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1. Introduction
The sine-Gordon (SG) equation (in units of the speed of lightc = 1)

¢,-9,, + m? sind = 0 - (1)

bears both standing-wave (phonons) and solitary-wave solutions (solitons). Equation (1) can be
derived from the relativistically covariant Hamiltonian density H[¢] =-%- (¢f + ¢t2) — m?cos¢, m
being a lattice constant{1), For later convenience, we write explicitly the single soliton solution

(mod 2x)

OKK (x,u) =4 tg7! {exp [ myx=X(®)]}, X@® =x,+ut . 2)

Here, + signs refer to the two possible helicities of the solution (kink ¢X and anti-kink ¢K,
respectively), Y= (1 = u®)~1/2 denotes the Lorentz contraction and u the translational speed of the

soliton. ¢K;R carry opposite topological charge and are stable against almost every small
fluctuation, the only exception being a rigid translation, against which ¢K;k are in neutral

equilibrium (Goldstone mode).

The statistical SG theory deals with a gas of phonons and solitons, the number of which is
controlled by the relevant creation energy (or chemical potential in the grand-canonical formalism).
A statistical mechanical approach has been proposed by Currie et al.(?) for the limit of low
temperature, where solitary waves may be approximated to a linear superposition of non-
interacting kinks (K) and antikinks (K) (dilute gas approximation). The creation (or rest) energy for
KK is given by the integral E, = | dx H[$%X (x,0)] = 8m, whence the low temperature condition(z)
BE, >>1, B =(k T)"! being the reciprocal of the absolute temperature. The mean square velocity
of $**K coincides with the gas kinetic theory prediction (BE,)™".

The equilibrium kink-density per unit of length, n,, is defined as the ratio between the
(canonical) partition function of the field configurations with one soliton, and the partition function

with no soliton present{-)
2 -
ng = (;)1/2 m(BE,)/2 e PEo . 3)

The (canonical) partition functions of the statistical SG theory at a given temperature, can be
obtained through the stationary statistics of the stochastic process*)
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¢, — 0,, +m?sin¢=— oo +C(x, 1) , _ (4)

‘where {(x, t) is a Gaussian fluctuating field of force with < { > =0 and < {(x, t) C(x", t") > =
20kT &(t — t°) &(x = x”). In the presence of small fluctuations, BEO >> 1, KK is stable and

undergoes Brownian motion{4-9).

2. The Langevin equation

For the sake of generality we add to the ths of (4) a constant bias F, 1.e.
O, — O, + m?sin ¢ =— o ¢, — F+{(x,t) . (5)

The condition F < m? is imposed to preserve the multistability of the system. Following the

perturbation approach of Ref. 7 we assume that in the zero-th order the shape of the single kink
solution (2) is left unchanged, whereas the perturbation on the rhs of (5) only affects the motion of

the coordinates X(t) and u(t) = X(t). Thus, on invoking a simple energy conservation argument(’),

gf.[ dx H[$KK (x, u(®)] = E, 'gf?(t) = ,[ dx[o 6K+ F - {(x, 1) O KK, (6)

where Y(t) = (1 = u2(t))~1/21is the stochastic Lorentz contraction, we obtain the following
relativistic Langevin equation (LE)®

p= -ap + 2t F+Y()E, &) . (7)

E(t) is a Gaussian fluctuating force with < E>=0and <&(t) €0) > = 2(JL['y(t)[3E0]"'1 o(t). p(t)
denotes here the momentum of ¢K=K, i.e. p(t) = (1) E, u(t).

The LE (7) holds for any value of the frictional constant o.. However, in view of application to
overdamped systems - but losing generality - we 1mpose the condition o >> m. In the overdamped
limit three major simplifications are allowed: (1) time-dependent solutions to (1), e.g. breathers, are
damped and, therefore, do not play any significant role in the statistics of the prob_!_cm(l"); (11) our
results can be worked out in the non-relativistic approximation y — 1; (i11) K-K collisions are
almost always destructive(’), i.e. the relevant transmission coefficient is exponentially small. In the

limit ¥ — 1, (7) reads

L ORI . ®)

In the absence of fluctuations the translational speed of tl)K;E approaches a stationary value
inversely proportional to @, 1.€.

“F=i£_1i' _ 9)

Moreover, the fluctuations about ug are very small at low temperature, i.e. < (u(t) = uF)2 > =
(BEO)"I, thus justifying the non-relativistic approximation.
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3. Nucleation rates

a) Nucleation of a single K-K m(1,3.9) .

Thermal kinks and antikinks are produced in pairs so that the total topological charge of the system
1s conserved.Thermal fluctuations trigger the process by activating a large nucleus about a vacuum

configuration of the field ¢, say ¢, = 0. Such a nucleus is described by the doublet-solution® ¢, =
4tg™![sh(muyt) / u ch (myx)] (the origin of x and t are taken arbitrary) and when its size grows
very large it can be approximated by a linear superposition of a kink and an antikink.The
components of a large nucleus ¢, experience two contrasting forces, an attractive force due to the
vicinity of the nucleating partner, the potential of interaction being a function of the distance 2X
between their centres of mass ,

VoX) ==2E, "X mX>>1, (10)

and a repulsive force due to the external bias F, which pulls ¢* and q»ﬁ apart.

Such a single-pair nucleation process can be described in our LE scheme by substituting ¢, in
(6). This amounts to just adding a K=K interaction term in (7); for a nucleating kink we have (in

¢ rest frame)

X = - aQ X— 4m ¢~2mX +-}£—+ E(t) : (11)

The nucleation process is thus reduced to the problem of the stochastic decay of a one-dimensional

metastable state. The relevant potential barrier is located at XP(F) ==(2m)~! In(nF/16 m?) with
curvature IQI? = F/2 . Note that for F << m? the critical size of ¢ becomes much larger than the

single soliton size m™!.The activation energy AE(F) can be calculated by employing the same
argument as 1n (6):

< AE(F) = - [axopm= —2mexE) (12)

On substituting the explicit expression for XP(F) and carrying out the integration with initial
condition AE(0) = 2E, (rest pair energy for X —ec) we obtain(®

AE(F) = 2E, = 2E, (1 +§--£5-[1n(1“—6--n—1:§--1]) . (13)

The LE (11) only describes the stochastic decay of the unstable mode X(t), irrespective of the
stable modes (phonons) dressing both the vacuum ¢, and the pair configuration, ¢y (x) = oK (x—
X)X (x + X). The decay rate of a metastable multidimensional system 1n the overdamped limit
has been calculated by Langer(19), Since in the present case there exist only one translational mode

(the process is invariant under translation) and one metastable mode X(t) , Langer’s formula is

1 1Q2 BAE - l?‘ 1/2
=——(=)'" { - D} e PaE ' Li4)
2r al’2 " 2 IT A ]
n#l
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The quantity in braces has been calculated explicitly by Langer{!? and Biittiker and Landauer

(Appendix B of Ref. 3). Substituting the explicit expressions for the quantities appearing in (14)
yields an analytical result for the Biittiker-Landauer nucleation rate®, which reads(®)

— m;‘ﬁ“(ﬁﬁp)m ME (15)

I-‘BL

An advantage of our approach compared with that of Ref. 3 is that it provides an analytical ex-
pression for the negative eigenvalue Ag = Q2/0. = —iF/(20;), which fits the numerical calculation®)
for F < m2/2. Since AE(F), (13), reproduces the relevant numerical result of Ref. 3 for even larger

values of F, our determination of I'g; holds eventually for F < m?/2. An analytical expression for
[y, in the limit F — m? is also available®9). According to Biittiker and Landauer® the nucleation

mechanism described above is only valid when the thermal energy kT is much smaller than the
mechanical work done by the external force F in the (free) soliton lifetime, i.e. 2rF <ny kT. It
should be remarked, however, that for F/m? < kT/E, << 1 the nucleus has a broad width. Under
such circumstances a Langer decay mechanism for the nucleus is no longer tenable. Moreover,

effects due to the finite lifetime of a given thermal pair in the presence of a K=K gas are to play a
decisive role(®:11),

b) Nucleation of interacting pairs®

A quite different prediction for the K-K nucleation rate in the overdamped limit may be obtained by
equating the kink production rate to the annihilation rate. The calculation of the annihilation rate is
very simple for o >> m, where K=K collisions are always destructive.

The mean square displacement of a diffusive soliton follows from (8),

( AX3(t) ) = 2Dt + u?; t2 - %)-(1 —e ) (16)

with D = (|3E,mot)"'1 . Observing that the average distance between annihilating solitons is given by
L= n'o"1 the soliton mean lifetime, T, is determined by the equation { AXZ('I:F) ) = L2, i.e. in the

dilute gas approximation,

_D Up 2
TF::'l'l"g -1 1 + (I—)'n—o') ] ; (17)

The production (annihilation ) rate of thermal K-K pairs per length unit is thus given by the
universal function®

2n
r==2-20p [[1+ 1] (18)
F C

where F_ =kT n, / 2n. The steady-state kink density n, = ny(F) has been worked out from the de-
finition of n, given in the introduction when the presence of the external field is accounted for ®),
In the leading order ny(F) is given by (3) where in the exponential E, is replaced with E in (13).

Eq. (18) can be specialized to two important limits:
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(1): Diffusive limit: F << F_ in (18) implies I'y = 4 Dng, and, explicitly®.11)
—— 2 3/2 EF 12 .-3BE ,
1-‘D = i (;:) EE;(BEF) C~"F . (19)

Note that the Arrhenius factor in (19) involves three times the rest energy of a soliton.

(11) Ballistic limit: F >> F, in (18) justifies the approximation® I'y =2 uz n? , i.e.

F — F kT
[, =m — (BE.) e 2BEg — ) 20
B m o (ﬁ F) v . mz EO ( )

The two results in (15) and (20) differ by an interaction induced renormalization of the damping
coefficient a in (15) , @ — o, = a(m/x) (2/FBER)/2. Compared with (15) the result in (20)
exhibits an additional factor of (BEg)'/2, which amounts to the "breathing - mode" contribution,
i.e. with (F/m?) < KT/E,, 7\% 1s a small negative eigenvalue which, in addition to the Goldstone
mode, can be treated as an approximate, collective variable to be inte grated overt1?),
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