical interest in relativistic diffusion processes increased in the 1980s and 1990s, when several authors [340–362] considered the
possibility of extending Nelson’s stochastic quantization approach [363] to the framework of special relativity. These studies, although interesting from a
mathematical point of view, appear to have relatively little physical relevance because Nelson’s stochastic dynamics [363] fails to reproduce the correct
quantum correlation functions even in the nonrelativistic case [364].
12 Masoliver and Weiss [10] discuss several possibilities of deriving Eq. (2) from different underlying models.
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5. Non-Markovian diffusion processes in Minkowski spacetime

The preceding section has focused on relativistic Brownian motions in phase space. In the remainder we will discuss
relativistic diffusion models in Minkowski spacetime, i.e., continuous relativistic stochastic processes that do not explicitly
depend on the momentum coordinate. On the one hand, such spacetime processes may be constructed, for example, from
a Brownian motion process in phase space by integrating out the momentum coordinates. As a result of this averaging
procedure, the reduced process for the position coordinate will be non-Markovian. Alternatively, one can try to derive or
postulate a relativistic diffusion equation and/or diffusion propagators in spacetime on the basis of microscopic models [10,
28,153,366] or plausibility considerations [23]. Regardless of the approach adopted, in order to comply with the principles
of special relativity, the resulting spacetime process must be non-Markovian, in accordance with the results of Dudley
(Theorem11.3 in [333]) andHakim (Proposition 2 in [338]). Roughly speaking, thismeans that any relativistically acceptable
generalization of the classical diffusion equation (1) should be of at least second order in the time coordinate.

The construction and analysis of relativistic diffusion models in Minkowski spacetime poses an interesting problem
in its own right. Additionally, the investigation of these processes becomes relevant in view of potential analogies with
relativistic quantum theory [383,391], similar to the analogy between Schrödinger’s equation and the diffusion equation (1)
in the nonrelativistic case [501,502]. The present section intends to provide an overview over classical relativistic diffusion
models that have been discussed in the literature [10,23,27–29,337,366,367,379–381,391]. For this purpose, we first recall
basic properties of the Wiener (Gaussian) process, which constitutes the standard paradigm for nonrelativistic diffusions
in position space (Section 5.1). Subsequently, relativistic generalizations of the nonrelativistic diffusion equation (1) and/or
the nonrelativistic Gaussian diffusion propagator will be discussed [23].

5.1. Reminder: Nonrelativistic diffusion equation

We start by briefly summarizing a few relevant facts about the standard nonrelativistic diffusion equation [287,339,422,
502]

∂

∂t
" = D ∇2", t ≥ t0, (194)

where D > 0 denotes the spatial diffusion constant, and "(t, x) ≥ 0 the one-particle PDF for the particle positions
x ∈ Rd at time t . Within classical diffusion theory, Eq. (194) is postulated to describe the (overdamped) random motion
of a representative particle in a fluctuating environment (heat bath). In particular, Eq. (194) refers to the rest frame of the
bath.

There exist several well-known ways to motivate or derive the phenomenological diffusion equation (194) by means of
microscopic models (see, e.g., [287,339,422,502]). With regard to our subsequent discussion of relativistic alternatives, it is
useful to briefly consider a ‘hydrodynamic’ derivation [503], which starts from the continuity equation

∂

∂t
"(t, x) = −∇ · j(t, x), (195)

where j(t, x) denotes the current density vector. In order obtain a closed equation for the density ", the current j has to be
expressed in terms of ". One way of doing this is to postulate the following rather general ansatz {cf. Eq. (2.81) in [503]}

j(t, x) = −∇
∫ t

t0
dt ′ K(t − t ′) "(t ′, x), (196)

where, in general, K may be a memory kernel. However, considering for the moment the memory-less kernel function74

KF(t − t ′) := 2D δ(t − t ′), (197)
one finds

jF(t, x) = −D ∇"(t, x). (198)
Upon inserting this expression into the continuity equation (195), we recover the classical diffusion equation (194).

Now, it has been well-known for a long time that the diffusion equation (194) is in conflict with the postulates of special
relativity. To briefly illustrate this, we specialize to simplest case of d = 1 space dimensions, where ∇2 = ∂2/∂x2. In this
case, the propagator of Eq. (194) at times t > t0 is given by the Gaussian

p(t, x|t0, x0) =
[

1
4π D(t − t0)

]1/2

exp
[
− (x − x0)2

4D(t − t0)

]
. (199)

The propagator (199) represents the solution of Eq. (194) for the initial condition
"(t0, x) = δ(x − x0).

That is, if X(t) denotes the random path of a particle with fixed initial position X(t0) = x0, then p(t, x|t0, x0)dx gives

74 The factor ‘2’ in Eq. (197) appears because of the convention
∫ t
t0
dt ′ δ(t − t ′)f (t ′) = f (t)/2.
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Figure 1. The development of the one-dimensional
solution to the telegrapher’s equation as a function of
time, showing the evolution from wave-like behaviour to
diffusive behaviour as well as the delta functions at the
extremes of p(x , t). The delta function contributions at
the endpoints are not included in the figure.

that the appropriate solution is a constant, µ1(t) = x0.
In a similar fashion we find that the second moment is
the solution to the equation

d2µ2

dt2
+ 1

T

dµ2

dt
= 2v2 (36)

subject to the initial conditions µ2(0) = x20 and
dµ2/dt |t=0 = 0. Again this simple differential equation
is readily solved, the solution being

µ2(t) = x20 + 2v2T [t − T (1− e−t/T )]. (37)

When t " T this becomes µ2(t) ≈ x20 + v2t2 consistent
with a wave propagating at uniform speed. In the
opposite limit, t $ T , µ2(t) ≈ 2v2T t which is the
result obtained from a diffusion process.

4. Boundary conditions

It is well known that the boundary condition for the
diffusion equation which corresponds to an absorbing
boundary is p(!, t) = 0, where ! consists of all points

on the boundary. Likewise the reflecting boundary
condition requires that the normal component of the flux
into the boundary should be equal to zero. Because
the property of persistence inherent in the telegrapher’s
equation is analogous to the physical property of
momentum it is necessary to take into account the
direction in which the particle is travelling in deriving
boundary conditions. The analysis directed at finding an
exact form of the resulting boundary conditions in one
dimension is based on an examination of the functions
an(j) and bn(j) in equations (13) and (14).
To determine the form of the boundary condition it

is sufficient to consider a single point j = 0 and a
persistent random walk on the half-line j ! 0, thereafter
passing to the continuum limit. We can derive several
types of boundary conditions by assuming that when a
random walker reaches j = 0 it is either trapped there
with probability θ , provided that it is moving towards
the exterior of the line segment, or else it is reflected
back to the point from which it came with probability
1 − θ . The case of θ %= 0 or 1 corresponds to what
is termed in chemical physics the radiation boundary
condition. Suppose that the particle is reflected back to
j = 1 at step n + 1. At this step it must have come
from j = 0, and at the immediately preceding step it
must have been at j = 1. Hence we have the boundary
condition

an+1(1) = (1− θ)bn(0) (38)

or, in the continuum limit a(0, t) = (1 − θ)b(0, t).
However, it is not this boundary condition that is
interesting but rather the boundary condition to be
imposed on the function p(x, t |x0). At the boundary
equation (38) implies that

p(0, t) = a(0, t) + b(0, t) = (2− θ)b(0, t). (39)

We also have the relation

a(0, t) − b(0, t) = θb(0, t) = θ

2− θ
p(0, t). (40)

We finally return to equations (17) and (18),
subtracting the latter from the former. In this way we
find that a − b is related to the total density by

∂

∂t
(a − b) = −v

∂p

∂x
− 1

T
(a − b), (41)

which is to be evaluated at x = 0. The combination
of equations (40) and (41) yields a single (radiation)
boundary condition, [7], for the function p(x, t |x0):

v
∂p

∂x

∣∣∣∣
x=0

= θ

2− θ

(
∂

∂t
+ 1

T

)
p

∣∣∣∣
x=0

. (42)

The two most common boundary conditions correspond
to absorption and reflection. The boundary condition in
the case of trapping requires setting θ equal to unity.
The resulting boundary condition is quite unlike that
in the case of the diffusion equation, since it includes
derivatives with respect to both t and x. Parenthetically
we note that the trapping boundary condition is also
equivalent to setting a(0, t) = 0 which is understandable
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Similarly, the singular diffusion fronts predicted by Eq. (209) represent a source of concern if one wishes to adopt the
telegraph equation (206) as amodel for particle transport in a randommedium.While these singularities may be acceptable
in the case of photon diffusion [371–375], they seem unrealistic for massive particles, because such fronts would imply that
a finite fraction of particles carries a huge amount of kinetic energy (much larger thanmc2). In view of these shortcomings, it
appears reasonable to explore other constructions of relativistic diffusion processes [23,390]. In the next part wewill discuss
a different approach [23] that may provide a viable alternative to the solutions of the telegraph equation.

5.3. Relativistic diffusion propagator

In principle, one can distinguish two different routes towards constructing relativistic diffusion processes: One can either
try to find an acceptable relativistic diffusion equation, or one can focus directly on the structure of the diffusion propagator.
In the present part we shall consider the latter approach [23]. The basic idea is to rewrite the nonrelativistic diffusion
propagator (199) in such a form that its relativistic generalization follows in a straightforwardmanner. This can be achieved
be re-expressing Eq. (199) in terms of an integral-over-actions.

For this purpose, we consider a nonrelativistic particle traveling from the event x̄0 = (t0, x0) to x̄ = (t, x) and assume
that the particle can experience multiple scatterings on its way, and that the velocity is approximately constant between
two successive scattering events. Then the total action (per mass) required along the path is given by

a(x̄|x̄0) = 1
2

∫ t

t0
dt ′ v(t ′)2, (213)

where the velocity v(t ′) is a piecewise constant function, satisfying

x = x0 +
∫ t

t0
dt ′ v(t ′). (214)

Clearly, the nonrelativistic action (213) becomes minimal for the deterministic (direct) path, i.e., if the particle does not
collide at all. In this case, it moves with constant velocity v(t ′) ≡ (x − x0)/(t − t0) for all t ′ ∈ [t0, t], yielding the smallest
possible action value

a−(x̄|x̄0) = (x − x0)2

2(t − t0)
. (215)

On the other hand, to match the boundary conditions it is merely required that the mean velocity equals (x − x0)/(t − t0).
Consequently, in the nonrelativistic case, the absolute velocity of a particle may become arbitrarily large during some
intermediate time interval [t ′, t ′′] ⊂[ t0, t]. Hence, the largest possible action value is a+(x̄, x̄0) = +∞. These considerations
put us in the position to rewrite the Wiener propagator (199) as an integral-over-actions:

p(x̄|x̄0) ∝
∫ a+(x̄|x̄0)

a−(x̄|x̄0)
da exp

(
− a

2D

)
, (216a)

supplemented by the normalization condition

1 =
∫

dx p(x̄|x̄0). (216b)

The representation (216)may be generalized to the relativistic case in a straightforwardmanner: Onemerely needs to insert
the corresponding relativistic expressions into the boundaries of the integral (216a). A commonly considered relativistic
generalization of Eq. (213), based on the particle’s proper time, reads [6]

a(x̄|x̄0) = −
∫ t

t0
dt ′

[
1 − v(t ′)2

]1/2
. (217)

Analogous to the nonrelativistic case, the relativistic action (217) assumes its minimum a− for the deterministic (direct)
path from x0 to x, characterized by a constant velocity v(t ′) ≡ (x − x0)/(t − t0). One explicitly obtains

a−(x̄|x̄0) = −
[
(t − t0)2 − (x − x0)2

]1/2
, (218a)

i.e., a− is the negative Minkowski distance of the two spacetime events x̄0 and x̄. The maximum action value a+ = 0 is
realized for particles that move at light speed.79 Hence, the transition PDF for the relativistic generalization of the Wiener
process reads

p(x̄|x̄0) = N −1
{
exp

[
−a−(x̄, x̄0)

2D

]
− 1

}
, (218b)

if (x − x0)2 ≤ (t − t0)2, and p(x̄|x̄0) ≡ 0 otherwise, with a− determined by Eq. (218a).

79 In general, particles must undergo reflections in order to match the spatial boundary conditions.

DPG, March 2010Relativistic TD & BM
 

Diffusion:  space-time only

Author's personal copy

J. Dunkel, P. Hänggi / Physics Reports 471 (2009) 1–73 5

that point on, nonrelativistic statistical mechanics emerges without much difficulty [287,288]. Unfortunately, the situation
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should be modeled by means of fields that can exchange energy with the particles [6]. These fields add an infinite number
of degrees of freedom to the particle system. Eliminating the field variables from the dynamical equations may be possible
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consistent field-free Hamilton formalism of interacting particles.
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312] is a nonlinear partial integro-differential equation for the PDF, Fokker–Planck equations are linear partial differential
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stochastic processes provide a useful approach whenever one has to model the quasi-random behavior of relativistic
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∂

∂t
" = D ∇2", (1)

where D > 0 is the diffusion constant and "(t, x) ≥ 0 the PDF for the particle positions x ∈ Rd at time t . In order to
circumvent this ‘no-go’ theorem for relativistic Markov processes in spacetime, one usually adopts either of the following
two strategies11:
• One considers non-Markovian diffusion processes X(t) in Minkowski spacetime [10,23,365–367].
• One constructs relativistically acceptable Markov processes in phase space by considering not only the position

coordinate X(t) of the diffusing particle, but also its momentum coordinate P(t) [11–22,24,26,31,32,220–222,332–338].

1.2.1. Non-Markovian diffusion models in Minkowski spacetime
A commonly considered ‘relativistic’ generalization of Eq. (1) is the telegraph equation [10,365–367]
12

τv

∂2

∂t2
" + ∂

∂t
" = D ∇2", (2)

aimed at constructing a relativistic quantum theory for interactingmany-particle systems [250–253]. For a detailed discussion of relativistic many-particle
theory, we refer to the insightful considerations in the original papers of Van Dam andWigner [249,250] and Hakim [220–222,224] as well as to the recent
review by Hakim and Sivak [286].
9 Comprehensive introductions to relativistic Boltzmann equations can be found in the textbooks by Stewart [310], de Groot et al. [311], and Cercignani

and Kremer [312], or also in the reviews by Ehlers [313] and Andréasson [314].
10 A diffusion process is considered as ‘nontrivial’ if a typical path has a non-constant, non-vanishing velocity.
11 The mathematical interest in relativistic diffusion processes increased in the 1980s and 1990s, when several authors [340–362] considered the
possibility of extending Nelson’s stochastic quantization approach [363] to the framework of special relativity. These studies, although interesting from a
mathematical point of view, appear to have relatively little physical relevance because Nelson’s stochastic dynamics [363] fails to reproduce the correct
quantum correlation functions even in the nonrelativistic case [364].
12 Masoliver and Weiss [10] discuss several possibilities of deriving Eq. (2) from different underlying models.
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Similarly, the singular diffusion fronts predicted by Eq. (209) represent a source of concern if one wishes to adopt the
telegraph equation (206) as amodel for particle transport in a randommedium.While these singularities may be acceptable
in the case of photon diffusion [371–375], they seem unrealistic for massive particles, because such fronts would imply that
a finite fraction of particles carries a huge amount of kinetic energy (much larger thanmc2). In view of these shortcomings, it
appears reasonable to explore other constructions of relativistic diffusion processes [23,390]. In the next part wewill discuss
a different approach [23] that may provide a viable alternative to the solutions of the telegraph equation.

5.3. Relativistic diffusion propagator

In principle, one can distinguish two different routes towards constructing relativistic diffusion processes: One can either
try to find an acceptable relativistic diffusion equation, or one can focus directly on the structure of the diffusion propagator.
In the present part we shall consider the latter approach [23]. The basic idea is to rewrite the nonrelativistic diffusion
propagator (199) in such a form that its relativistic generalization follows in a straightforwardmanner. This can be achieved
be re-expressing Eq. (199) in terms of an integral-over-actions.

For this purpose, we consider a nonrelativistic particle traveling from the event x̄0 = (t0, x0) to x̄ = (t, x) and assume
that the particle can experience multiple scatterings on its way, and that the velocity is approximately constant between
two successive scattering events. Then the total action (per mass) required along the path is given by

a(x̄|x̄0) = 1
2

∫ t

t0
dt ′ v(t ′)2, (213)

where the velocity v(t ′) is a piecewise constant function, satisfying

x = x0 +
∫ t

t0
dt ′ v(t ′). (214)

Clearly, the nonrelativistic action (213) becomes minimal for the deterministic (direct) path, i.e., if the particle does not
collide at all. In this case, it moves with constant velocity v(t ′) ≡ (x − x0)/(t − t0) for all t ′ ∈ [t0, t], yielding the smallest
possible action value

a−(x̄|x̄0) = (x − x0)2

2(t − t0)
. (215)

On the other hand, to match the boundary conditions it is merely required that the mean velocity equals (x − x0)/(t − t0).
Consequently, in the nonrelativistic case, the absolute velocity of a particle may become arbitrarily large during some
intermediate time interval [t ′, t ′′] ⊂[ t0, t]. Hence, the largest possible action value is a+(x̄, x̄0) = +∞. These considerations
put us in the position to rewrite the Wiener propagator (199) as an integral-over-actions:

p(x̄|x̄0) ∝
∫ a+(x̄|x̄0)

a−(x̄|x̄0)
da exp

(
− a

2D

)
, (216a)

supplemented by the normalization condition

1 =
∫

dx p(x̄|x̄0). (216b)

The representation (216)may be generalized to the relativistic case in a straightforwardmanner: Onemerely needs to insert
the corresponding relativistic expressions into the boundaries of the integral (216a). A commonly considered relativistic
generalization of Eq. (213), based on the particle’s proper time, reads [6]

a(x̄|x̄0) = −
∫ t

t0
dt ′

[
1 − v(t ′)2

]1/2
. (217)

Analogous to the nonrelativistic case, the relativistic action (217) assumes its minimum a− for the deterministic (direct)
path from x0 to x, characterized by a constant velocity v(t ′) ≡ (x − x0)/(t − t0). One explicitly obtains

a−(x̄|x̄0) = −
[
(t − t0)2 − (x − x0)2

]1/2
, (218a)

i.e., a− is the negative Minkowski distance of the two spacetime events x̄0 and x̄. The maximum action value a+ = 0 is
realized for particles that move at light speed.79 Hence, the transition PDF for the relativistic generalization of the Wiener
process reads

p(x̄|x̄0) = N −1
{
exp

[
−a−(x̄, x̄0)

2D

]
− 1

}
, (218b)

if (x − x0)2 ≤ (t − t0)2, and p(x̄|x̄0) ≡ 0 otherwise, with a− determined by Eq. (218a).

79 In general, particles must undergo reflections in order to match the spatial boundary conditions.
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Fig. 10. Spreading of the Gaussian PDF !(t, x) = p(t, x|0, 0) from Eq. (199) at different times t , where t is measured in units of D/c2. At initial time
t = t0 = 0, the PDF corresponds to a δ-function centered at the origin.

the probability that the particle is found in the infinitesimal volume element [x, x + dx] at time t > t0. As evident from
Eq. (199), for each t > t0 there is a small, but non-vanishing probability that the particle may be observed at distances
|x − x0| > c(t − t0), where c = 1 is the speed of light in natural units. The evolution of the nonrelativistic Gaussian PDF
from Eq. (199) is depicted in Fig. 10.

It is worthwhile to summarize a few essential properties of Eqs. (194) and (199): Eq. (194) is a linear parabolic partial
differential equation. Due to the linearity,more general solutionsmay be constructed by superpositioning, i.e., by integrating
the solution (199) over some given initial PDF !0(x0). Eq. (194) describes a Markov process which means that the transition
PDF (199) satisfies the Chapman–Kolmogoroff criterion

p(t, x|t0, x0) =
∫

R
dx1 p(t, x|t1, x1) p(t1, x1|t0, x0) (200)

for all t1 ∈ (t0, t). The corresponding diffusion process X(t) can be characterized in terms of the following SDE:

dX(t) = (2D)1/2 ∗ dB(t), X(t0) = x0, (201)
where B(t) is a standard Wiener process as defined in Section 2.1.2. Formally, Eq. (201) may be obtained from the Langevin
equations (22) of the classical Ornstein–Uhlenbeck process with F ≡ 0 as follows: First we rewrite Eq. (22b) as

dV (t)
α

= −Vdt +
(

2D0

M2α2

)1/2

∗ dB(t). (202)

Upon letting α → ∞ and D0 → ∞ such that D = D0/(αM)2 remains constant, the lhs. of Eq. (202) should become
negligible. Then, by making use of dX = Vdt , Eq. (201) is recovered.75 This limiting procedure defines the so-called
overdamped regime of the Ornstein–Uhlenbeck process. The mean square displacement of the overdamped process (201)
is given by [287]

〈
[X(t) − X(t0)]2

〉
:=

∫
dx (x − x0)2 p(t, x|t0, x0)

= 2D (t − t0), (203)
qualitatively similar to the asymptotic behavior of the classical Ornstein–Uhlenbeck process; cf. Eq. (25). Finally, we note
that the solution of Eq. (194) with initial condition

!(t0, x) ≡ !0(x), (204)
can be expressed in terms of the Feynman–Kac formula [74,76]

!(t, x) =
〈
!0

(
x + (2D)1/2B(t)

)〉
, (205)

where 〈 · 〉 indicates an averagewith respect to theWienermeasure of the standardWiener processB(t)with initial condition
B(t0) = 0. Equation (205) yields an efficient Monte-Carlo simulation scheme for computing the solutions of the diffusion
equation (194) for a broad class of initial distributions !0.

5.2. Telegraph equation

The problem of constructing continuous diffusion models which, in contrast to the classical nonrelativistic equations
(194) and (199), avoid superluminal velocities, has attracted considerable interest over the past years [10,23,27–29,327,337,
366,367,379–381,391]. Nonetheless, it seems fair to say that a commonly accepted solution is still outstanding. Apart from

75 Debbasch and Rivet [12] discuss the difficulties that arise when attempting a similar reduction for the relativistic Ornstein–Uhlenbeck process.
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Similarly, the singular diffusion fronts predicted by Eq. (209) represent a source of concern if one wishes to adopt the
telegraph equation (206) as amodel for particle transport in a randommedium.While these singularities may be acceptable
in the case of photon diffusion [371–375], they seem unrealistic for massive particles, because such fronts would imply that
a finite fraction of particles carries a huge amount of kinetic energy (much larger thanmc2). In view of these shortcomings, it
appears reasonable to explore other constructions of relativistic diffusion processes [23,390]. In the next part wewill discuss
a different approach [23] that may provide a viable alternative to the solutions of the telegraph equation.

5.3. Relativistic diffusion propagator

In principle, one can distinguish two different routes towards constructing relativistic diffusion processes: One can either
try to find an acceptable relativistic diffusion equation, or one can focus directly on the structure of the diffusion propagator.
In the present part we shall consider the latter approach [23]. The basic idea is to rewrite the nonrelativistic diffusion
propagator (199) in such a form that its relativistic generalization follows in a straightforwardmanner. This can be achieved
be re-expressing Eq. (199) in terms of an integral-over-actions.

For this purpose, we consider a nonrelativistic particle traveling from the event x̄0 = (t0, x0) to x̄ = (t, x) and assume
that the particle can experience multiple scatterings on its way, and that the velocity is approximately constant between
two successive scattering events. Then the total action (per mass) required along the path is given by

a(x̄|x̄0) = 1
2

∫ t

t0
dt ′ v(t ′)2, (213)

where the velocity v(t ′) is a piecewise constant function, satisfying

x = x0 +
∫ t

t0
dt ′ v(t ′). (214)

Clearly, the nonrelativistic action (213) becomes minimal for the deterministic (direct) path, i.e., if the particle does not
collide at all. In this case, it moves with constant velocity v(t ′) ≡ (x − x0)/(t − t0) for all t ′ ∈ [t0, t], yielding the smallest
possible action value

a−(x̄|x̄0) = (x − x0)2

2(t − t0)
. (215)

On the other hand, to match the boundary conditions it is merely required that the mean velocity equals (x − x0)/(t − t0).
Consequently, in the nonrelativistic case, the absolute velocity of a particle may become arbitrarily large during some
intermediate time interval [t ′, t ′′] ⊂[ t0, t]. Hence, the largest possible action value is a+(x̄, x̄0) = +∞. These considerations
put us in the position to rewrite the Wiener propagator (199) as an integral-over-actions:

p(x̄|x̄0) ∝
∫ a+(x̄|x̄0)

a−(x̄|x̄0)
da exp

(
− a

2D

)
, (216a)

supplemented by the normalization condition

1 =
∫

dx p(x̄|x̄0). (216b)

The representation (216)may be generalized to the relativistic case in a straightforwardmanner: Onemerely needs to insert
the corresponding relativistic expressions into the boundaries of the integral (216a). A commonly considered relativistic
generalization of Eq. (213), based on the particle’s proper time, reads [6]

a(x̄|x̄0) = −
∫ t

t0
dt ′

[
1 − v(t ′)2

]1/2
. (217)

Analogous to the nonrelativistic case, the relativistic action (217) assumes its minimum a− for the deterministic (direct)
path from x0 to x, characterized by a constant velocity v(t ′) ≡ (x − x0)/(t − t0). One explicitly obtains

a−(x̄|x̄0) = −
[
(t − t0)2 − (x − x0)2

]1/2
, (218a)

i.e., a− is the negative Minkowski distance of the two spacetime events x̄0 and x̄. The maximum action value a+ = 0 is
realized for particles that move at light speed.79 Hence, the transition PDF for the relativistic generalization of the Wiener
process reads

p(x̄|x̄0) = N −1
{
exp

[
−a−(x̄, x̄0)

2D

]
− 1

}
, (218b)

if (x − x0)2 ≤ (t − t0)2, and p(x̄|x̄0) ≡ 0 otherwise, with a− determined by Eq. (218a).

79 In general, particles must undergo reflections in order to match the spatial boundary conditions.
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Fig. 11. Transition PDF !(t, x) = p(t, x|0, 0) for the one-dimensional (d = 1) relativistic diffusion process (218) at different times t (measured in units of
D/c2). At time t = t0 = 0, the function !(t, x) reduces to a δ-function centered at x0 = 0. In contrast to the nonrelativistic diffusion propagator, cf. Fig. 10,
the PDF (218) vanishes outside of the light cone.

Fig. 12. Comparison of the mean square displacements
〈
X2(t)

〉
, divided by 2Dt , for the one-dimensional (d = 1) nonrelativistic Wiener process (199) and

its relativistic generalization from Eq. (218) with initial condition (t0, x0) = (0, 0).

The relativistic diffusion process described by Eq. (218) is non-Markovian, i.e., it does not fulfill Chapman–Kolmogoroff
criterion (200). The functional form of the propagator (218b) remains the same for higher space dimensions d > 1. The
normalization constants Nd for d = 1, 2, 3 read

Nd = N ′
d − ud

d
Od, (219)

where u := t − t0, Od = 2πd/2/Γ (d/2) is surface area of the d-dimensional unit sphere, and N ′
d can be expressed in terms

of modified Bessel functions of the first kind In and modified Struve functions Lk [486], as

N ′
1 = u π [I1(χ) + L−1(χ)] , (220a)

N ′
2 = u2 2π

χ2 [1 + (χ − 1) exp(χ)] , (220b)

N ′
3 = u3 2π2

χ2 {χ [I2(χ) + L0(χ)] − 2L1(χ)} , (220c)

with χ = u/(2D).
In contrast to the solution (209) of the telegraph equation, the propagator (218b) vanishes continuously at the diffusion

fronts. Fig. 11 depicts the PDF !(t, x) = p(t, x|0, 0) of the diffusion process (218) for the one-dimensional case d = 1 at
different times t . The corresponding mean square displacement is plotted in Fig. 12 (dashed curve).

It is also interesting to note that the PDF (216) is a special case of a larger class of diffusion processes, defined by

pw(x̄|x̄0) = N [w]−1
∫ a+(x̄|x̄0)

a−(x̄|x̄0)
da w(a), (221)

wherew(a) ≥ 0 is a weighting function, andN [w] the time-dependent normalization constant. In particular, Eq. (221)may
be viewed as a path integral definition in the following sense: Physically permissible paths from x̄0 to x̄ have action values
(per mass) a in the range [a−, a+]. Grouping the different paths together according to their action values, one may assign to
each such class of paths, denoted byC(a; x̄, x̄0), the statistical weightw(a). The integral (221) can then be read as an integral
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Fig. 10. Spreading of the Gaussian PDF !(t, x) = p(t, x|0, 0) from Eq. (199) at different times t , where t is measured in units of D/c2. At initial time
t = t0 = 0, the PDF corresponds to a δ-function centered at the origin.

the probability that the particle is found in the infinitesimal volume element [x, x + dx] at time t > t0. As evident from
Eq. (199), for each t > t0 there is a small, but non-vanishing probability that the particle may be observed at distances
|x − x0| > c(t − t0), where c = 1 is the speed of light in natural units. The evolution of the nonrelativistic Gaussian PDF
from Eq. (199) is depicted in Fig. 10.

It is worthwhile to summarize a few essential properties of Eqs. (194) and (199): Eq. (194) is a linear parabolic partial
differential equation. Due to the linearity,more general solutionsmay be constructed by superpositioning, i.e., by integrating
the solution (199) over some given initial PDF !0(x0). Eq. (194) describes a Markov process which means that the transition
PDF (199) satisfies the Chapman–Kolmogoroff criterion

p(t, x|t0, x0) =
∫

R
dx1 p(t, x|t1, x1) p(t1, x1|t0, x0) (200)

for all t1 ∈ (t0, t). The corresponding diffusion process X(t) can be characterized in terms of the following SDE:

dX(t) = (2D)1/2 ∗ dB(t), X(t0) = x0, (201)
where B(t) is a standard Wiener process as defined in Section 2.1.2. Formally, Eq. (201) may be obtained from the Langevin
equations (22) of the classical Ornstein–Uhlenbeck process with F ≡ 0 as follows: First we rewrite Eq. (22b) as

dV (t)
α

= −Vdt +
(

2D0

M2α2

)1/2

∗ dB(t). (202)

Upon letting α → ∞ and D0 → ∞ such that D = D0/(αM)2 remains constant, the lhs. of Eq. (202) should become
negligible. Then, by making use of dX = Vdt , Eq. (201) is recovered.75 This limiting procedure defines the so-called
overdamped regime of the Ornstein–Uhlenbeck process. The mean square displacement of the overdamped process (201)
is given by [287]

〈
[X(t) − X(t0)]2

〉
:=

∫
dx (x − x0)2 p(t, x|t0, x0)

= 2D (t − t0), (203)
qualitatively similar to the asymptotic behavior of the classical Ornstein–Uhlenbeck process; cf. Eq. (25). Finally, we note
that the solution of Eq. (194) with initial condition

!(t0, x) ≡ !0(x), (204)
can be expressed in terms of the Feynman–Kac formula [74,76]

!(t, x) =
〈
!0

(
x + (2D)1/2B(t)

)〉
, (205)

where 〈 · 〉 indicates an averagewith respect to theWienermeasure of the standardWiener processB(t)with initial condition
B(t0) = 0. Equation (205) yields an efficient Monte-Carlo simulation scheme for computing the solutions of the diffusion
equation (194) for a broad class of initial distributions !0.

5.2. Telegraph equation

The problem of constructing continuous diffusion models which, in contrast to the classical nonrelativistic equations
(194) and (199), avoid superluminal velocities, has attracted considerable interest over the past years [10,23,27–29,327,337,
366,367,379–381,391]. Nonetheless, it seems fair to say that a commonly accepted solution is still outstanding. Apart from

75 Debbasch and Rivet [12] discuss the difficulties that arise when attempting a similar reduction for the relativistic Ornstein–Uhlenbeck process.
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Similarly, the singular diffusion fronts predicted by Eq. (209) represent a source of concern if one wishes to adopt the
telegraph equation (206) as amodel for particle transport in a randommedium.While these singularities may be acceptable
in the case of photon diffusion [371–375], they seem unrealistic for massive particles, because such fronts would imply that
a finite fraction of particles carries a huge amount of kinetic energy (much larger thanmc2). In view of these shortcomings, it
appears reasonable to explore other constructions of relativistic diffusion processes [23,390]. In the next part wewill discuss
a different approach [23] that may provide a viable alternative to the solutions of the telegraph equation.

5.3. Relativistic diffusion propagator

In principle, one can distinguish two different routes towards constructing relativistic diffusion processes: One can either
try to find an acceptable relativistic diffusion equation, or one can focus directly on the structure of the diffusion propagator.
In the present part we shall consider the latter approach [23]. The basic idea is to rewrite the nonrelativistic diffusion
propagator (199) in such a form that its relativistic generalization follows in a straightforwardmanner. This can be achieved
be re-expressing Eq. (199) in terms of an integral-over-actions.

For this purpose, we consider a nonrelativistic particle traveling from the event x̄0 = (t0, x0) to x̄ = (t, x) and assume
that the particle can experience multiple scatterings on its way, and that the velocity is approximately constant between
two successive scattering events. Then the total action (per mass) required along the path is given by

a(x̄|x̄0) = 1
2

∫ t

t0
dt ′ v(t ′)2, (213)

where the velocity v(t ′) is a piecewise constant function, satisfying

x = x0 +
∫ t

t0
dt ′ v(t ′). (214)

Clearly, the nonrelativistic action (213) becomes minimal for the deterministic (direct) path, i.e., if the particle does not
collide at all. In this case, it moves with constant velocity v(t ′) ≡ (x − x0)/(t − t0) for all t ′ ∈ [t0, t], yielding the smallest
possible action value

a−(x̄|x̄0) = (x − x0)2

2(t − t0)
. (215)

On the other hand, to match the boundary conditions it is merely required that the mean velocity equals (x − x0)/(t − t0).
Consequently, in the nonrelativistic case, the absolute velocity of a particle may become arbitrarily large during some
intermediate time interval [t ′, t ′′] ⊂[ t0, t]. Hence, the largest possible action value is a+(x̄, x̄0) = +∞. These considerations
put us in the position to rewrite the Wiener propagator (199) as an integral-over-actions:

p(x̄|x̄0) ∝
∫ a+(x̄|x̄0)

a−(x̄|x̄0)
da exp

(
− a

2D

)
, (216a)

supplemented by the normalization condition

1 =
∫

dx p(x̄|x̄0). (216b)

The representation (216)may be generalized to the relativistic case in a straightforwardmanner: Onemerely needs to insert
the corresponding relativistic expressions into the boundaries of the integral (216a). A commonly considered relativistic
generalization of Eq. (213), based on the particle’s proper time, reads [6]

a(x̄|x̄0) = −
∫ t

t0
dt ′

[
1 − v(t ′)2

]1/2
. (217)

Analogous to the nonrelativistic case, the relativistic action (217) assumes its minimum a− for the deterministic (direct)
path from x0 to x, characterized by a constant velocity v(t ′) ≡ (x − x0)/(t − t0). One explicitly obtains

a−(x̄|x̄0) = −
[
(t − t0)2 − (x − x0)2

]1/2
, (218a)

i.e., a− is the negative Minkowski distance of the two spacetime events x̄0 and x̄. The maximum action value a+ = 0 is
realized for particles that move at light speed.79 Hence, the transition PDF for the relativistic generalization of the Wiener
process reads

p(x̄|x̄0) = N −1
{
exp

[
−a−(x̄, x̄0)

2D

]
− 1

}
, (218b)

if (x − x0)2 ≤ (t − t0)2, and p(x̄|x̄0) ≡ 0 otherwise, with a− determined by Eq. (218a).

79 In general, particles must undergo reflections in order to match the spatial boundary conditions.
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4.1.3. Free motions in an isotropic bath and Einstein relations
Similar to the nonrelativistic case, physical constraints on the coefficient functions aij and cij come from symmetry

properties of the heat bath and from the requirement that Eqs. (132) must reproduce the correct stationary distribution
and the correct relaxation behavior. For example, in the absence of external force-fields, F i ≡ 0, and if the heat bath is
stationary, isotropic and homogeneous in the lab frame Σ , the coefficient matrices take the simplified diagonal form

aij = α δi
j, cij = (2D)1/2 δi

j. (136)
Under the stated assumptions, the functions α and D depend only on the Brownian particles’ absolute momentum – or,
equivalently, on its relativistic energy p0 = (M2 + p2)1/2 i.e., α(p) = α̂(p0) and D(p) = D̂(p0). In this case, the relativistic
Langevin equations (132) simplify to

dXi(t) = (Pi/P0) dt, (137a)

dPi(t) = −α̂Pidt + (2D̂)1/2 # dBi(t), (137b)
and the Fokker–Planck equations (135) take the form

(
∂

∂t
+ pi

p0
∂

∂xi

)
f∗ = ∂

∂pi

[
α̂pif∗ + ∂

∂pi
(D̂f∗)

]
, (138a)

(
∂

∂t
+ pi

p0
∂

∂xi

)
f◦ = ∂

∂pi

[
α̂pif◦ + D̂1/2 ∂

∂pi
(D̂1/2f◦)

]
, (138b)

(
∂

∂t
+ pi

p0
∂

∂xi

)
f• = ∂

∂pi

[
α̂pif• + D̂

∂

∂pi
f•
]

. (138c)

An additional constraint on the functions α(p) = α̂(p0) and D(p) = D̂(p0) arises from thermostatistical considerations: If
the motion of the Brownian particle is restricted to a finite volume V ⊂ Rd and if the heat bath is in a thermal equilibrium
state at temperature T = (kBβ)−1, then the expected stationary solution f∞(x, p) of Eq. (135) is a spatially homogeneous
Jüttner distribution [186], 66

f∞(x, p) = N exp[−β(M2 + p2)1/2] I(x; V), (139)
with I(x; V) being the indicator function of the accessible volume V as defined in Eq. (103b). By inserting Eq. (139) into
the Fokker–Planck equations (135) one finds that, depending on the discretization rule, the functions α(p) = α̂(p0) and
D(p) = D̂(p0) must satisfy the generalized fluctuation-dissipation relations [11,17,18]

# = ∗ : 0 ≡ α̂(p0) p0 − β D̂(p0) + D̂′(p0), (140a)

# = ◦ : 0 ≡ α̂(p0) p0 − β D̂(p0) + D̂′(p0)/2, (140b)

# = • : 0 ≡ α̂(p0) p0 − β D̂(p0), (140c)

where D̂′(p0) := dD̂(p0)/dp0. Equations (140) are also referred to as the relativistic Einstein relations. In particular, by
comparing Eq. (140c) with the nonrelativistic Einstein relation (20), we note that the mass has been replaced with energy
p0 in the relativistic case.

4.2. One-dimensional examples and mean square displacement

In this part, we will consider one-dimensional example processes (d = 1). Their generalization to higher space
dimensions is straightforward but analytic calculations become more tedious. We first summarize the SDEs for the energy
process P0(t) and the velocity process V (t) := P(t)/P0(t) in Section 4.2.1. Subsequently, analytical and numerical results
for the asymptotic diffusion constants of specific example processes will be discussed [15,25].

4.2.1. Discretization rules, energy and velocity equations
Considering an isotropic thermalized heat bath in d = 1 space dimensions and the post-point discretization, Eq. (137)

takes form
dX(t) = (P/P0) dt,

dP(t) = −α•(P) P dt + [2D(P)]1/2 • dB(t), (141a)

where B(t) is characterized by the Gaussian distribution (5d) and α•(p) = α̂•(p0) and D(p) = D̂(p0). Similar to the
nonrelativistic case, one can replace Eq. (141a) by the equivalent Stratonovich–Fisk SDE 67
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4.1.3. Free motions in an isotropic bath and Einstein relations
Similar to the nonrelativistic case, physical constraints on the coefficient functions aij and cij come from symmetry

properties of the heat bath and from the requirement that Eqs. (132) must reproduce the correct stationary distribution
and the correct relaxation behavior. For example, in the absence of external force-fields, F i ≡ 0, and if the heat bath is
stationary, isotropic and homogeneous in the lab frame Σ , the coefficient matrices take the simplified diagonal form

aij = α δi
j, cij = (2D)1/2 δi

j. (136)
Under the stated assumptions, the functions α and D depend only on the Brownian particles’ absolute momentum – or,
equivalently, on its relativistic energy p0 = (M2 + p2)1/2 i.e., α(p) = α̂(p0) and D(p) = D̂(p0). In this case, the relativistic
Langevin equations (132) simplify to
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An additional constraint on the functions α(p) = α̂(p0) and D(p) = D̂(p0) arises from thermostatistical considerations: If
the motion of the Brownian particle is restricted to a finite volume V ⊂ Rd and if the heat bath is in a thermal equilibrium
state at temperature T = (kBβ)−1, then the expected stationary solution f∞(x, p) of Eq. (135) is a spatially homogeneous
Jüttner distribution [186], 66

f∞(x, p) = N exp[−β(M2 + p2)1/2] I(x; V), (139)
with I(x; V) being the indicator function of the accessible volume V as defined in Eq. (103b). By inserting Eq. (139) into
the Fokker–Planck equations (135) one finds that, depending on the discretization rule, the functions α(p) = α̂(p0) and
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# = • : 0 ≡ α̂(p0) p0 − β D̂(p0), (140c)

where D̂′(p0) := dD̂(p0)/dp0. Equations (140) are also referred to as the relativistic Einstein relations. In particular, by
comparing Eq. (140c) with the nonrelativistic Einstein relation (20), we note that the mass has been replaced with energy
p0 in the relativistic case.

4.2. One-dimensional examples and mean square displacement

In this part, we will consider one-dimensional example processes (d = 1). Their generalization to higher space
dimensions is straightforward but analytic calculations become more tedious. We first summarize the SDEs for the energy
process P0(t) and the velocity process V (t) := P(t)/P0(t) in Section 4.2.1. Subsequently, analytical and numerical results
for the asymptotic diffusion constants of specific example processes will be discussed [15,25].

4.2.1. Discretization rules, energy and velocity equations
Considering an isotropic thermalized heat bath in d = 1 space dimensions and the post-point discretization, Eq. (137)

takes form
dX(t) = (P/P0) dt,

dP(t) = −α•(P) P dt + [2D(P)]1/2 • dB(t), (141a)

where B(t) is characterized by the Gaussian distribution (5d) and α•(p) = α̂•(p0) and D(p) = D̂(p0). Similar to the
nonrelativistic case, one can replace Eq. (141a) by the equivalent Stratonovich–Fisk SDE 67
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Fig. 6. Time evolution of the spatial mean square displacement Dt :=
〈
[X(t) − X(0)]2

〉
/(2t) for the ROUP [11] model (solid line) from Eq. (151d), the

RBM [17] model (dashed) from Eq. (155b) and the RBM(I) model (dotted) from Eq. (159a) at same temperature–mass ratio χ−1 := kBT /(Mc2) = 1.
The plots are based on a simulation with N = 1000 trajectories, initial conditions X(0) = 0, P(0) = 0 for each trajectory, and discretization time step
∆t = 10−4 α−1

c/Ď .

dP(t) = −α◦(P) P dt + [2D(P)]1/2 ◦ dB(t)
α◦(p) := α•(p) − D′(p)/(2p),

(141b)

or by the equivalent Ito SDE

dP(t) = −α∗(P) P dt + [2D(P)]1/2 ∗ dB(t)
α∗(p) := α•(p) − D′(p)/p,

(141c)

where D′(p) := dD(p)/dp. Compared with Eqs. (141a) and (141b), the Ito form (141c) is most convenient for numerical
simulations.

Imposing that the solution of corresponding FPE (138) be given by a one-dimensional Jüttner function of the form (139),
the friction and noise coefficients must satisfy the Einstein relations (140). In terms of the friction coefficients α%(p), the
Einstein relations can also be rewritten as

0 ≡ α•(p) p0 − βD(p) (142a)

0 ≡ α◦(p) p0 − βD(p) + D′(p) p0/(2p) (142b)

0 ≡ α∗(p) p0 − βD(p) + D′(p) p0/p. (142c)

From Eq. (133b) one obtains for the relativistic energy process P0(t) := (M2 + P2)1/2 the following SDE
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{
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where λ∗ = 1, λ◦ = 0, and λ• = −1. Furthermore, by defining for P(V ) = MV (1 − V 2)−1/2 new coefficients

α̃(V ) := α(P(V )), D̃(V ) := D(P(V ))

and applying the (backward) Ito formula, cf. Appendix A, to the relativistic velocity formula V (t) = P/(M2 + P2)1/2, one
finds the following SDE for the velocity process

dV (t) =
[

−α̃(V ) (1 − V 2) − λ%

(
3D̃
M2

)

(1 − V 2)2

]

V dt +
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2D̃
M2

)

(1 − V 2)3

]1/2

% dB(t). (144)

As discussed in the next section, this equation can be used to calculate the asymptotic mean square displacement.

4.2.2. Asymptotic mean square displacement
A primary objective within any Brownian theory is to determine the asymptotic diffusion constant D∞, corresponding

to the plateau values in Fig. 6. For a one-dimensional diffusion process X(t) with velocity V (t), the asymptotic diffusion
constant D∞ is defined by

D∞ = lim
t→∞

〈
[X(t) − X(0)]2

〉
/(2t), (145a)
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4.1.3. Free motions in an isotropic bath and Einstein relations
Similar to the nonrelativistic case, physical constraints on the coefficient functions aij and cij come from symmetry

properties of the heat bath and from the requirement that Eqs. (132) must reproduce the correct stationary distribution
and the correct relaxation behavior. For example, in the absence of external force-fields, F i ≡ 0, and if the heat bath is
stationary, isotropic and homogeneous in the lab frame Σ , the coefficient matrices take the simplified diagonal form

aij = α δi
j, cij = (2D)1/2 δi

j. (136)
Under the stated assumptions, the functions α and D depend only on the Brownian particles’ absolute momentum – or,
equivalently, on its relativistic energy p0 = (M2 + p2)1/2 i.e., α(p) = α̂(p0) and D(p) = D̂(p0). In this case, the relativistic
Langevin equations (132) simplify to

dXi(t) = (Pi/P0) dt, (137a)

dPi(t) = −α̂Pidt + (2D̂)1/2 # dBi(t), (137b)
and the Fokker–Planck equations (135) take the form
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An additional constraint on the functions α(p) = α̂(p0) and D(p) = D̂(p0) arises from thermostatistical considerations: If
the motion of the Brownian particle is restricted to a finite volume V ⊂ Rd and if the heat bath is in a thermal equilibrium
state at temperature T = (kBβ)−1, then the expected stationary solution f∞(x, p) of Eq. (135) is a spatially homogeneous
Jüttner distribution [186], 66

f∞(x, p) = N exp[−β(M2 + p2)1/2] I(x; V), (139)
with I(x; V) being the indicator function of the accessible volume V as defined in Eq. (103b). By inserting Eq. (139) into
the Fokker–Planck equations (135) one finds that, depending on the discretization rule, the functions α(p) = α̂(p0) and
D(p) = D̂(p0) must satisfy the generalized fluctuation-dissipation relations [11,17,18]

# = ∗ : 0 ≡ α̂(p0) p0 − β D̂(p0) + D̂′(p0), (140a)

# = ◦ : 0 ≡ α̂(p0) p0 − β D̂(p0) + D̂′(p0)/2, (140b)

# = • : 0 ≡ α̂(p0) p0 − β D̂(p0), (140c)

where D̂′(p0) := dD̂(p0)/dp0. Equations (140) are also referred to as the relativistic Einstein relations. In particular, by
comparing Eq. (140c) with the nonrelativistic Einstein relation (20), we note that the mass has been replaced with energy
p0 in the relativistic case.

4.2. One-dimensional examples and mean square displacement

In this part, we will consider one-dimensional example processes (d = 1). Their generalization to higher space
dimensions is straightforward but analytic calculations become more tedious. We first summarize the SDEs for the energy
process P0(t) and the velocity process V (t) := P(t)/P0(t) in Section 4.2.1. Subsequently, analytical and numerical results
for the asymptotic diffusion constants of specific example processes will be discussed [15,25].

4.2.1. Discretization rules, energy and velocity equations
Considering an isotropic thermalized heat bath in d = 1 space dimensions and the post-point discretization, Eq. (137)

takes form
dX(t) = (P/P0) dt,

dP(t) = −α•(P) P dt + [2D(P)]1/2 • dB(t), (141a)

where B(t) is characterized by the Gaussian distribution (5d) and α•(p) = α̂•(p0) and D(p) = D̂(p0). Similar to the
nonrelativistic case, one can replace Eq. (141a) by the equivalent Stratonovich–Fisk SDE 67

66 Cf. the discussion in Section 3.2.2.
67 See also the corresponding discussion by Hänggi [499], and Hänggi and Thomas (page 293 of Ref. [77]).
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4.1.3. Free motions in an isotropic bath and Einstein relations
Similar to the nonrelativistic case, physical constraints on the coefficient functions aij and cij come from symmetry

properties of the heat bath and from the requirement that Eqs. (132) must reproduce the correct stationary distribution
and the correct relaxation behavior. For example, in the absence of external force-fields, F i ≡ 0, and if the heat bath is
stationary, isotropic and homogeneous in the lab frame Σ , the coefficient matrices take the simplified diagonal form

aij = α δi
j, cij = (2D)1/2 δi

j. (136)
Under the stated assumptions, the functions α and D depend only on the Brownian particles’ absolute momentum – or,
equivalently, on its relativistic energy p0 = (M2 + p2)1/2 i.e., α(p) = α̂(p0) and D(p) = D̂(p0). In this case, the relativistic
Langevin equations (132) simplify to
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An additional constraint on the functions α(p) = α̂(p0) and D(p) = D̂(p0) arises from thermostatistical considerations: If
the motion of the Brownian particle is restricted to a finite volume V ⊂ Rd and if the heat bath is in a thermal equilibrium
state at temperature T = (kBβ)−1, then the expected stationary solution f∞(x, p) of Eq. (135) is a spatially homogeneous
Jüttner distribution [186], 66

f∞(x, p) = N exp[−β(M2 + p2)1/2] I(x; V), (139)
with I(x; V) being the indicator function of the accessible volume V as defined in Eq. (103b). By inserting Eq. (139) into
the Fokker–Planck equations (135) one finds that, depending on the discretization rule, the functions α(p) = α̂(p0) and
D(p) = D̂(p0) must satisfy the generalized fluctuation-dissipation relations [11,17,18]

# = ∗ : 0 ≡ α̂(p0) p0 − β D̂(p0) + D̂′(p0), (140a)

# = ◦ : 0 ≡ α̂(p0) p0 − β D̂(p0) + D̂′(p0)/2, (140b)

# = • : 0 ≡ α̂(p0) p0 − β D̂(p0), (140c)

where D̂′(p0) := dD̂(p0)/dp0. Equations (140) are also referred to as the relativistic Einstein relations. In particular, by
comparing Eq. (140c) with the nonrelativistic Einstein relation (20), we note that the mass has been replaced with energy
p0 in the relativistic case.

4.2. One-dimensional examples and mean square displacement

In this part, we will consider one-dimensional example processes (d = 1). Their generalization to higher space
dimensions is straightforward but analytic calculations become more tedious. We first summarize the SDEs for the energy
process P0(t) and the velocity process V (t) := P(t)/P0(t) in Section 4.2.1. Subsequently, analytical and numerical results
for the asymptotic diffusion constants of specific example processes will be discussed [15,25].

4.2.1. Discretization rules, energy and velocity equations
Considering an isotropic thermalized heat bath in d = 1 space dimensions and the post-point discretization, Eq. (137)

takes form
dX(t) = (P/P0) dt,

dP(t) = −α•(P) P dt + [2D(P)]1/2 • dB(t), (141a)

where B(t) is characterized by the Gaussian distribution (5d) and α•(p) = α̂•(p0) and D(p) = D̂(p0). Similar to the
nonrelativistic case, one can replace Eq. (141a) by the equivalent Stratonovich–Fisk SDE 67
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Fig. 6. Time evolution of the spatial mean square displacement Dt :=
〈
[X(t) − X(0)]2

〉
/(2t) for the ROUP [11] model (solid line) from Eq. (151d), the

RBM [17] model (dashed) from Eq. (155b) and the RBM(I) model (dotted) from Eq. (159a) at same temperature–mass ratio χ−1 := kBT /(Mc2) = 1.
The plots are based on a simulation with N = 1000 trajectories, initial conditions X(0) = 0, P(0) = 0 for each trajectory, and discretization time step
∆t = 10−4 α−1

c/Ď .

dP(t) = −α◦(P) P dt + [2D(P)]1/2 ◦ dB(t)
α◦(p) := α•(p) − D′(p)/(2p),

(141b)

or by the equivalent Ito SDE

dP(t) = −α∗(P) P dt + [2D(P)]1/2 ∗ dB(t)
α∗(p) := α•(p) − D′(p)/p,

(141c)

where D′(p) := dD(p)/dp. Compared with Eqs. (141a) and (141b), the Ito form (141c) is most convenient for numerical
simulations.

Imposing that the solution of corresponding FPE (138) be given by a one-dimensional Jüttner function of the form (139),
the friction and noise coefficients must satisfy the Einstein relations (140). In terms of the friction coefficients α%(p), the
Einstein relations can also be rewritten as

0 ≡ α•(p) p0 − βD(p) (142a)

0 ≡ α◦(p) p0 − βD(p) + D′(p) p0/(2p) (142b)

0 ≡ α∗(p) p0 − βD(p) + D′(p) p0/p. (142c)

From Eq. (133b) one obtains for the relativistic energy process P0(t) := (M2 + P2)1/2 the following SDE

dP0(t) =
{
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where λ∗ = 1, λ◦ = 0, and λ• = −1. Furthermore, by defining for P(V ) = MV (1 − V 2)−1/2 new coefficients

α̃(V ) := α(P(V )), D̃(V ) := D(P(V ))

and applying the (backward) Ito formula, cf. Appendix A, to the relativistic velocity formula V (t) = P/(M2 + P2)1/2, one
finds the following SDE for the velocity process

dV (t) =
[

−α̃(V ) (1 − V 2) − λ%

(
3D̃
M2

)

(1 − V 2)2

]

V dt +
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)
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]1/2

% dB(t). (144)

As discussed in the next section, this equation can be used to calculate the asymptotic mean square displacement.

4.2.2. Asymptotic mean square displacement
A primary objective within any Brownian theory is to determine the asymptotic diffusion constant D∞, corresponding

to the plateau values in Fig. 6. For a one-dimensional diffusion process X(t) with velocity V (t), the asymptotic diffusion
constant D∞ is defined by

D∞ = lim
t→∞

〈
[X(t) − X(0)]2

〉
/(2t), (145a)
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ρ = ρ0 : φJ ∝ exp(−βp0) ⇔ f(t→∞) (4)

ρ ∝ 1
p0

: φMJ ∝
exp(−βp0)

p0
⇔ f̂(τ →∞) (5)

Temperature

T ′(w) = T (1− w2)α/2 α =






+1 Planck, Einstein
0 Landsberg, van Kampen
−1 Ott

(6)

1D Jüttner

φJ(p) ∝ exp[β(p2 + M2)1/2] (7)

Ansatz 3D Jüttner

f(t, x,p) = ϕ(x,p) = ((x) φJ(p), (8a)

with Jüttner momentum distribution [20, 21]

φJ(p) = Z−1 exp(−βp0), β > 0 (8b)
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d-dimensional t-parametrized standard Wiener process
!29–31"; i.e., B#t$ has continuous paths. For s! t the incre-
ments are normally distributed,

P%B#s$ − B#t$ ! !u,u + du"& =
e−'u'2/!2#s−t$"

!2"#s − t$"d/2ddu , #2$

and independent for nonoverlapping time intervals.1

Upon naively dividing Eq. #1b$ by dt, we see that Ai can
be interpreted as a deterministic force component, while
Cj

idBj#t$ /dt represents random “noise.” However, for the
Wiener process the derivatives dBj#t$ /dt are not well defined
mathematically, so the differential representation #1$ is in
fact shorthand for a stochastic integral equation !29,31" with
Cj

idBj signifying an infinitesimal increment of the Itô integral
!32,33". Like a deterministic integral, stochastic integrals can
be approximated by Riemann-Stieltjes sums, but the coeffi-
cient functions need to be evaluated at the left end point t of
any time interval !t , t+dt" in the Itô discretization.2 In con-
trast to other discretization rules !1,29,31,34,35", the Itô dis-
cretization implies that the mean value of the noise vanishes;
i.e., (Cj

idBj#t$)=0 with (·) indicating an average over all re-
alizations of the Wiener process B#t$. In other words, Itô
integrals with respect to B#t$ are #local$ martingales !29".
Upon applying Itô’s formula !29,31" to the mass-shell con-
dition P0#t$= #M2+P2$1/2, one can derive from Eq. #1b$ the
following equation for the relativistic energy:

dP0#t$ = A0dt + Cr
0dBr#t$ ,

A0 ª AiP
i

P0 +
Dij

2
* #ij

P0 −
PiPj

#P0$3+, Cj
0 ª PiCij

P0 , #3$

where AiªAi, DijªDij =,rCr
iCr

j, and CirªCi
r.

Equations #1$ define a straightforward relativistic gener-
alization !13–15" of the classical Ornstein-Uhlenbeck pro-
cess !36", representing a standard model of Brownian motion
theory.3 The structure of Eq. #1a$ ensures that the velocity
remains bounded, 'V'$1, even if the momentum P were to
become infinitely large. When studying SDEs of the type #1$,
one is typically interested in the probability f#t ,x ,p$ddx ddp
of finding the particle at time t in the infinitesimal phase-
space interval !x ,x+dx"% !p ,p+dp". Given Eqs. #1$, the
non-negative, normalized probability density f#t ,x ,p$ is
governed by the Fokker-Planck equation #FPE$

- !

!t
+

pi

p0

!

!xi. f =
!

!pi*− Aif +
1
2

!

!pk #Dikf$+ , #4$

where f is a Lorentz scalar !37" and p0= #M2+p2$1/2.4 Deter-
ministic initial data X#0$=x0 and P#0$=p0 translate into the
localized initial condition f#0,x ,p$=##x−x0$##p−p0$.
Physical constraints on the coefficients Ai#t ,x ,p$ and
Cr

i#t ,x ,p$ may arise from symmetries and/or thermostatisti-
cal considerations. For example, neglecting additional exter-
nal force fields and considering a heat bath that is stationary,
isotropic, and position independent in &, one is led to the
ansatz

Ai = − '#p0$pi, Cj
i = !2D#p0$"1/2# j

i , #5a$

where the friction and noise coefficients ' and D depend on
the energy p0 only. Moreover, if the stationary momentum
distribution is expected to be a thermal Jüttner function
!38,39"—i.e., if f(ª limt→(f )exp#−*p0$ in &—then ' and
D must satisfy the fluctuation-dissipation condition !13,14"

0 / '#p0$p0 + dD#p0$/dp0 − *D#p0$ . #5b$

In this case, one still has the freedom to adapt one of the two
functions ' or D.

In the remainder of this paper, we shall discuss how the
process #1$ can be reparametrized in terms of its proper time
+ and how it transforms under the proper Lorentz group !28".

The stochastic proper-time differential d+#t$
= #1−V2$1/2dt may be expressed as

d+#t$ = #M/P0$dt . #6a$

The inverse of the function + is denoted by X̂0#+$= t#+$ and
represents the time coordinate of the particle in the inertial
frame &, parametrized by the proper time +. Our goal is to
find SDEs for the reparametrized processes X̂'#+$
ªX'(t#+$) and P̂'#+$= P'(t#+$) in &. The heuristic derivation
is based on the relation

dBj#t$ 0 1dt = - P̂0

M
.1/2

1d+ 0 - P̂0

M
.1/2

dB̂j#+$ , #6b$

where B̂j#+$ is a standard Wiener process with time param-
eter +. The rigorous justification of Eq. #6b$ is given below.
Inserting Eqs. #6a$ and #6b$ into Eqs. #1$, one finds

dX̂'#+$ = #P̂'/M$d+ , #7a$

dP̂i#+$ = Âid+ + Ĉj
idB̂j#+$ , #7b$

where Âiª #P̂0 /M$Ai#X̂0 , X̂ , P̂$ and Ĉj
i

ª #P̂0 /M$1/2Cj
i#X̂0 , X̂ , P̂$. The FPE for the associated prob-

ability density f̂#+ ,x0 ,x ,p$ reads

1For simplicity, we have assumed that B#t$ is d dimensional, im-
plying that Cj

i is a square matrix. However, all results still hold if
B#t$ has a different dimension.

2One could also consider other discretization rules
!1,29,31,34,35", but then the rules of stochastic differential calculus
must be adapted.

3In the nonrelativistic limit c→(, P0→M in Eq. #1a$.

4Equation #4$ is not covariant, because we are considering here
the “true” phase-space density f#t ,x ,p$ rather than the “extended”
phase-space density f̃#t ,x , p0 ,p$.
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! !

!!
+

p"

M

!

!x"" f̂ =
!

!pi#− Âi f̂ +
1
2

!

!pk $D̂ik f̂%& , $8%

where now D̂ikª'rĈi
rĈk

r. We note that
f̂$! ,x0 ,x ,p%dx0 ddx ddp gives the probability of finding the
particle at proper time ! in the interval (t , t+dt)# (x ,x
+dx)# (p ,p+dp) in the inertial frame $.

Remarkably, if the coefficient functions satisfy the con-
straints $5a% and $5b%—so that the stationary solution f% of
Eq. $4% is a Jüttner function &J$p%=Z−1 exp$−'p0%—then the
stationary solution f̂% of the corresponding proper-time FPE
$8% is given by a modified Jüttner function &MJ$p%
= Ẑ−1 exp$−'p0% / p0. The latter can be derived from a rela-
tive entropy principle using a Lorentz invariant reference
measure in momentum space (40). Physically, the difference
between f% and f̂% is due to the fact that measurements at t
=const and !=const are nonequivalent even if ! , t→%. This
can also be confirmed by direct numerical simulation of Eqs.
$1%; see Fig. 1.

Having discussed the proper-time reparametrization, we
next show that a similar reasoning can be applied to trans-
form the SDEs $1% to a moving frame $! (17).

Neglecting time reversals, we consider a proper Lorentz
transformation (28) from the laboratory frame $ to $!, me-
diated by a constant matrix ()

* with (0
0+0, that leaves the

metric tensor ,"' invariant. We proceed in two steps: First
we define

Y!*$t% ª ()
* X)$t%, G!*$t% ª ()

* P)$t% .

Then we replace t by the coordinate time t! of $! to obtain
processes X!"$t!%=Y!"(t$t!%) and P!"$t!%=G!"(t$t!%). Note
that dt!$t%=dY!0$t%=()

0 dX)$t%, and, hence,

dt!$t% =
()

0 P)

P0 dt =
G!0

P0 dt =
P!0„t!$t%…

$(−1%)
0 P!)„t!$t%…dt , $9%

where (−1 is the inverse Lorentz transformation. Thus, a
similar heuristics as in Eq. $6b% gives

dBj$t% * +dt = ! P0

P!0"1/2
+dt! * #$(−1%)

0 P!)

P!0 &1/2

dB!j$t!% ,

$10%

where B!j$t!% is a Wiener process with time t!. Furthermore,
defining primed coefficient functions in $! by

A!i$x!0,x!,p!% ª ($(−1%)
0 p!)/p!0)

#(*
i A*„$(−1%)

0 x!),$(−1%)
i x!),$(−1%)

i p!)… ,

Cj!
i$x!0,x!,p!% ª ($(−1%)

0 p!)/p!0)1/2

#(*
i Cj

*„$(−1%)
0 x!),$(−1%)

i x!),$(−1%)
i p!)… ,

the particle’s trajectory (X!$t!% ,P!$t!%) in $! is again gov-
erned by a SDE of the standard form

dX!"$t!% = $P!"/P!0%dt!, $11a%

dP!i$t!% = A!idt! + Cj!
idB!j$t!% . $11b%

We will now rigorously derive the transformations of
SDEs under time changes and thereby show that the heuristic
transformations leading to Eqs. $7% and $11% are justified; i.e.,
we are interested in a time change t! t̆ of a generic SDE

dY$t% = E dt + Fj dBj$t% , $12a%

where E and Fj will typically be smooth functions of the
state variables $Y , . . . %,5 and B$t%=Bj$t% is a d-dimensional
standard Wiener process.6 We consider a time change t! t̆
specified in the form (cf. Eqs. $6a% and $9%)

dt̆ = H dt, t̆$0% = 0, $12b%

with H being a strictly positive smooth function7 of $Y , . . . %.
The inverse of t̆$t% is denoted by t$t̆%. We would like to show
that Eq. $12a% can be rewritten as

dY̆$t̆% = Ĕ dt̆ + F̆j dB̆j$t̆% , $12c%

where Y̆$t̆%ªY(t$t̆%), Ĕ$t̆%ªE(t$t̆%) /H(t$t̆%), F̆j$t̆%ªFj(t$t̆%) /
+H(t$t̆%), and

5The state variables of the system are assumed to have continuous
paths and need to satisfy suitable integrability conditions. More
generally, E=E$t% and Fj =Fj$t% can be assumed to be continuous
adapted processes.

6The Wiener process is defined on a complete filtered probability
space $- ,F ,F ,P% that satisfies the usual hypotheses (29). The in-
creasing family F= $Ft% is called a filtration. Ft denotes the infor-
mation that will be available to an observer at time t who follows
the particle.

7More precisely, in general H=H$t% is a strictly positive, continu-
ous adapted process such that P(,0

t H$s%ds.%∀ t)=1 and
P(,0

%H$s%ds=%)=1.
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FIG. 1. “Stationary” probability density function $PDF% of the
absolute momentum -P- measured at time t=15 $#% and !=15 $!%
from 10 000 sample trajectories of the one-dimensional $d=1% rela-
tivistic Ornstein-Uhlenbeck process (13), corresponding to coeffi-
cients D$p0%=const and "$p0%='D / p0 in Eqs. $1%, $5a%, and $5b%.
Simulation parameters: dt=0.001, M =c='=D=1.
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Many thanks for your attention !

Relativistic Brownian motion models 

✓ non-Markovian in position space(time)

✓Markovian in phase space

Summary (part 3)
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1963          ”moving bodies ... hotter”          [Ott]   
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