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a b s t r a c t

The physics of activated escape of objects out of a metastable state plays a key role in
diverse scientific areas involving chemical kinetics, diffusion and dislocation motion in
solids, nucleation, electrical transport,motion of flux lines superconductors, charge density
waves, and transport processes of macromolecules and astrophysics, to name but a few.
The underlying activated processes present themultidimensional extension of the Kramers
problem of a single Brownian particle. In comparison to the latter case, however, the
dynamics ensuing from the interactions of many coupled units can lead to intriguing novel
phenomena that are not present when only a single degree of freedom is involved. In this
reviewwe report on a variety of such phenomena that are exhibited by systems consisting
of chains of interacting units in the presence of potential barriers.

In the first part we consider recent developments in the case of a deterministic dy-
namics driving cooperative escape processes of coupled nonlinear units out of metastable
states. The ability of chains of coupled units to undergo spontaneous conformational tran-
sitions can lead to a self-organised escape. The mechanism at work is that the energies of
the units become re-arranged, while keeping the total energy conserved, in forming lo-
calised energy modes that in turn trigger the cooperative escape. We present scenarios of
significantly enhanced noise-free escape rates if compared to the noise-assisted case.

The second part of the review deals with the collective directed transport of systems of
interacting particles overcoming energetic barriers in periodic potential landscapes. Escape
processes in both time-homogeneous and time-dependent driven systems are considered
for the emergence of directed motion. It is shown that ballistic channels immersed in the
associated mixed high-dimensional phase space are at the source for the directed long-
range transport. Open problems and future directions are discussed in order to invigorate
readers to engage in their own research.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Ever since the seminal work by Kramers (for a comprehensive review see Ref. [1]) there has been significant interest
in the dynamics of escape processes of single particles, of coupled degrees of freedom or of chains of coupled objects out
of metastable states. To accomplish the escape the considered objects must cross an energetic barrier, separating the local
potential minimum from a neighbouring attracting domain. From the perspective of statistical physics it is predominantly
the thermally activated escape, based on the permanent interaction of the considered system with a heat bath, which is
being investigated [1,2]. The coupling to the heat bath causes dissipation and local energy fluctuations and consequently the
escape process is conditioned on the creation of a rare, optimal fluctuationwhich in turn triggers an escape process. To put it
differently, an optimal fluctuation transfers sufficient energy to the system so that the system is able to statistically surmount
the energetic bottleneck associated with the transition state. Characteristic time-scales of such a process are determined by
the inverse of the corresponding rates of escape out of the domain of attraction. Within this topic, numerous extensions
of Kramers escape theory and of first passage time problems have been widely investigated [1–4]. Early generalisations
to multi-dimensional systems date back to the late 1960’s [5]. This method is by now well established and is commonly
put to use in biophysical contexts, and for a great many other applications occurring in physics and chemistry and related
areas [6–23]. More modern developments of rate theory address escape under time-dependent driving, typically being of
periodically varying nature [24–28] so that a time periodic asymptotic state emerges as the most stable state. Applications
of such time-dependent driven escape problems involve the objective of escape across sloshing potential barriers or wells
or also the stochastic neural dynamics involving a time-periodically varying threshold to ‘‘firing events’’.
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Distinct from the numerous studies of thermally induced escape processes driven by the coupling of the system to an
external heat bath is the microcanonical situation; i.e., when only the internal total fixed energy of a many-particle system
is available to perform structural transitions—a situation which been studied to a much lesser extent. The underpinning
key question is: how is it possible that many degrees of freedom subject to a deterministic and conservative dynamics can
overcome a potential barrier given that initially its energy is almost equally shared among the units so that the system is far
away from the critical equilibrium configuration related with a saddle point in configuration space. The latter configuration
is commonly referred to as a localised transition state [29].

Concerning the attainment of localised structures it is by now an established fact that nonlinearity and diffusion in
extended systems may cooperate to give rise to the formation of coherent structures that emerge even from an initial,
almost homogeneous state [30]. The concentration of an originally distributed physical quantity to a few degrees of freedom
in confined regions of a spatially extended and homogeneous systems proceeds typically in a self-organised manner. In
recent years the concept of intrinsic localised modes (LMs), or discrete breathers, as time-periodic and spatially localised
solutions of nonlinear lattice systems has proved to present the archetype of excitations describing localisation phenomena
in numerous physical situations [31–36]. For the creation of localised structures, modulational instability, leading to a
self-induced modulation of an initial linear wave with a subsequent generation of localised pulses, has proven to be
an effective mechanism. In this way energy localisation in a homogeneous system is achievable. For example, breathers
have been successfully applied to describe localised excitations which reproduce typical features of the thermally induced
opening dynamics of DNA duplex molecules such as the magnitude of the amplitude and the time-scale of the oscillating
bubble preceding full strand separation (denaturation) [37–41]. The appearance of LMs in damped, driven deterministic
nonlinear lattice systems has been the subject of the investigations in [42–45]. Furthermore, the spontaneous formation
of LMs (breathers) from thermal fluctuations in lattice systems, when thermalised with the Nosé-method [46] has been
demonstrated in [38,47,48].

The objective of this review is to elaborate on the scenario of possible escape from a metastable domain of attraction;
the main mechanism being based on the cooperativity between the interacting units of purely deterministic systems. Thus,
no additional coupling to a thermal bath assists the escape. We consider macroscopic discrete, coupled nonlinear oscillator
chains with typically 100 links, as these may appear as realistic models in neuroscience, in various biophysical contexts or
also in networks of coupled superconductors, e.g. see in Refs. [34,49–51]. An efficient deterministic escape that is driven
in absence of noise is particularly important when dealing with low temperatures for which the activated escape becomes
far too slow, or also for situations with many coupled nonlinear units in presence of non-thermal intrinsic noise that scales
inversely with the square root of the system size.

We demonstrate how cooperative behaviour in systems of interacting units facilitates the task performance of surmount-
ing potential barriers, which individual units, due to sheer limiting energetic reasons, would never be able to accomplish. In
fact, it is the self-organised directed energy redistribution among the units of the coupled chain, leading to the formation of
the critical LM, that makes the collective barrier crossing of the chain in a microcanonical situation possible. Moreover, in
the deterministic context the barrier crossing of a chain turns out to be (by far)more efficient comparedwith a thermally ac-
tivated chain for small ratios between the total energy of the chain and the barrier energy. Also directed particle transport in
metastable (multiple-well) periodic potential landscapes necessitates appropriately coordinated energy transfer processes
among the interacting units enabling consecutive barrier crossings.While there exists a vast literature on directed transport
of single particles moving mainly in periodic potentials based on the so-called ratchet effect (for a reviews see [16,23,52]
and cited references therein), by far less is known regarding the transport of systems coupled particles through periodic
landscapes. Especially, the effects stemming from the coupling between the particles on the emergence of a current require
a reinforced study. Moreover, in contrast to the driven one-dimensional case, with its three-dimensional phase space, the
dynamics of coupled units evolve in a higher-dimensional phase space, of which the details of its structure remainmore elu-
sive. Thus, an additional goal of the current review is to present also the state of the art relating to such collective transport.

The review is organised as follows: In Section 2.1 the cooperative escape dynamics of a one-dimensional chain from
the metastable state of cubic external potential is considered. As an extension to the one-dimensional chain system, in
Section 2.2 follows the investigation of a two-dimensional chain model with pairwise nonlinear Morse interaction. The
special focus will be on the influence of the additional degree of freedom on the self-organised escape process. Escape from
metastable states in a system of higher (geometrical) complexity in the form of a ring of interacting units evolving in a
Mexican hat two-dimensional potential landscape is studied in the subsequent section.

In view of controlling the process of barrier crossing we consider in the next section the collective escape dynamics of a
chain of coupled units in the presence of thermal noise and friction. In addition, the application of a weak external ac-field
leads to periodically oscillating landscape of bottlenecks. We show that the formation of the critical LM can be distinctly
accelerated via the application of a weak external ac-driving. By use of optimally oscillating barrier configurations it is
feasible that a far faster escape can be promoted, leading to a drastic enhancement of the escape dynamics. Particularly
at low temperatures, where the rate of thermal barrier crossing is exponentially suppressed, such a scenario can be very
beneficial.

That even a very weak driving force suffices to trigger fast escape for a chain situated initially extremely close to the
bottom of the potential well and thus containing a vanishingly small amount of energy is demonstrated in Section 2.5.

The chaos-assistedmechanism of dissociation of interactingmolecules related to an organised barrier crossing is studied
in Section 2.6.
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Fig. 1. Transition state configurations for a chain placed in a cubic potential for three different values of coupling strength κ . The chain consists ofN = 100
units, whose dynamics obey Eq. (3). With increasing coupling strength, more units are required for the chain to adopt the transition state. Moreover, the
ratio Eact/∆E, (see text) of the activation energy required for the chain to adopt the transition state and the barrier height, increases with κ—that is, more
energy is required in the transition state configuration, as the interactions between the units become stronger.
Source: Figure taken from Ref. [60].

Regarding collective transportwedistinguish between the time-independent (autonomous) and the time-dependent (non-
autonomous) Hamiltonian systems. Beginning with autonomous Hamiltonian systems modelling two coupled particles
moving in a periodic potential the guiding aim is to understand the conditions under which directed transport in phase-
space is supported. Novel mechanisms pertaining to directed transport that are a direct consequence of the interaction
between the particles are discussed.

Subsequent augmentation of the system by the inclusion of time-dependent driving and damping terms adds further
complexity to the coupled dynamics. For directed particle transport mediated by periodically driving forces we derive exact
results regarding the collective character of the running solutions.

Interaction-induced absolute negative mobility [53–57] of two coupled particles evolving in a symmetric and periodic
substrate potential which is subjected to a static bias force is the subject of the next section. The bias force of magnitude F0
serves to tilt the potential landscape such that particle motion in the direction of the bias is favoured. It is shown that within
a range of coupling strengths, the coupled particles can become self-organised and go, as periodic running states, frequency
locked with the driving, against the direction of the bias force.

Regarding features of transport exhibited by systems with many degrees of freedom we consider the Hamiltonian
dynamics of a one-dimensional chain of linearly coupled particles in a spatially periodic potential which is subjected to
a time-periodic mono-frequency external field. For a chain escaping collectively from a potential, the possibility of the
successive generation of a directed flow based on large accelerations is illustrated.

We conclude the review with a discussion of open questions and point out promising directions which may invigorate
readers to undertake their own future studies in this research area.

2. Deterministic dynamics and self-organised cooperative escape dynamics

2.1. Crossing one-dimensional anharmonic potential barriers

2.1.1. Escape of a one-dimensional chain
Consider first a one-dimensional chain of N linearly coupled units of mass m [58–60]. The chain is positioned in a cubic

external potential where its equally spaced units perform one-dimensional motion with elongations qn(t), n = 1, . . . ,N ,
in parallel directions. That is, the qn describe transversal elongations that are perpendicular to the direction of the potential
valley (see Fig. 1). Each unit of mass unity experiences a nonlinear force caused by the potential

V (qn) =
ω2

0

2
q2n −

a
3
q3n. (1)

The parameter a > 0 controls the strength of the nonlinearity in the system. This potential possesses a metastable equilib-
rium at qmin = 0 corresponding to the rest energy Emin = 0 and themaximum is located at qmax = ω2

0/awith barrier energy
Emax ≡ ∆E = ω6

0/6a
2. Furthermore, there are coupling forces acting between neighbouring units with coupling parameter

κ regulating the strength of the interactions. Moreover, each unit possesses a correspondingmomenta pn(t) that are canon-
ically conjugate to qn(t). Unless otherwise stated, periodic boundary conditions are imposed throughout this report. First,
we consider the deterministic dynamics in amicro-canonical situationwith a Hamiltonian set-up. This implies that the total
energy of the whole chain, E, is conserved.

Passing to dimensionless quantities by the following rescalings,qn = a/(ω2
0) qn,pn 2

= a2/(ω6
0)pn, andt = ω0 t , we

obtain a Hamiltonian with only a single remaining parameter, the effective coupling strengthκ = κ/(ω2
0). In what follows

we omit the tilde notation.
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The Hamiltonian of the considered chain thus reads:

H =

N
n=1


p2n
2

+
κ

2
(qn − qn+1)

2
+ V (qn)


, V (qn) =

q2n
2

−
q3n
3

. (2)

The resulting equations of motion become

q̈n + qn − qn2 − κ (qn+1 + qn−1 − 2 qn) = 0, qN+1 = q1. (3)

For the study of escape we initially place the units of the chain close to the bottom of the external potential, i.e. nearby
qmin = 0, providing each unit with very little energy compared to the barrier energy of the external potential. Due the
system dynamics the chain is able to generate a critical state – a critical elongation – in a self-organised manner, thereby
surpassing the potential local maximum. This initiates a transition of the chain into the unbounded regime qn > qmax = 1,
for all n = 1, . . . ,N , which we refer to as an escape event. Fig. 1 illustrates various transition states which will be described
in more detail below. For a single particle to overcome the potential barrier it needs to be supplied with an energy in excess
of ∆E = V (1) − V (0) = 1/6.

In what follows we make evident that the generation of these critical states proceeds within a highly efficient manner,
even in cases where the total chain energy E is small compared to the cumulative barrier energy of all units; i.e., E ≪ N ·∆E.
This low-energy regime is provided by the following initial preparation of the system: (i) First, the whole chain is placed at
a fixed position qn(0) = q0, n = 1, . . . ,N , near the bottom of the potential well. (ii) Then, the position and momenta of all
units are iso-energetically randomised while keeping the total energy a constant – i.e., E = const.. The random position and
momentum values are uniformly distributed in intervals

|qn(0) − q0| ≤ ∆q |pn(0)| ≤ ∆p.

The value of q0 is chosen in such a way that the average excitation energy of a single unit is small compared to the depth,
∆E, of the potential well. For our numerical simulations we consider chains comprising N = 100 units.

2.1.2. Transition states
For conservative Hamiltonian systems local minima of the energy surface, H = E = const., are Lyapunov stable. That is,

orbits in the vicinity of a local elliptic equilibrium point never leave it as their associated energy is conserved. Only those
orbits with energies exceeding the energy associated with a neighbouring saddle point are no longer bound to the basin.
Thus, the saddle point is referred to as a transition state, as it separates bounded from unbounded orbits. Concerning our
objective, the system’s energy has to exceed the transition state energy to make an escape event possible. To determine this
transition state, we have to solve ∇U(q1, q2, . . .) = 0, where U denotes the potential energy (thus the transition state is a
fixed-point) and the solution is such that all eigenvalues of the Hessian matrix of U are positive, except for a single negative
one.

In the one-dimensional chain model the transition state configurations solve the stationary equation1

q∗

n − q∗

n
2
− κ


q∗

n+1 + q∗

n−1 − 2 q∗

n


= 0, (4)

and satisfy the above mentioned condition on the eigenvalues, λH , of the Hessian matrix H

Hi,j = δi,j(2 κ + 1 − 2 q∗

i ) − κ

δi,j+1 + δi,j−1


.

In the case of a vanishing coupling strength the units decouple. Therefore, the fixed points of the system consist of
all the configurations where each units is placed either on the maximum of the potential barrier or the potential valley,
that is q∗

n = {0, 1}. In this case also the Hessian matrix, H , becomes diagonal and we can directly read off its eigenvalues,
λH
n = 1 − 2 q∗

n . Demanding that all but one of the eigenvalues be negative, the transition states are found to be all the
configurations where all unit are positioned in the potential valley except for one that is placed on top of the potential
barrier. The according energy is Eact(κ = 0) = ∆E = 1/6.

In contrast, a very large coupling strength corresponds to a situation where the chain becomes effectively homogeneous
and can be considered as a single unit. Therefore, the transition state corresponds to a chain configuration where all units
are placed at the maximum of the potential. This can be seen by taking the limit κ → ∞ in Eq. (4). If we want q∗

n to take on
values within an energetically bounded regime we must have q∗

n+1 + q∗

n−1 − 2 q∗
n = 0 in order to satisfy Eq. (4) in this limit.

In the case of periodic boundary conditions this becomes equivalent to q∗
n = q∗ so that Eq. (4) becomes q∗(1 − q∗) = 0.

Which of its two roots corresponds to the transition state becomes clear from the linear stability analysis of Eq. (3) for this
effective one unit problem

q̈ = −q + q2 ≈ −q∗
+ q∗2

+

−1 + 2 q∗


q =


−1 + 2 q∗


q. (5)

1 An alternative approach for the one-dimensional chain model is presented in [59]. It casts the stationary equation into a two-dimensional map and
links the localised lattice solutions to its homoclinic orbits.
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Fig. 2. Activation energy (energy of transition state configurations) as a function of the coupling strength κ , for chains consisting of N = 100 units. Each
unit evolves in a cubic potential and is linearly coupled to its nearest neighbours. There is a clear tendency for the activation energy of the chain to increase
with increasing coupling strength κ .
Source: Figure taken from Ref. [60].

Only the case qn = q∗
= 1 is associated with the inherent instability of a transition state. Accordingly, the transition state

energy is found to be Eact(κ → ∞) = N ∆E = N/6.
To determine the transition state in the intermediate coupling strength regime we used the dimer method, first

introduced in [61], which is a minimum-mode following method that solely makes use of gradients of the potential surface.
The obtained transition states togetherwith their energy are represented in Figs. 1 and 2, respectively. The latter is computed
by substituting the solutions q∗

n to Eq. (4) into the energy function given in Eq. (2) together with p∗
n = 0. The maximal

amplitude of the hair pin-like transition state configuration grows with increasing κ until it reaches a critical elongation
fromwhich it decreases until the entire chain approaches themaximum of the potential barrier as described above. Further,
the stronger the coupling is the higher the activation energy, which is presented in Fig. 2 in terms of the barrier height ∆E.

2.1.3. Modulational instability and spontaneous localisation
The energy that is initially almost homogeneously distributed along the entire chain quickly concentrates into local

excitations of single oscillators. This process is governed by the formation of regularly shaped wave patterns, so-called
breathers which are spatially localised and time-periodically varying solutions. Their emergence is due to a mechanism
known as modulational instability. In the following we elaborate on the onset of this modulational instability by applying it
to the above situation. Further details are contained in [62,63].

As an approximation for small oscillation amplitudes we can neglect the nonlinear term in Eq. (3). The resulting equation
in linear approximation exhibits phonon solutions with frequency ω and wave number k = 2π k0/N (with k0 ∈ Z and
−N/2 ≤ k0 ≤ N/2) related by the dispersion relation

ω2
= 1 + 4 κ sin2


k
2


.

Wemake an Ansatz that only takes into account the first harmonics (rotating wave approximation)

qi = F1,i(t) e−it
+ F0,i(t) + F2,i(t) e−2it

+ c.c.

The amplitudes of the harmonics are expected to be of a lower order of magnitude (|F0,i| ≪ |F1,i|, |F2,i| ≪ |F1,i|). Further-
more, we assume our envelope functions to vary slowly (|Ḟm,i| ≪ |Fm,i|) as well as the phonon band to be small (1 > 4κ).
Within the limits of these assumptions we obtain a discrete nonlinear Schrödinger equation (DNLS) for the amplitudes of
the first harmonic.

2iḞ1,i = κ

F1,i−1 + F1,i+1


+ 2F1,i


−

10
3

F1,i2 F1,i. (6)

We want to study the stability of this equation’s plane wave solutions in the presence of small perturbations |δBi(t)| ≪ 1
and |δΨi(t)| ≪ 1, leading to a new Ansatz for the envelope function

F1,npert. = (A + δBn(t)) ei((k n−∆ω t)+δΨn(t)). (7)

The perturbations are sufficiently small so that we can expand the envelope function up to the first order in δ and neglect
all terms of higher order. Using the Ansatz Eq. (7) in Eq. (6) leads to a complex differential equation for the perturbation
functions B(t) and Ψ (t). The real and imaginary part of this equation are independent. Hence, collecting all terms of first
order in δ results in two linear relations.

−A Ψ̇i = −
κ

2
{A sin k (Ψi−1 − Ψi+1) + cos k (Bi+1 + Bi−1)} −

10
3

A2 Bi (8)

2Ḃi = −κ {A cos k (Ψi+1 + Ψi−1 − 2Ψi) + sin k (Bi+1 − Bi−1)} . (9)
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Again, the solution to those coupled equations are plane waves

Ψn = Ψ 0ei(Q n−Ω t) Bn = B0ei(Q n−Ω t) (10)

with the dispersion relation

(Ω − κ sin k sinQ )2 = κ cos k sin2

Q
2


4 κ cos k sin2


Q
2


−

20
3

A2


(11)

which describes the stability of the Q -mode perturbation on the k-mode carrier wave. Q and k have a 2π periodicity and
can therefore be chosen to be in the first Brillouin zone. Furthermore, we can restrict the range of k and Q : k,Q ∈ {0, π},
because negative values correspond to waves with the opposite direction of propagation.

The perturbations are stable for Ω ∈ R which is the case when the right hand side of Eq. (11) is positive. Therefore, all
carrier waveswith k ∈ {π/2, π} are stable with respect to all perturbationmodes. For k ∈ {0, π/2} perturbationswill grow,
provided that

cos k sin2

Q
2


≤

5 A2

3 κ
. (12)

We can then find an according growth rate

Γ (Q ) = |Im(Ω)| = sin

Q
2


20
3

κ cos k

A2 −

3
5
κ sin2


Q
2


cos k


(13)

which, for the case that A2
≤

6
5κ cos k, has its maximum at

Qmax = 2 arcsin


5 A2

6 κ cos k
. (14)

Otherwise the maximum growth rate is found at Q = π . The corresponding growth rates become

Γmax =


Γ (Qmax) =

5
3
A2 if A2

≤
6
5
κ cos k

Γ (π) =


20
3

κ cos k

A2 −

3
5
κ cos k


< Γ (Qmax) if A2 >

6
5
κ cos k.

(15)

We recall that our system is initially prepared in a slightly perturbed k = 0 mode. This is thus the only possible
carrier wave mode; a result which follows because of the amplitudes, A, required for the other modes (which scale with
the amplitude of the perturbation). The reason being that either the amplitudes are likely too small to generate growing
modes – note the inequality given by Eq. (12) – or the arising maximal growth rates are suppressed. Evaluating the growth
rate of instabilities of the k = 0 carrier mode for different values of κ (Fig. 4), we find that the modulational instability
becomes more mode selective upon increasing κ . Hence, for large values of κ the only relevant unstable modes are near the
fastest growing mode depicted in Fig. 3. In such a situation we expect the emergence of a regular wave pattern (an array of
breathers) that efficiently does localise energy and thereby enhances the escape of the chain.

2.1.4. The formation of breathers
The mean values of (positive amplitudes) q0 are taken in such a way that the average excitation energy of a single unit,

E0, is small compared to the depth, ∆E, of the potential well. Due to the choice of sufficiently small detunings ∆q the initial
lattice state, qn(0) = q0 + ∆q, is close to an almost homogeneous state and yet such disturbed that there result very small
– but non-vanishing – initial interaction terms. More precisely, Eq. (16) determines the energy of a unit

En =
p2n
2

+ V (qn) +
κ

4


(qn+1 − qn)2 + (qn−1 − qn)2


. (16)

The last term in Eq. (16) represents the interaction energy of an individual unit. The initial set-up discussed above allows
for weak, non-vanishing, interactions between neighbouring units. Thus an energy exchange between the coupled units is
entailed. The initial energy per unit obeys En ≪ ∆E, but is still sufficiently large to initiate the excitation of nonlinearmodes.
In this realm the formation of localised excitations can be explained by the above discussed modulational instability. This
mechanism initiates an instability of a plane wave when small perturbations of non-vanishing wavenumbers are imposed
on the almost homogeneous state close to qn(0) = q∗

= 0 for all n ∈ [1,N]. The instability – giving rise to an exponential
growth of the perturbation – destroys the initial configuration at a critical wavenumber. Eventually, a pattern of localised
humps gets formed, virtually with equal distance between them distributed on the chain [15–17]. A detailed study of the
parameter’s influences on the creation of the localised humps and in consequence on the escape process can be found in [17].
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Fig. 3. Fastest growing plane wave modes (solid line, left axis) – Eq. (14), and their growth rates (dashed line, right axis) – Eq. (15), for a wave number
k = 0.0, both as a function of the coupling strength κ . The parameter A controls the amplitude of the envelop function Eq. (7).
Source: Figure taken from Ref. [60].

Fig. 4. Growth rates Γ of perturbations to the derived Discrete Nonlinear Schrödinger equation—Eq. (6), as a function of the unstable planewave Q-modes
according to Eq. (13) from a k = 0 carrier mode with A = 0.2. Each curve is obtained for a different value of the coupling strength κ , as indicated in the
figure.
Source: Figure taken from Ref. [60].

For a chain situated near the bottom of the potential the system is initially prepared in a slightly perturbed k = 0 mode.
In such a situation analytical considerations establish the emergence of a regular wave pattern (an array of breathers) that
efficiently localises energy and thereby enhances the escape of the chain [58,59].

Regarding the strength of the interaction between the units we note that in the limit κ → 0, leading to uncoupled
units, as well as the opposite limit of very strong couplings leading to a rigid rod-like chain, the chain behaves like a single
particle, and so the escape is prevented on the grounds of too little energy available in each unit. In between these two
limiting cases there exists a value of the coupling strength κ that optimises the escape rate. The latter can be approximated
analytically [58].

The escape time of a unit is defined as the time instant when the unit passes across a coordinate value far beyond the
potential barrier. Setting this value to q = 20qmax no likely recrossing back into the potential valley occurs. Themean escape
time of the chain is then determined by the average of the escape times of all of its units. For the numerical evaluation of
mean escape times in dependence of κ (see Fig. 5) the system – Eq. (3) – was integrated using a fourth order Runge–Kutta
scheme. Numerical accuracy was obtained by ensuring the energy deviation to remain smaller than the order of 10−12. The
mean escape times were determined from 500 realisations of randomised initial conditions at a given energy. The maximal
integration time is 5 · 105 time units.

Fig. 5 demonstrates the resonance behaviour of the mean escape time as a function of κ and also reveals a fairly good
agreement of the analytical approximation of the optimal coupling strength κ = κ∗, which leads to the fastest escape,
with the rate obtained from simulation results (for details see [58,60]). Regarding the pronounced variation of the mean
escape times (ranging over several orders of magnitude) for different energies we remark that a low system energy does not
supply single breathers with an energy sufficient to trigger an escape event. For example, for κ = 0.15 and E/(N ∆E) = 0.1
typically an array with ten or more breathers forms so that each one can hold only an energy E/NB < ∆E, with NB being
the number of breathers. Nevertheless, an escape takes place, eventually. This implies a further concentration of energy
due to breather coalescence taking place at later times after the initial creation of the breather array. The time evolution
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Fig. 5. Semi-logscale plot showing the mean escape times (marker symbols) for chains, consisting of N = 100 units, initially confined to the metastable
minimum of a cubic potential. The averaging was done over 500 realisations of randomised initial conditions, each of which obeys the relations
|qn(0) − q0| ≤ ∆q and |pn(0)| ≤ ∆p with ∆q = 0.05, ∆p = 0.05. The different symbols represent different ratios of the total energy E and N times
the barrier height, as indicated in the key. The solid grey line represents the analytical approximation for the optimal coupling strength for energy values
given by the right-hand axis.
Source: Figure taken from Ref. [60].

(a) E
N ∆E = 0.12. (b) E

N ∆E = 0.07.

Fig. 6. (Colour Online) Heat maps showing the temporal evolution of the energy distribution En(t) for linear chains evolving in a cubic potential—Eq. (3).
Panels (a) and (b) represent different ratios of the total energy E and N times the barrier height. The localisation of energy from an initially homogeneous
state causes in both cases an escape at the endof the depicted time frame.While the chain’s energy in (a) is sufficiently high to let an individual breather from
the early breather array to surpass the potential barrier, the lower energy in (b) necessitates a merging of breathers to cause the critical chain elongation.
The parameter values are: κ = 0.15, ∆ = 0.05, ∆ = 0.05,N = 100. Note the different time scales.
Source: Figure taken from Ref. [60].

of the energy distribution defined in Eq. (16), shown in Fig. 6, illustrates this feature. En was monitored in time (upwards)
for two exemplary cases. Energy is localised in both cases starting from an initially almost homogeneous state. In Fig. 6(a),
corresponding to a relatively high energy, we see the appearance of a regular breather pattern. Every breather concentrates
enough energy to certain units in order to trigger an escape, which in this case happens at t ≈ 700. In contrast, the
lower system energy in Fig. 6(b) does not allow for a direct escape of the initially formed breathers. Instead, breathers
start an erratic movement. After an inelastic interaction they merge and can thereby eventually result in a configuration
exceeding the critical chain elongation, see also [48]. However, this secondary process is slow compared to the (direct)
breather formation which explains the different orders of magnitude of the escape times scale, in dependence of the energy
content, seen in Fig. 5.

2.1.5. Thermally activated escape
The previous investigations dealt with a deterministic chain dynamics governing an escape event. In this part we study

how a thermal bath with a temperature T assists the transition over the barrier, cf. in Ref. [59]. For this purpose we consider
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(a) Thermally activated setting—Eq. (17). (b) Deterministic setting—Eq. (3).

Fig. 7. Lin-log plot showing the mean escape times in the thermally activated case – Eq. (17) – for different values of the damping constant, (a), and their
comparison to the deterministic setting, (b), for 500 realisations each. The grey area in (b) sketches the mean escape times for the thermally activated case
for 0.005 < γ < 1.0 as shown in (a), whereas the symbols show results from the deterministic set-up with initial conditions given in the inset. The solid
black line in (b) is the inverse of the maximal growth rate, Γmax , obtained from Eq. (15). The parameter values are: κ = 0.15,N = 100. In both panels Ē
and E are expressed in units of N times the barrier energy, with E = NkbT and E being the total system energy in the deterministic case.
Source: Figure taken from [60].

the associated Langevin equation driven by additive thermal noise,

q̈n + qn − qn2 − κ (qn+1 + qn−1 − 2 qn) + γ q̇n + ξn(t) = 0, (17)

with a common damping parameter γ and uncorrelated Gaussian white noise terms ξn(t). In order to be able to compare
the deterministic situation to the thermally activated setting, the associated conserved energy E in the Hamiltonian case
and the average energy E transferred from the bath need to be equal. The latter is governed by the correlation function of
the noisy force ξ(t) given by

ξn(t)ξn′(t ′)

= 2 γ E/N δn,n′ δ(t − t ′), (18)

expressing that the mean energy of all particles is given by E. If expressed by the bath temperature, every particle assumes
on average kB T , i.e. E = N kB T with kB being the Boltzmann constant.

We measure the mean escape time for the system described by Eq. (17). The latter is numerically integrated using an
second-order Heun stochastic solver scheme, again with a maximal integration time of 5 · 105 time units. The system is
initialised with all units set to the minimum of the potential and zero momenta. The system thermalises and the moment
when its energy reaches E is taken as the initial time for our studies of escape.

We study the system for the coupling constant, κ = 0.15. Fig. 7(a) shows the mean escape times of 500 realisations for
different values of the damping constant in dependence of E. Fig. 7(b) compares these times (depicted as the grey surface) to
the corresponding mean escape times of the deterministic system. It additionally shows the characteristic time constant for
the formation of breathers due tomodulational instability, given by Eq. (13), where the k = 0 phonon amplitude, A, is related
to the system energy via E(A) = N V (A), with V (·) is defined in Eq. (2). Q is the wave number of the perturbation-mode
acting on the k-mode carrier wave.

Especially for smaller energies the deterministic escape is considerably faster than the thermally activated one. Notably
for E/(N ∆E) < 0.1 and quite contrary to the deterministic setting, escape events are practically absent during our simula-
tions time in the thermal case. For larger mean energy values this picture can change to a higher efficiency of the thermal
escape process when damping is weak. Also two deterministic settings with different magnitudes of the random initial
perturbations swap their features of escape upon passing from low to high energies.

How can the speedy escape in the deterministic system, in comparison to the thermally activated escape, be explained?
For small values of γ the system approaches the deterministic setting. This entails a tendency towards a more efficient
and pronounced localised energy distribution as seen when comparing Fig. 8(a) (low damping strength γ = 0.005) and
Fig. 8(b) (high damping strength γ = 1.0). The relaxation time of the chain scales with the inverse of the damping constant.
Correspondingly, the life times of local excitations growwith decreasing γ . The outcome is a more heterogeneous energetic
structure where thermal fluctuations are more likely to cause critical chain elongations. This explains the faster escape
comparing small with large damping constants. But even in the case of very small γ the relaxation time is still much shorter
than the time needed for the coalescence of multiple breathers (which is of the order of several hundred time units, see
Fig. 6(b)). Therefore, the long term cumulative concentration of energy is generally inhibited in the thermal case. This
explains the virtual impossibility of a thermal escape for small energies.
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(a) γ = 0.005. (b) γ = 1.0.

Fig. 8. (Colour Online) Heat maps showing the temporal evolution of the energy distribution En(t) in the thermally activated case – Eq. (17) – for chains
consisting of N = 100 units. The two panels were obtained using different values of the damping parameter γ : A smaller damping constant leads to a
higher degree of energy localisation. The remaining parameter values are: E/(N∆E) = 0.15, κ = 0.15 with E = NkbT and ∆E being the barrier height.
Source: Figure taken from Ref. [60].

For higher energies the deterministic escape is mostly assisted by arrays of breathers that are formed as the result of
modulational instability (referred to as initial breathers). The formation time of the initial breather array can be estimated
by the inverse of the maximal growth rate, Γmax from Eq. (15). Fig. 7(b) shows the expected convergence of Γ −1

max to the
deterministic escape times for large energies. We recall that Γmax was determined on the basis of a linear expansion in the
perturbations. This explains the better match of Γ −1

max and ⟨Tesc⟩ in the case of smaller initial perturbations. The divergence
of Γ −1

max with the mean escape time for small energies again gives evidence to the fact that the initial breather array does not
induce an escape and other mechanisms enhancing the degree of localisation are required.

In the thermally activated case with large energy the mobility of the breathers becomes amplified if noise acts. If the
breathers possess longer life times, i.e. for smaller damping, a few (usually not more than two) breathers can temporarily
merge and approach a critical chain elongation. Starting with a heterogeneous energy structure after its thermalisation
then leads to shorter escape times in the presence of noise compared to the deterministic setting that first has to re-allocate
energy from an initially almost homogeneous state. Conversely, for stronger damping, the life times of breathers is too short
and the energy distribution remains mostly homogeneous (see Fig. 8(b)). The escape of the chains over the potential barrier
then rely entirely on rare, strong enough, spontaneous fluctuations of the noise term and so themean escape times generally
become comparatively large.

Regarding the impact of the initial perturbations, ∆q, ∆p, of a homogeneous state on the escape time (cf. right panel,
Fig. 7) in the deterministic casewenote that, as the initial conditions for smaller perturbations are closer to the k = 0 phonon
mode, the initial breather array emerges more quickly so that the escape times are smaller when the energy is high enough
for initial breathers to initiate the escape. Contrarily, when low energy necessitates coalescence, stronger perturbations lead
to a higher breather mobility which speeds up the breather coalescence so that the escape times become smaller.

2.2. Deterministic escape dynamics of two-dimensional coupled nonlinear chains

As an extension to the one-dimensional chain system, as discussed in the previous section, we consider next a two-
dimensional chain model with pairwise nonlinear Morse interaction between neighbouring units and study the role of the
additional degree of freedom on the self-organised escape process [64]. In distinct contrast to the previous study taking into
account solelymotion in the transition direction, in this case dynamicalmotion is also allowed transverse to the barrier along
thewell of the external potential. As a consequence, in addition to the formation of localised large amplitude breathers, with
amplitudes evolving in transition direction, global oscillations of the chain transverse to the barrier are observed. Eventually
a few chain links accumulate locally sufficient energy to cross the barrier. This mechanism is shown to take place for both
linear rod-like and for coil-like configurations of the chain in two dimensions.

2.2.1. Two-dimensional coupled unit chain model
Our study treats a springmass chainmodel. The chain consists ofN unitswhich are pairwise connected through nonlinear

springs. The motion of these units takes place in the x–y-plane. We denote by qxn the displacement of the nth unit in the
x-direction, also referred to as the transition coordinate, while in the transverse y-direction displacements from the rest
position are denoted by qyn. The local on-site potential U reads as

U(qxn) =
mω2

0

2
q2xn −

a
3
q3xn, (19)
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with n = 1, . . . N . We assume a nonlinear interaction potential of Morse type between adjacent units of the chain

UM(rn+1,n) = D0

1 − exp


−d(rn+1,n − l)

2
, (20)

with depth D0, range parameter d, l the equilibrium distance of the units (also referred to as bond length), and rn+1,n the
Euclidean distance of two neighbouring units,

rn+1,n =


(qxn+1 − qxn)2 + (qyn+1 − qyn)2, (21)

with n = 1, . . . N . The corresponding Hamiltonian of the two-dimensional chain model reads as

H =

N
n=1


p2xn
2

+
p2yn
2

+ U(qxn)


+

N−1
n=1

UM(rn+1,n). (22)

Passing to dimensionless quantities is achieved with the following rescaling procedure: q̃ = qd, p̃ = pd/(mω0), t̃ = ω0t ,
ã = a/(dmω2

0). Furthermore, we use κ = 2D0d2/(mω2
0). In what follows we omit the tilde notation. The intrinsic length

scale

s = qmax
x − qmin

x =
1
a
, (23)

where qmax
x = mω0/a2 and qmin

x = 0 denote the position of the potential maximum and minimum respectively, plays an
important role. To be precise, small ratios l/s; i.e., the ratio of the bond length l and the intrinsic length scale s of the system,
cause coil-like chain configurations, while rodlike states appear for ratios of the order of one or above. Note that in the limit
of vanishing a the barrier disappears and the intrinsic length scale diverges.

The equations of motion derived from the Hamiltonian read:

q̈xn = −qxn + aq2xn
− κ


1 − exp


−(rn+1,n − l)


exp


−(rn+1,n − l)

qxn − qxn+1

rn+1,n

− κ

1 − exp


−(rn,n−1 − l)


exp


−(rn,n−1 − l)

qxn − qxn−1

rn,n−1
(24)

q̈yn = −κ

1 − exp


−(rn+1,n − l)


exp


−(rn+1,n − l)

qyn − qyn+1

rn+1,n

− κ

1 − exp


−(rn,n−1 − l)


exp


−(rn,n−1 − l)

qyn − qyn−1

rn,n−1
, (25)

for n = 2, , , , N − 1. Moreover, open boundary conditions are imposed.
Like in the study of the one-dimensional case, initially the chain is in a flat state of amplitude qx0 on which small

perturbations are exerted by taking random initial amplitudeswhich are uniformly distributed in an interval |qxn(0)−qx0| ≤

∆qx. Themean values of qx0 are taken in such a way that the average excitation energy of a single unit, E0, is small compared
to the depth, ∆E, of the potential well. Due to the choice of sufficiently small displacements ∆qx the initial lattice state,
qxn(0) = qx0 + ∆qxn, is close to an almost homogeneous state and yet sufficiently disturbed that there result small but non-
vanishing initial interaction terms. Thus an energy exchange between the coupled units is instigated. The initial momenta
pxn = 0 are set zero. The initial amplitudes in the transverse direction are qyn(0) = nl and themomenta pyn(0) = 0, entailing
the conservation of the centre of mass in the y-direction.

2.2.2. Energy redistribution process
In the beginning, the system energy is essentially equally shared among all units in the chain, expressed by a homoge-

neous elongation of the whole chain in the transition direction, and the escape scenario proceeds as follows: Just like for the
one-dimensional study (see previous Section) the process of modulational instability governs the dynamics of the system
during an early phase of the evolution. In particular this triggers the formation of an array of localised solutions (large-
amplitude breathers) in the x-direction. Later on, the influence of the – compared to a purely one-dimensional unit model –
second, transverse, degree of freedom crucially affects the dynamical processes of the coupled unit chain. Interestingly, we
observe that in the cases of both very short bond lengths l/s ≪ 1 and bond lengths obeying l/s > 1 the structure, which is
formed by amodulational instability, persists for very long times, whereas it disappears rather fast for intermediate values of
the bond length. Such a decrease of the amplitudes of the localised structures in the x-direction comes alongwith the excita-
tion ofmotions in the transverse degree of freedom. As onemeasure of the energy content in the x- and the y-direction the re-
spective kinetic energy can be taken. Initially themean of the x-kinetic energy of the x-motion is Ex

kin = 0.5E, whereas Ey
kin =

0. Induced by the breather formation in the x-direction an enhanced interaction of neighbouring units is caused and since
the interaction force couples the motion in the x- and in the y-direction an energy transfer is initiated. In fact, one observes
that a state of equipartition is reached for which Ekin = 0.25E in both the x- and the y-direction, respectively. The time until
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equipartition is attaineddecreaseswith increasing coupling strength.Weunderline, that the energy transfer described above
constitutes a purely nonlinear effect. We could never observe a complete back transfer of energy from the y- to the x- mo-
tion. Rather a breathing-like behaviour, for which the chain contracts and relaxes along its axis periodically in time results.
This behaviour of global oscillations of the chain as a whole along the transverse direction appears in addition to the large-
amplitude breathers evolving in the transition coordinate direction involving fairly strong energy localisation at certain sites.

2.2.3. Transition states and collective escape
Whether an unit involved in a large amplitude breather state is able to escape from the region of bounded motion inside

the potential well or is held back depends on the corresponding amplitude pattern as well as on the coupling strength.
The associated critical chain configuration – called the transition state – is determined as the solution of the corresponding
stationary system which represents a force-free configuration corresponding to a first-order saddle point in configuration
space. There appear two scenarios: The peak of the localised amplitude profile of the critical configuration is situated either
at one free end of the chain (referred to as boundary critical localisedmode—BCLM), or somewhere in between the free ends
(referred simply to as CLM).

Regarding CLMs it is found that, for a given coupling strength κ , the transition state is represented by a thin needle shape
with the central unit situated beyond the barrier if l < s (akin to the one-dimensional situation). In general, the smaller the
bond length l the larger is the extension of the critical localisedmode along the x-direction and themore units are elongated
from the potential minimum. In contrast, for l > s, the central unit is always situated at the barrier, while its neighbours are
arranged in such a way that there remains no stress arising from the bonds. We underline that the ends of the chain are free
and there act thus no restoring forces. Hence, in order to reduce the stress arising from the elongation of the central unit over
the barrier, its neighbours can be displaced force free along the y-axis. Furthermore, due to the strong degree of localisation
the obtained structures remain the same when increasing the number of units in the chain. It should be stressed that the
alignment of the units along the potential minimum situated at qxmin = 0 is completely arbitrary, as long as next neighbours
keep their equilibrium distance l. In particular, completely coiled configurations can be critical transition states, too.

For the BCLMs, the qualitative dependences on the system’s parameters κ and l remain – compared to the situationwhen
the critical peak is formed between the ends – the same. But – since the unit beyond the barrier is now connected to only
one neighbouring unit inside the potential well and thus the acting back-pulling forces are smaller – the force-free critical
state is less elongated.

Concerning the dependence of the activation energy on the bond length, we observe a decay of Eact with enlarging bond
length. In the limit l → s its value approaches Eact = ∆E. We remark that in the case of l ≥ s we always find a critical
stationary solution with activation energy Eact = ∆E. Surprisingly, in the limit of long bonds the activation energy becomes
independent of the coupling strength and is equal to the net barrier height. As long as l < s, the activation energy grows
with an increasing value of the coupling strength. The growth is the stronger the smaller is l. In the case of BCLMs the
activation energies are remarkably lower compared to transition states with a peak somewhere in between the loose ends.
A detailed analysis of the energetic contributions to the activation energy reveals that the major part of Eact is stored as
deformation energy of the springs. Since a BCLM contains fewer stretched springs, the value of activation energy is lower.
Crucially, the process of barrier crossing of the chain is not only influenced by the amount of energy provided to the system.
It also depends on the ratio of different length scales, since the geometry plays a vital role for motions in a two-dimensional
potential landscape. Thus, the rate of escape will be significantly affected by the choice of the parameters.

The escape time of a chain is as defined in the one-dimensional case (see Section 2.1). In Fig. 9 a typical escape process
is illustrated by showing the escape times tesc versus the position of the escaping unit when the corresponding unit passes
qthreshx . First, one unit moves directly beyond the barrier (since the underlying dynamics is irregular for different realisations
of initial conditions the incident escape can happen at an arbitrary location in the chain), and therefore adjacent units are
subjected to pulling forces and a cascade of escapes is initiated in a relatively short time interval.

Regarding the dependence of the escape time on the coupling strength κ , the fraction of escape events, as a function of κ ,
has been calculated. Numerically 200 different realisations of initial conditions, eachwith a simulation time set to tsim = 104,
corresponding tomore than 1500 periods of linear ground-state oscillations, were considered. Since not all simulations lead
to escape events during tsim the mere calculation of the mean escape time alone is not suitable.

Fig. 10 depicts the fraction of successful exits of the entire chain for two different bond lengths as a function of the
coupling strength κ . The values of the bond lengths are chosen in such way that one is smaller and one is larger than s. For
κ = 0.45 one observes the first rare events of escape of the complete unit chain. The fraction of successful escape events
of the entire chain further increases with enhanced coupling strength. Whereas for the larger bond length at κ = 0.75 the
curve saturates to 1 – i.e., all initial preparations lead to an escape of the whole chain – the curve for the smaller bond length
reaches there a maximum of 0.835. With further increasing of the coupling strength the latter curve descends reaching a
value of 0.345 at κ = 1.5.

The different shape of the curves can be explained by the dependence of the activation energy on the value of the coupling
strength for l < s. Here, the effective potential barrier that must be surmounted during the escape process grows with κ . As
a result we observe a drastic reduction of the successful exit events for shorter bond lengths.

Regarding a study of the influence of the bond length on the mean escape time of the unit chain the coupling strength
was fixed to κ = 0.9, guaranteeing an exit of the entire chain without fragmentation. The results are shown with Fig. 11.
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Fig. 9. Escape process for one realisation of initial conditions for the two-dimensional chain model — Eqs. (24)–(25): Escape times tesc of the units versus
the y position when the corresponding unit passes the threshold value qthresx far beyond the barrier. The position of the unit which overcomes the barrier
first is denoted by yc , all other positions are shifted by this value. The initial conditions are qx0 = −0.05 and ∆qx = 0.001, yielding E0/∆E = 0.219. The
parameter values are a = 5, κ = 0.9, l/s = 1.25, and N = 100.
Source: Figure adapted from Ref. [64].

Fig. 10. (Colour online) Fraction of completed escapes of the chain as a function of the coupling strength κ for the two-dimensional chain model —
Eqs. (24)–(25), with chains consisting of N = 100 units. The value of the bond length l is given in the legend, in units of the intrinsic length scale of the
system s- Eq. (23). The initial conditions are qx0 = −0.05 and∆qx = 0.001, amounting to E0/∆E = 0.219. The remaining dimensionless parameter, which
regulates the barrier height of the cubic potential, is a = 5.
Source: Figure taken from Ref. [64].

For small bond lengths up to l/s = 1 the curve drops continuously and at l/s ≈ 1.1 a minimum is reached. With further
increase of the bond length the mean escape time slightly increases. The rise of the curve for enlarging bond length can be
explained with the smaller growth rates of the localised structures created during the process of modulational instability.
The effective interaction is weaker. Thus the process of energy localisation is slower and thereby all subsequent exchange
processes induced by the modulational instability are slowed down, too. The reason for the absence of escape for l/s . 0.75
is that the limit of l/s → 0, i.e. small bonds compared to the width of the local potential, and a fairly weak coupling, the
chain tends to fragment.

2.3. Mexican hat potential

Extending the previous studies of escape from metastable states to systems of higher (geometrical) complexity we
investigate a ring of interacting units evolving in a two-dimensional potential landscape of the form of a Mexican hat [65].

Besides the conceptual interest in this work, the results can be applied to the description of micro bubble surface modes
which can bemodelled by a closely related system inwhich breathermodeswere verified experimentally [66]. These results
demonstrate the potential relevance of resonant wave modes, as well as the escape behaviour in such topological set ups.
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Fig. 11. Mean escape time as a function of the bond length l, in units of the intrinsic length scale of the system s— Eq. (23). 500 realisations of the random
initial conditions, for chains consisting ofN = 100 units, have been used in the averaging. The parameters regulating the initial conditions are qx0 = −0.05
and ∆qx = 0.001, yielding E0/∆E = 0.219. The remaining dimensionless parameter, which regulates the barrier height of the cubic potential, is a = 5.
Source: Figure taken from Ref. [64].

Fig. 12. A typical initial preparation of a chain in the Mexican hat potential V (qi) — Eq. (26). The key features of the potential are indicated in the figure.
Source: Figure taken from Ref. [65].

We study a Hamiltonian system consisting of a two dimensional ring of N linearly coupled units subjected to an external
Mexican-hat-like, anharmonic potential; i.e.,

V (qi) = −


q2
i + cos



q2
i

λ

 (26)

with (conserved) Hamiltonian in dimensionless units given by

H =

N−1
i=0


p2
i

2
+

κ

2
(qi − qi+1)

2
+ V (qi)


, (27)

where κ is the coupling strength between neighbouring units and the parameter λ regulates the width of the Mexican hat
potential V (qi). Moreover, qi = (qxi, qyi) and pi = (pxi, pyi). A typical setup is shown in Fig. 12.

The corresponding equations of motion read

q̈i = −κ (2 qi − qi+1 − qi−1) +
qi
q2
i

+ sin



q2
i

λ

 qi

λ


q2
i

i ∈ 0 . . .N − 1. (28)
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Fig. 13. Simulation snapshots of a chain in a Mexican Hat potential evolving according to Eq. (28). The snapshots show the growth of a radial breather
array from an almost homogeneous initial state due to modulational instability. The ongoing amplification of this pattern eventually drives an individual
unit over the potential barrier and thus triggers an escape of type I as described below. The parameter values are: κ∆Θ2

= 0.79 · 10−4 , λ = 0.85.
Source: Figure adapted from Ref. [65].

Fig. 14. Simulation snapshots for a chain in a Mexican hat potential evolving according to Eq. (28). The snapshots show the emergence of a longitudinal
wave pattern. Arrows indicate the chain movement. The parameter values are: κ∆Θ2

= 0.06, λ = 0.4.
Source: Figure adapted from Ref. [65].

2.3.1. Wave modes and escape dynamics
We elucidate the influence of different wave modes on the escape dynamics of the ring from the metastable state

over the potential barrier when the ring is initially situated in a metastable state in the vicinity of the potential’s bottom
corresponding to a local minimum energy configuration. Given the rotational symmetry of the Mexican hat potential polar
coordinates, i.e. (ri, ϕi), can be introduced accounting for the motions of the radial and angular degree of freedom of each
unit. The local minimum energy configuration is determined by ri = r0 and ϕi = i∆Θ with ∆Θ = 2π/N complemented
with a conditional equation for the radial position, reading

−2 κ r0 (1 − cos (∆Θ)) + 1 +
1
λ
sin
 r0

λ


= 0. (29)

Initially, the units are placed in a slightly perturbed ring-like structure around the central potential hump, see Fig. 12,

qi(0) = r0 ·


cos (i∆Θ)
sin (i∆Θ)


+


∆qxi
∆qyi


, pi(0) =


∆pxi
∆pyi


,

where∆qxi and∆qyi as well as∆pxi and∆pyi are random perturbations taken from a uniform distributionwithin the intervals

∆qxi , ∆qyi ∈ [−0.01, 0.01] ; ∆pxi , ∆pyi ∈ [−0.01, 0.01] .

In this setting, the angular distance between any pair of neighbouring units is almost equal (i.e. being close to ∆Θ) so that
the initial angular acceleration is small. Thus, for short time periods after the system’s preparation, virtually no variations
of the angular variables, viz. ϕi(t) = ϕ0

i = i∆Θ , are expectable. Furthermore each unit’s initial radius is close to r0. Thus,
(at least) for short periods of time after the initialisation of the system, the angular components remain fixed and the units
can only move along equally spaced rays that all emerge from the origin.

In more detail, the initial ring-like setup entails that the chain will first oscillate in a k = 0 phonon-like manner. For
appropriate parameter values the mechanism of modulational instability triggers the formation of a regularly spaced array
of breathers as shown in Fig. 13. These localised excitations, forming a transversal wave pattern, play a crucial role because
they concentrate energy in single radial degrees of freedom and therefore substantially influence the escape behaviour.

Generally, at an early stage the dynamics is characterised by the transversal wave pattern. However, later on the angular
components experience changes as well. Remarkably, for most of the parameter choices the angular movement is far from
being erratic but instead consists of regular and pronounced longitudinal wave patterns, as shown in Fig. 14. As will be seen
below, these patterns are fundamental for the characterisation of the system’s dynamics and its escape behaviour.

The escape can be realised via two escape channels which are related to different transition states depicted in Fig. 15. The
escape through each of these channels is driven by breather modes. They efficiently accumulate energy into single radial
degrees of freedom.
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Fig. 15. Relevant transition state types for chains in a Mexican hat potential. The chains, by passing through a transition state, can escape from the
metastable potential minimum. The states differ by the way in which the chain overcomes the central potential hump, and also the potential barrier (see
also Fig. 12). Snapshots of an escape of type I (type II) can be seen in Fig. 16 (Fig. 17).
Source: Figure taken from Ref. [65].

Fig. 16. Snapshots of an escape process of type I for a chain in a Mexican hat potential evolving according to Eq. (28). Notice that a few units surmount the
potential barrier, are driven further down the outer slope of the potential barrier and thereby pull the entire chain, first over the central potential hump,
and subsequently from the potential valley. Parameters: λ = 0.8 and κ∆Θ2

= 0.08.
Source: Figure taken from Ref. [65].

The escape related to transition state type I, as depicted in Fig. 16, indicates a process in which a few units surmount the
potential barrier, are driven further down the outer slope of the potential barrier and thereby pull out the entire chain from
the meta-stable state. An escape of type II, depicted in Fig. 17, describes the process in which the chain first surmounts the
central potential hump, passing the transition state of type IIa as a bundle, and then overcomes the potential barrier in the
way indicated by transition state type IIb.

In both of these cases successful escape events occur already for energy values in the order of a few times of the associated
activation energy.

Concerning the dynamics on longer time scales,we can identify three dynamical regimes characterised by how the energy
is transferred into different degrees of freedom depending on the parameter values. This has a crucial impact on typical
escape times.

(I) If longitudinal wave modes are absent or when the angular displacements of the units remain small the system’s
behaviour is dominated by transversal wave modes. When the system’s dynamics comprises a dominant transversal wave
mode, it forms breathers that promote an escape of type I, as shown in Fig. 16.

(II) In the opposite case, when radial wavemodes are absent (viz. the k = 0 phononmode is not affected bymodulational
instability), longitudinal (angular) wave modes arise due to a resonant excitation from the initial phonon mode. Eventually,
the system attains a state of periodic energy exchange between the phonon mode and the longitudinal mode. Both the
phonon and longitudinal mode cause a synchronous oscillation between kinetic and potential energy for each unit. In
general, an escape of type I is not expected because of the lack of energy concentration into critical radial elongations.
However, we see an enhancement of an escape of type II. In such a case the chain is strongly stretched in between twowave
nodes. It tends to reduce the tension by decreasing the length of the stretched sections, rendering them more straight and
they thereby surmount the central potential hump. The initial perturbations can break the symmetry of the longitudinal
pattern which can cause one of the two stretched segments to overcome the potential hump. Exactly this can be observed
in the first three snapshots of Fig. 17. The first two snapshots show the two wave nodes (first vertically then horizontally
aligned) and the third displays how the upper part of the stretched chain segment is carried over the potential hump.
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Fig. 17. Snapshots of an escape process of type II for a chain in a Mexican hat potential evolving according to Eq. (28). Arrows indicate the direction of
chain movement. In contrast to a type I escape, in a type II escape the chain first overcomes the central potential hump, and then the potential barrier. The
parameter values are: λ = 0.4 and κ∆Θ = 1.00.
Source: Figure adapted from Ref. [65].

(III) In the simultaneous presence of radial (transversal) and angular (longitudinal) wave modes the system will evolve
into a chaotic state as the twomodesmix in such away that the system develops irregular long-term behaviour. In fact, once
the initial wave patterns have ceased, the resulting irregularity leads to an on average almost homogeneous distribution
of the system energy into all degrees of freedom. Compared to case (I) the escape events proceed with a reduced overall
efficiency.

2.4. Surmounting collectively oscillating bottlenecks

We next consider the collective escape dynamics of a chain of coupled units in the presence of a weak external ac-
field, rendering periodically oscillating barriers [67]. To be precise, the escape dynamics for the system of coupled Langevin
equations (Eq. (17)) augmented by a external time-periodic modulation field is considered. The driving field of amplitude
strength f , frequency ω and phase θ0 globally acts upon the system, with a temporal dynamics obeying:

q̈n + γ qn + ω2
0qn − aq2n + ξn(t) − κ[qn+1 − 2qn + qn−1] − f sin(ωt + θ0) = 0, (30)

For the deterministic system it is shown in Ref. [67] that for a chain situated initially at the bottom of the potential well,
i.e. there is no net energy contained in the chain, that for certain values of the frequencyω of the weak external driving field
F(t) = f sin(ωt + θ0), energy is now pumped resonantly into the chain, resulting in a plane wave excitation. Notably, the
energy that a unit gains on average from the external field, measured by the ratio En/Ẽfield, can attain a remarkably large
ratio of ∼20 where we denote by

En =
p2n
2

+ U(qn) (31)

and

Ẽfield(t) = −f sin(ωt + θ0)qn (32)

the energy of a unit and the field energy respectively. Exerting a stationary flat state, represented by a plane wave,
additionally to weak spatially periodic perturbations of certain critical wave numbers the deterministic system responses
by means of parametric instability such that a pattern of localised states forms.

In the context of the driven Langevin system Eq. (30) the energy is introduced in the lattice coherently in the form of
a plane-wave excitation as the response to the external ac-field and non-coherently through thermal fluctuations. The
stochastic source and the external ac-field conspire to produce such an instability mechanism of the stationary flat-state
(plane-wave) solution yielding a spatially localised system state.
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Fig. 18. Spatio-temporal pattern of the solutions qn(t) for chains consisting ofN = 100 units. These chains are driven by an ac-field, damped, and subjected
to random fluctuations—see Eq. (30). The two panels correspond to coupling strengths κ = 0.5 (left panel) and κ = 2 (right panel), respectively, for the
same realisation of Gaussian white noise with thermal energy kBT = 0.001 × ∆E. The remaining parameter values are set at f = 0.15, ω = 1.295, θ0 = 0
and friction γ = 0.1.
Source: Figure adapted from Ref. [67].

Fig. 19. (Colour online) Mean escape time in the one-dimensional Langevin setting—Eq. (30). Shown is themean escape time vs. the mean injected energy
E = Efield + kBT , for chains consisting of N = 100 units, averaged over ensembles. The injected energy is measured in units of ∆E with fixed field energy
Efield = 0.03 × ∆E provided by an external modulation field with ω = 1.295, θ0 = 0 and f = 0.15. Here we vary the thermal energy Ethermal = kBT . The
inset depicts the unforced case with f = 0 in semi-logscale. The remaining parameter values are N = 100, κ = 0.28 and γ = 0.1.
Source: Figure adapted from Ref. [67].

In fact, the additional stochastic term provides perturbations of all wave numbers and a pattern emerges from the low-
energy homogeneous flat state. (The energy contained in the chain at t = 0 is vanishingly small compared to the barrier
energy, i.e. E/∆E ≪ 1.) That is, perturbations provided by the thermal noise grow and induce a localised mode (LM)
consisting of several humps. This is demonstrated in Fig. 18 which shows the spatio-temporal evolution of the amplitudes
qn(t) for couplings κ = 0.5 and κ = 2. The Langevin equations were numerically integrated using a second-order Heun
stochastic solver scheme. We note the formation of a LM of certain wave length arising from the homogeneous state soon
after a short time span (after t ∼ 60) and we find that the period duration for oscillations near the bottom of the potential
is around 2π/ω0 ≃ 4.4.

The fastest growing perturbations are those associated with the critical wave number (see Section 2.1). Each of these
humps resembles the hairpin shape of the transition state as the critical escape configuration possessing an energy Eact
through which the coupled units have to pass in order to cross the barrier. The robustness of the LMs is remarkable: a LM is
sustained, despite continuously impacting thermal noise of strengths up to values kBT = 0.2 × ∆E. Moreover, the formed
patterns maintain their distinct wavelength determined by the critical wave number at which the parametric resonance
occurs.

When the noise strength is increased the growth rate of the humps becomes enhanced, being reflected in the statistics
of the barrier crossing of the chain in the presence of weak ac-driving. The amplitude and frequency of the latter are chosen
such that the dynamics exhibits parametric resonance. The dependence of themean escape time of the chain on the injected
average energy E = Efield + Ethermal, with Efield = ⟨Ẽfield(t)⟩t and Ethermal = kBT (measured in units of the barrier energy ∆E)
is displayed in Fig. 19. The thermal energy Ethermal, supplied non-coherently by the heat bath, is varied within the range
[(10−4

− 0.11) × ∆E].
We observe that the underlying irregular dynamics serves for self-averaging and thus the choice of the phase, θ0, of the

coherent, external forcing does not affect the mean escape time. In the forced as well as unforced case there occurs a rather
rapid decay of Tesc with growing Ethermal = kBT at low temperatures. This effect weakens gradually upon further increasing
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kBT . Most strikingly, for the forced system the escape times become drastically shortened in comparison with the unforced
case with f = 0. Moreover, for the forced system escape takes place also at very low temperatures for which in the undriven
case not even the escape of a single unit has been observed during the simulation time (taken here as t = 105) implying a
giant enhancement of the rate of escape as compared to the purely thermal-noise-driven rate. This emphasises the collective
mechanism of this resonance effect which occurs for finite interaction strength κ ≠ 0 only.

2.5. Escape assisted by entropic localisation

In a deterministic (noise-free) setup the escape problem of a chain of harmonically coupled units over the barrier of a
metastable potential was studied in [68]. Energy is injected into the system by means of an applied external time-periodic
field. The corresponding system is given by

q̈n + ω2
0qn − aq2n − κ[qn+1 − 2qn + qn−1] − f sin(ωt + θ0) = 0. (33)

Notably, even for a very weak driving force there results fast escape for a chain situated initially extremely close to
the bottom of the potential well and thus containing a vanishingly small amount of energy. For a suitably chosen driving
frequency, almost coinciding with the frequency at the lower edge of the phonon band of linear oscillations, as a start,
an almost uniform oscillating state of the chain is excited. The amplitude of the latter rises (slowly) in time, and upon
entering the weakly nonlinear regime the almost uniform state becomes unstable with respect to spatial perturbations.
This triggers the formation of a few localised humps (standing breathers) coexisting with a phonon ‘‘bath’’ background
in between them. Due to the effect of entropic localisation for the standing breathers, their energy-reduction process is
impeded. In more detail, once a unit has acquired a sufficiently high energy, it is retained for a fairly long time due to
the fact that in a soft unit the energy dwells relatively more time in the potential part rather than in its kinetic form. The
reason for this is that in soft potentials the oscillation frequency decreases with increasing amplitude. In conjunction with
the fact that the density of states increases with increasing amplitude, attaining and preserving higher amplitudes becomes
entropicallymore favourable. Thus, during themajor part of an oscillation period of a unit, after it has gained energy from the
external field, its neighbours, or impacting moving breathers, the displacement of this unit remains large while the velocity
is low. Therefore, this entropic localisation mechanism impedes the energy exchange of a higher-amplitude unit with the
surroundings. Conclusively, localisation of energy minimises the free energy as it is favoured, with respect to maximisation
of entropy, that the energy gaining units populate regions in phase space where the density of states is higher.

In contrast, the process in the other direction is entropically favoured. That is, due to the fact that the driving frequency
lies just below the phonon band, further resonant energy pumping by the external field into standing breathers is possible,
provided a proper phase relation is retained between them. In fact, the associated growth of the amplitude of the breathers
enhances even entropic localisation. However, as with growing amplitude, the frequency of a breather diminishes, and
there results a frequency mismatch between the external field and the standing large-amplitude breather hampering
direct substantial energy feeding from the external field into it. Therefore, at this stage the only way a breather can gain
more energy is by processes of internal energy redistribution along the chain. Conclusively, choosing the frequency of
the external driving just below the phonon band is advantageous for two reasons: First, emerging standing breathers can
become amplified by direct energy gain from the (almost) resonant external field. At the same time, externally driving with
a frequency almost equal to that of harmonic oscillations near the bottom of the potential well generates permanently
a phonon ‘‘bath’’ background between the standing breathers forming the source for the emergence of mobile chaotic
breathers. The emergence of the itinerant chaotic breathers, and the merging with these standing breathers, contributes
to their growth. Eventually, for overcritical amplitudes a standing breather adopts the shape and energy content of the
transition state, and by passing across the latter, escape of the chain over the barrier is instigated.

In Fig. 20 the mean escape time Tesc of the chain versus the driving frequency for a small driving amplitude A = 0.003
is displayed. The averages were performed over 1000 realisations of random initial conditions. There is a window of
frequencies 1.395 / ω / 1.437 for which speedy escape is accomplished, and outside of this window not a single event of
escape takes place throughout the simulation time Ts = 105. The window of the driving frequencies associated with speedy
escape has an overlapwith the phononbandpenetrating the latter from its lower edge, underlining the fact that permanently
impinging phonons (the latter arise as the result of driving the system within this frequency range) are paramount for the
creation of breathers promoting eventually the escape process. The resulting breathers possess frequencies lying in the
window of speedy escape just below the phonon band.

2.6. Cooperativity in molecular dissociation

The problem of molecular dissociation is usually looked upon in a stochastic context of Arrhenius or Kramers theory
[69,70,3,71,1]. Nevertheless, it is well known that the bond breakingmechanismmay appearwithin the context of nonlinear
dynamics in the form of breaking up of a separatrix lines and the emerging chaotic dynamics [72]. This chaos induced
dissociation constitutes a relatively slow process where the chaotic dynamics now take on the role of a stochastic dynamics
that drives the dissociation in the Kramers escape regime. As an alternative, a ‘‘coherent’’ mechanism exists involving
the organised dynamics of interacting molecules that leads to a cooperative barrier crossing [49], similar in nature to
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Fig. 20. (Colour online) Mean escape time for ensembles as a function of the driving frequency ω. Each chain in the ensemble, consisting of N = 100 units
and evolving in a cubic potential, has deterministic dynamics and is subjected to a weak periodic driving force with a fixed driving strength f = 0.003.
The values of the remaining parameters are ω0 = 2 and a = 1, regulating the depth and width of the valley in the cubic potential respectively, θ0 = 0
controlling the phase of the external driving, and κ = 0.1 regulating the strength of the nearest-neighbour interactions. Note that Tesc = 105 in fact implies
that no transitions for any initial condition in the ensemble were observed in our simulations.
Source: Figure taken from Ref. [68].

the topics treated in this review above. This is a non-perturbative approach of anharmonic molecular vibrations with a
particular concern to the exploration of the general principles for large-amplitude molecular vibrations, leading eventually
to molecular dissociation. Since generally the dissociation involves a small number of constituent parts, a reasonable
minimal model involves a three-atom molecule composed of linearly arranged identical atoms.

2.6.1. Triatomic dissociation
We consider here the vibrations of a linear molecule composed of three identical atoms A, B, C each with atomic masses

m and respective displacements from their equilibrium position denoted as u1, u2 and u3, assuming only nearest-neighbour
interactions. The interatomic potential Ui, i = 1 for the A–B interaction and i = 2 for B–C interaction depend solely on
relative distance; explicitly those are chosen as Morse potentials; i.e.,

Ui(|ui − ui+1|) = Di (1 − exp[−ai|ui − ui+1|])
2 , i = 1, 2, (34)

whereDi and ai denote potential parameters. The equations ofmotion for the atoms in themolecule in relative displacements
x1 = u1 − u2 and x2 = u3 − u2 read

ẍ1 = −
1
µ

dU1(x1)
dx1

−
1
m

dU2(x2)
dx2

(35)

ẍ2 = −
1
m

dU1(x1)
dx1

−
1
µ

dU2(x2)
dx2

(36)

where µ = m/2 denotes the reduced mass. Under the nearest neighbour approximation, the three-body problem reduces
to a pair of coupled nonlinear differential equations, viz. Eqs. (35)–(36), that are generally non-integrable [49,72]. For the
further analysis of the energetics of the dissociation processes it is useful to introduce bond energy variables h1(t), h2(t) for
the A–B, B–C bonds respectively, via the relations

hi(t) ≡ hi =
µ

2
ẋ2i + Ui(xi) i = 1, 2. (37)

By use of the equations of motion one finds that [49]:

dh1

dt
= −

µ

m
dU2(x2)

dx2
ẋ1, (38)

dh2

dt
= −

µ

m
dU1(x1)

dx1
ẋ2. (39)

Upon multiplying the latter two relations we obtain that

ḣ1ḣ2 =
µ2

m2
U̇1U̇2. (40)
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Fig. 21. (Colour online) Molecular trajectories in the potential energy landscape of the linear three atom molecule for various initial relative velocities in
bond 2. In (a) v = 0.4, (b) v = 0.8, (c) v = 1.5 (Type-I trajectories: fast energy exchanges between bonds) (d) v = 1.9 (Type-II trajectories: delimit stable
linearised energy exchange between the units and unbounded motion).
Source: Figure adapted from Ref. [49].

From this relation it is seen that for identical oscillators and identical initial conditions the system of nonlinear oscillators
decouples in which case the coefficients of the Morse potential become renormalised.

In the more general case, however, we may recast Eqs. (38)–(39) as [49]

ḣ1 −
µ

m
f (t)U̇1 = 0, ḣ2 −

µ

m
1

f (t)
U̇2 = 0, (41)

where

f (t) =
µ

m
U̇2/ḣ2 = ḣ1/

µ

m
U̇1


, (42)

is some function of time. Eqs. (41) show that each unit experiences an effective force that involves both the intrinsic
nonlinearity of the problem as well as the implied initial conditions. It is not obvious from the form of these equations
alone whether any coherent processes may affect the dissociation process. This analysis may be done through the study
of the potential landscape of the problem and the numerical solution of the equations of motion. We note that molecular
dissociation of say bond 2 at a given time t0 signifies that with force F → 0 as t → 0 we have

h2 ≫ h1 as t → t0. (43)

This in turn shows that bond breaking is generally associated with dissociation.

2.6.2. Cooperative reaction paths
We introduce the two-dimensional potential function and the potential energy surface

U(x1, x2) = U1(x1) + U2(x2) (44)

and consider the various trajectories for different total energies that follow from the numerical solution of Eqs. (35)–(36)
for the parameters a1 = a2 = D1 = D2 = 1, and with the initial conditions x1(t = 0) = x2(t = 0) = 0 and
ẋ1(t = 0) = 0.5, ẋ2(t = 0) = v. It can be deduced from Fig. 21 and Fig. 22 that varying the initial velocity v we may
access different regimes of the three unit problem. Three regimes can be identified and are discussed in the following.
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Fig. 22. (Colour online) Molecular trajectories in the potential energy landscape for unboundedmotion leading to bond breaking and dissociation. Type-III
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right two figures correspond to type-II, intermittent motion (v = 1.9). The continuous energy exchange seen in the linearised regime is sharply contrasted
by the intermittent yet coherent pre-dissociative exchange in type-II motion.
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In Fig. 21 we show the potential landscape projections for type-I motion with: (a) v = 0.4, (b) v = 0.8, and (c) v = 1.5,
as well as a type-II motion for (d) v = 1.9. In contrast, in Fig. 22 we have a type-III motion with (a) v = 1.935 and a type
III-2 with (b) v = 1.95. It is seen that from case I (a) to (c) that the area covered by the trajectory around the origin at
(0, 0) changes from a cross section of a cone lying along the (1, 1)-direction to a regime which covers almost the whole
region enclosed by a potential-energy contour. In the separating type-II case, the domain covered by the orbit tends to
extend almost equally in the direction of the rays of the potential function. In type-III motion shown in Fig. 22, the trajectory
elongates indefinitely along the x2 direction, showing that a break-up of bond 2 occurs. This line is identified as a reaction
path. Thus, only for type-I motion does normal mode theory apply with bond energy equipartition.

In Fig. 23 we depict the energy quantities h1(t) and h2(t) as a function of time for type-I (top and bottom figures on
lhs) and type-II motion (top and bottom figures on rhs). The first pair clearly shows a rapid energy exchange between the
bonds. For type-II motion we display the quantities h1(t), h2(t) for 1250 ≤ t ≤ 1300 and observe, in distinct contrast
to the type-I regime an energy localisation in each bond that is subsequently transferred to the neighbouring one. The
process of energy exchange proceeds in ‘‘packets’’ and not in a continuous manner as for the type-I linearised motion.
This process of exchange of localised energy between the bonds continues indefinitely and, as a result, we may consider
this case as the pre-bond breaking regime. The value vc ≈ 1.92 is a critical value because for v slightly larger than vc , the
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energy-versus-time relation in the two bonds becomes irregular. As v increases further, the system crosses over into type-III
motion, as displayed with Fig. 24.

From the numerical calculation of h1(t) and h2(t) we observe that bond 2 breaks although almost complete transfer
of energy from bond 2 to bond 1 may take place. These bouncing exchanges become less pronounced as v, and thus the
initial energy, increases. Physically, breaking of a bond in chemical dissociation is equivalent to a transition from a bounded
motion to an unbounded one. In the latter case equipartition of the system energy between kinetic energy and the potential
energy breaks down and almost all system energy is transformed into potential energy localised in the breaking bond.
This accumulation of potential energy in bond 2 at the expense of kinetic energies and potential energy in bond 1 leads to
molecular dissociation.

Molecular dissociation occurs here as a process that is induced by collective effects and nonlinear interactions;
spontaneous energy accumulation in the form of discrete breathers [73] appears to play a role. In the simple three atom
case one finds, in addition to a ‘‘trivial’’ low energy regime, a collective, yet intermittent regime that is predissociative
and is characterised by spontaneous energy accumulation and non-continuous energy transfer. At yet higher energies a
spontaneous dissociation regime also appears where motion becomes unbounded. Dissociation occurs through system
energy concentration to potential energy of a given bond at the expense of kinetic energy; this resonant transfer is
cooperative and possibly related to targeted energy transfer [74]. This resonant energy accumulation and exchange may
take place for a substantially long time before leading to molecular dissociation. This process is dependent on the initial
bond energy: as the initial kinetic energy becomes larger, localised energy oscillations become less frequent, leading to an
almost instantaneous bond breaking at sufficiently large initial energies.

3. Collective transport

3.1. Transport in general

The topic of particle transport is typically concerned with themovement of particles across potential landscapes. Studies
of transport in such systems focus on how forces on the particles resolve themselves to allow for directed transport; i.e. net
motion that is (on average) in one direction or another. Of particular interest is the ratchet effect: the possibility to obtain
directed transport by using zero mean perturbations. The state of the art with respect to transport in spatially periodic
systems out of thermal equilibrium was presented recently in [16,23,52].

Some of the earliest studies of particle transport were in the area of celestial mechanics, in an effort to understand, for
example, the motion of planets orbiting a star. Since the advent of numerical computation [75], investigations into particle
transport have increased at an almost exponential rate. This new tool has complemented analytical and experimental work
already being carried out. In addition, the twentieth century saw the birth of new fields of research, fuelled by application
areas such as Josephson junctions, cold atom systems, and Bose–Einstein condensates, where transport properties shed light
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on the features of these systems. Thus the study of transport properties in the presence and absence of randomperturbations
or noise is a very active area of research [23,52].

3.1.1. Individual particles
A large portion of the literature has focused on the transport properties of individual particles. In [76] the authors carried

out relevantwork on transport in (autonomous) Hamiltonian systems (to be precise for area-preservingmaps). In particular,
they outlined the structures contained in a largely chaotic phase-space, most notably cantori and KAM-tori, that play a key
role for the occurrence of transport. They showed that the particle flow through the partial barriers, created by cantori, was
controlled by turnstiles that could trap particles in transporting channels. The phase-space of the standard map exhibits
coexisting chaotic and regular regions (details of the standard map can be found in [77]). In fact, magnification of any of the
boundaries between regular and chaotic regions will reveal more intricate structures embedded in the chaotic regions. In
particular, the hierarchy of cantori will be revealed through successive magnifications of particular regions [78].

Analogous features would take prominence in time-dependent driven (i.e. non-autonomous) Hamiltonian systems
(flows) [79–81]. In many studies it has been shown that the emergence of a directed current is triggered by an external
time-dependent field of zero mean. Important in this respect are the spatio-temporal symmetries (cf. Section 3.1.5) of the
system. With regard to the emergence of a non-zero current, all symmetries that, to each trajectory, generate a counterpart
moving in the opposite direction need to be broken. Further, it has been shown that a mixed phase-space is required
[82,83,81,52]. The mixed phase-space, containing regular and chaotic components allows for directed transport in the
chaotic component of the phase-space. The regular and irregular components are separatedby impenetrableKAM-toriwhich
are in turn surrounded by a hierarchy of cantori. These cantori, although appearing to form closed curves, are interspersed
by an infinite number of gaps, which allow particles to pass through and become stuck in ballistic channels2 (similar to
the turnstiles idea from maps). It is these sticking episodes that allow for directed transport. The general phenomena is
sometimes called intermittency [84].

The observation of a non-vanishing current, as an average velocity in coordinate-space, based on the chaotic ratchet effect
as discussed in [85,80,86,87,81] has even been extended to chaotic ratchet acceleration expressed in terms of an averaged
velocity in momentum space [88]. In both cases the sum rule derived in [83] for the chaotic transport velocity in driven
one-dimensional systems assures the existence of a persistent chaotic ratchet current.

The case of particles in non-Hamiltonian systems has also attracted considerable interest.While theHamiltonian systems
remain an active area of research, some have focused on less idealised systems that are dissipative (possibly including
noise), and driven. Brownian motors extract work from thermal fluctuations in out-of-equilibrium conditions. With regard
to transport under such thermal fluctuations, the ‘constructive role of Brownianmotion’ is crucial [89,17,16,23]. A particular
type are Brownian motors which find applications in various fields such as physics, engineering, chemistry and biological
transport [16,23], to name but a few.Motion in such ratchet-like devices is confined to a periodic and asymmetric landscape.
In the presence of out-of-equilibrium conditions they are able to rectify thermal fluctuations. Interestingly, under certain
conditions, it is possible to derive analytical solutions pertaining to transport of Brownian particles via the Gambler’s Ruin
model [90]. For Brownian ratchets, the broken spatial symmetry combinedwith external forces with time-correlationswere
shown to be sufficient ingredients for transport [21,23,17,91,92,18]. Furthermore, in Refs. [93,94] it was shown that a system
with a spatially symmetric potential which is driven by non-correlated (or delta-correlated, or white non-thermal) noise is
likewise sufficient to generate noisy directed transport. The interdependence of the confining potential landscape and of
the thermal fluctuations, for the emergence of transport, has further been studied in [95].

In general though, the dynamics of particle motion in periodic potentials at finite temperatures is an extensively studied
field [96]. In a similar domain, [97] investigated the motions of driven, under-damped Brownian particles, evolving in a
spatially symmetric and periodic potential, under the influence of a time-delayed feedback term. They found that, at finite
temperatures, the time-delayed feedback term can in fact enhance the transport features of the system such that there is
an increase in the overall net motion of the system, which is not observed when the feedback term is switched off. These
results were related to a desymmetrisation of the relevant attractors supporting directed transport.

Transport of particles in potentialswithmultiplewells, at itsmost fundamental level, is characterised by escape processes
over potential barriers as discussed in the first part of the review.

3.1.2. Transport with two or more degrees-of-freedom
Increasing the number of degrees-of-freedom to two (two and a half), and by consequence the dimension of the phase-

space to four (five), by coupling two individual particles together adds further complexity to the system’s dynamics – a half
degree of free results when an additional external time-dependent driving term is added to a system, thus adding to the
momenta and position coordinates, one that represents an angular velocity. For those studies which look at the transport
features of systems of coupled units, the objective is to investigate the conditions which lead to said transport features. In

2 Ballistic channels exist inside the chaotic component of a mixed phase space at the boundary with the regular regions. Motion inside a ballistic channel
is characterised by long periods of non-zero average velocity. In contrast, motion that takes place inside the chaotic component, but not at the boundary
of a regular region, will usually have vanishingly small average velocity.
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particular, for directed transport to occur, it is quite often the case that the two particles will work cooperatively to achieve
this directed transport. Importantly, under the same conditions, a dimer (a compoundmade up of two particles) has distinct
transport properties compared with those of the single particle [98].

Dimer systems have been shown to exhibit a complicated dependence, with respect to observables of interest, on the
coupling between the subsystems making up the dimer. For example, the value of the net transport for a dimer system can
change erratically as the coupling parameter is varied [99]. Similarly, [100] considered the conservative and deterministic
escape dynamics of two coupled particles out of a metastable potential. The scenario considered is such that neither particle
can escape independently (on energetic grounds), and thus cooperation is required. It was shown that the escape times of
the dimer out of the metastable state become severely inhibited for coupling strengths that are either too large or too small.
In [101] it was demonstrated that dynamical detrapping of a dimer from a potential well of a periodic potential followed by
unidirectional motion, i.e. a running solution, depends critically on the coupling between the two subsystems.

Increasing the number of degrees-of-freedom further renders the analysis of these systems more cumbersome. Some of
the already illusive phase-space structures become difficult, if not impossible, to detect. However, in spite of this, it is still
possible to explore the transport properties in these higher dimensional systems in a fashion similar to the studies of escape
in the first part of this review.

3.1.3. Anomalous transport
For systemsmodelling the dynamics of particles evolving in periodic potentials, the inclusion of driving and damping can

produce some interesting and unexpected behaviours. For such a particle, where the underlying potential is of the ratchet
type and the driving is of zero average, [102–104] observed a current reversal via an increase of the driving amplitude— that
is, the current, going in one direction, passes through zero and changes direction as the driving amplitude is increased. A
ratchet subjected to an unbiased external force that periodicallymodulates the inclination of the potential, is called a rocking
ratchet. Current reversals in such a system are unexpected due to the inherent bias contained in the ratchet potential. In this
situation, the current reversal, when it occurs, has been shown to coincide with a bifurcation from chaotic to regular motion
[102,103]. In a similar study [105] related current reversals to the basins of attraction for the system’s coexisting attractors
that produce counter-propagating motion. This study differs from the previous two in that a current reversal is obtained
through the appropriate selection of (completely symmetric) initial conditions, rather than through the modification of a
control parameter. These studies have been extended to consider the case of two coupled driven and damped particles
evolving in a ratchet potential [106]. Not surprisingly, the addition of the second particle can have important consequences
for the current reversals observed in the case of the single particle. It appears that current reversals exist for coupling
strengths below some critical value. However, beyond this critical coupling strength, the particles become synchronous
– the single particle dynamics are restored – and no further current reversals are observed. Little explanation is given as
to why no further current reversals appear. However, from the [103] study it is known that current reversals are restored,
in the case of the single particle, for stronger driving amplitudes. In a separate study, [107] investigated the dynamics of a
single particle evolving in a periodic and spatially symmetric potential landscape. In such a potential, there is no inherent
bias with respect to transport. Thus, for a current to emerge at all, some symmetry of the system needs to be broken (see in
Section 3.1.5). In [108,107] this was achieved by using a bi-harmonic driving term, resulting in a system that is driven out
of equilibrium by an asymmetric external force. The authors provide evidence that current reversals, in this situation, are
induced by the symmetry-breaking effect of the system’s damping.

Other types of counter-intuitive transport can be collected under the term negative mobility. To motivate this, let us
consider two examples. The first, coined the Brazil nut effect [109], occurs when granular media of different sizes are mixed.
Applying a rocking force to the mixture can cause the unexpected result that the larger granules rise [110]. Secondly, an
effect known as induced demand can help explain, for example, the counter-intuitive rise in traffic when new roads are
created (explanations include people wanting shorter journey times, access to better roads, etc.). For particle transport,
a negative-valued mobility also plays an interesting role [53,54,56,57]. The work in [55] gives an overview of this topic,
together with a list of possible applications. In particular, they describe two types of motion of this kind; namely, absolute
negative mobility (ANM) and differential negative mobility (DNM). For illustration, consider a simple system consisting of a
single particle in equilibrium, which has a spatially static homogeneous force F applied. It is generally expected that the
response of this system to the bias force F is in the direction of, and proportional to, this force. However, for systems driven
out of equilibrium (and possibly with the inclusion of noise), these new types of motion can be observed. ANM refers to
motionwhose response, on average, to the sufficiently small bias force F around F = 0 is in the opposite direction of F . DNM
on the other hand refers to motion that, although in the same direction as F , slows down as the magnitude of F increases.
These ideas have been expanded upon to further understand the response of these systems to noise [111,56,112,113,57].

The case of coupled particles has also been considered. For under-damped particles evolving in spatially periodic and
symmetric potentials, subjected to periodic driving and an additional static bias force, [114] related the occurrence of
negative mobility to a bifurcation from chaotic to regular motion. Further, a heuristic description of the mechanism that
allows for such motion is outlined. In short, the particles must together work cooperatively in conjunction with the
periodic driving so that ‘downhill’ motion is minimised, while ‘uphill’ motion is promoted. Thus, ‘uphill’ motion ensues. The
corresponding solutions remain stable under low temperature fluctuations (see the discussion in Section 3.3.3). In contrast,
outside the observed windows of negative mobility, it is the chaotic dynamics that emerge resulting in motion that is in the



D. Hennig et al. / Physics Reports 586 (2015) 1–51 27

Fig. 25. (Colour online) Transport in an irregular domain: Amushroom billiard, together with an example trajectory.
Source: Figure taken from Ref. [123] and the corresponding data was obtained from [124].

same direction as the bias. The first study of interaction-induced negativemobility in an overdamped system of two coupled
particles was performed in [115]. A later investigation by [116] can be considered as an extension of this study to the case
of over-damped particles. Again, ANMwas observed. They were able to prove that ANM is not possible for an over-damped
dimer where the interaction potential is convex. That is, for a system of two coupled particles in the over-damped limit,
subject to the forces discussed above, and with an interaction potentialW (x) such that

W ′′(x) > 0 ∀x, (45)

the possibility of ANM is excluded.

3.1.4. Transport in irregular domains
Extensions of the above concept address the case of autonomous Hamiltonian systems of one-dimensional billiard

chains [117,118]. The necessity of creating chaos requires at least two degrees-of-freedom. As an example for such a system,
a classical magnetic billiard for particles carrying an electric charge has been studied in [117]. In order to break the time-
reversal invariance, an external static magnetic field, penetrating the plane of motion perpendicularly, has been applied. In
addition, achieving directed transport requires breaking of the remaining spatial symmetry which can be achieved, e.g. by
properly placed asymmetric obstacles inside the billiard [117,118]. Uni-directional motion in a serpent billiard chain has
been reported in [119].

The work in [120] introduced a novel class of billiard systems which the author called the Mushroom Billiard. For an
example we refer to Fig. 25. Its novelty comes from the fact that it has the remarkable property of having a phase-space con-
sisting of a single (regular) KAM-island and a single (chaotic) ergodic region. Such billiards offer insight into the dynamics of
Hamiltonian system with a more complicated phase-space. In fact [121,122] looked at the stickiness of chaotic trajectories
to the single KAM island, using recurrence time statistics, in mushroom billiards. It was shown that the sticking episodes are
facilitated by orbits known as marginally unstable periodic orbits. Marginally unstable refers to the fact that perturbations
grow linearly (rather than exponentially) in time. These orbits, even though being of measure zero, govern themain dynam-
ical properties of the system. Most notably, they are responsible for a power-law behaviour observed in the recurrence time
statistics—something that is often related to the partial barriers created by cantori in a mixed phase-space.

3.1.5. Properties that determine transport features
A symmetry analysis of a system of equations can illuminate important transport properties. An important quantity

related to transport is the time averaged, ensemble averaged, momentum. This is typically called the current. Let p(t)
represent the momentum of a particle at time t , then the current is given by

J =
1
Ts

 Ts

0
dt


1
N

N
n=1

pn(t)


, (46)

with N being the number of initial conditions in the ensemble, and time Ts taken in the asymptotic limit Ts → ∞. The
direction and magnitude of the current is inextricably linked with a system’s symmetry properties.

To give an example, [85,52] considered the symmetry properties of a system consisting of a particle evolving in a spatially
periodic potential subjected to driving and damping. The equation of motion is given by

Ẍ + γ Ẋ + f (X) + E(t) = 0. (47)

Here E(t) = E(t + T ) is a time-periodic external field of period T = 2π/ω and frequency ω, and f (X) = f (X + 2π) is
a periodic potential function. Both E(t) and f (X) are assumed to be bounded, and max(|f (X)|) ∼ 1. The authors defined
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system symmetries related to the properties of the underlying potential and external field. These properties (shown in a
modified form which allows for greater applicability—due to [125], for example) for a given function g(a) are

gs : g(a + τ) = g(−a + τ) for some τ (symmetric)
ga : g(a + τ) = −g(−a + τ) for some τ (anti-symmetric)
gsh : g(a) = −g(−a + τ) for some τ (shift-symmetric)

where g(a) can represent either a spatial or temporal function, i.e. the potential or the time-dependent external field,
respectively. If f (X) is anti-symmetric, and E(X) shift-symmetric (fa and Esh), then Eq. (47) is invariant under the symmetry
Ŝa : X → (−X+2χ), t → t+T/2 for someappropriate argument shift. In the dissipationless case,γ = 0, a second symmetry
can be obtained. If E(t) possesses the shift-symmetry Esh then Eq. (47) is invariant under the symmetry Ŝb : t → −t + 2φ,
again for some appropriate argument shift.

It then follows that for a given trajectory X(t; t0, X0, P0), P(t; t0, X0, P0) with initial condition t0, X0, P0, it is possible to
generate new trajectories given by

Ŝa : −X(t + T/2; t0, X0, P0) + 2χ, −P(t + T/2; t0, X0, P0) {f̂a, Êsh},

Ŝb : X(−t + 2φ; t0, X0, P0), −P(−t + 2φ; t0, X0, P0) {Ês, γ = 0}.

Importantly, these transformations change the sign of P . This has the consequence that the original trajectory, and the
corresponding trajectory generated through the symmetry transformation yield time-averaged values of P that differ only
by sign. Going further, for a system with Ŝa or Ŝb symmetry, the net current will be zero as each trajectory will have a
counterpart that negates the others contribution to the current. The implication being that in order to generate a non-zero
current, both the symmetries Ŝa and Ŝb need to be broken. Note that Ŝa holds in both the dissipation and the dissipationless
cases, whereas Ŝb holds only for γ = 0. The work [80] identified an additional symmetry, Ŝc , of Eq. (47), this time in the
over-damped case where inertial effects become negligible, namely:

Ŝc : X(−t; t0, X0, P0) + χ/2, −P(−t; t0, X0, P0) {f̂sh, Êa,m = 0}.

It isworth noting that the symmetries Ŝa, Ŝb and Ŝc require that the time-dependent external field satisfies certain properties.
Thus, an appropriate choice of E(t) can be sufficient to break all three symmetries.

The authors in Ref. [79] investigated the symmetry properties of the Hamiltonian version of Eq. (47) (γ = 0), where the
underlying potential is spatially periodic and symmetric. A lowering of the dynamical symmetry, controlled by the phase of
the external field, leads to a directed current.

3.1.6. Ballistic transport
Others have focused on the dynamical mechanisms that allow for a directed current in a mixed phase-space. While the

appearance of a dc-output can be expected using symmetry analysis, its appearance and magnitude are due to dynamical
mechanisms of motion inside the stochastic layer. The paper [126] looked at the structures in phase-space and considered
how they influence the magnitude and direction of current. To ensure that the appropriate symmetries were broken, thus
allowing for a directed current, they chose the external field

E(t) = E1 cos(t) + E2 cos(2t + φ), (48)

where E2 ≠ 0 and φ ≠ 0, π . The phase-space of this system is characterised by a stochastic layer which emanates from
the separatrix of the unperturbed system (E1 = E2 = 0). Inside the stochastic layer there exists a hierarchical structure of
resonance islands that are responsible for the creation of ballistic channels in phase-space. That is, the resonance islands form
partial barriers such thatwhen a particle enters a ballistic channel itmay be stuck there for large durations, thus contributing
to an overall non-zero net current. The authors relate the emergence of a directed current to a desymmetrisation of the
ballistic channels bringing the particles in opposite directions. Going further, they analytically derive an expression for the
current from the geometry of the phase-space. In particular, each resonance island has associated to it a winding numberωi,
a probability of ‘sticking’ to the resonance island ρi, andmean sticking time ⟨ti⟩. In addition the mean time between sticking
episodes is ⟨tr⟩. The authors in [126] define the current as

J =

N
i=1

ωiρi⟨ti⟩ /
 N

i=1

ρi⟨ti⟩ + ⟨tr⟩


(49)

whereN is the number of resonance islands. This definition of the current suffers two limitations. Firstly, the four unknowns
in the equation will, in general, need to be computed numerically. The second is that there may be resonances of all orders.
To even locate resonances of increasing order becomes computationally impractical. However, this does not pose much of
a problem as it is only a few resonance islands that are relevant for obtaining the net current. Higher order resonances have
sticking times that are close to zero and therefore their contribution to the net current is negligible.
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3.1.7. Beneficial role of chaos
All of the studies discussed above look at systems with at least (effectively) three variables. Thus the dynamics of these

systems then typically display a chaotic dynamics. Although chaoticmotion seems to be inherently counter-productivewith
respect to net directed motion it can, for example, allow trajectories to visit (transporting) ballistic channels associated to
resonance islands with non-zero winding numbers [83]. However, such ballistic channels will only exist in non-hyperbolic
systems: systems that contain mixed regular and chaotic regions. These chaotic regions are born out of (nonintegrable)
perturbations to an integrable system, with the strength of perturbations determining the prevalence of chaos. This is
true in general; i.e. nonintegrable perturbations to an underlying integrable system are the source of chaos. The systems
under investigation in the following exhibit several forms of chaotic motion, including transient chaos, permanent chaos
and motion on strange attractors. In particular, transient chaos can be beneficial for current rectification.

3.1.8. Cooperative transport mechanism
This section explores the deterministic dynamics of systems of several coupled units. In particular, the focus of the

review is concernedwith the transport features which this complexity generates. Of interest is how particles work together,
cooperatively, to achieve directed transport. For this reason, the strength of the coupling between the particles serves as the
main control parameter. Further, ensemble dynamics serve to highlight some of the collective effects of these systems.

The section is split into two parts: The first part looks at a class of time-independent (autonomous) Hamiltonian systems,
while the second part considers a class of time-dependent driven (non-autonomous) and damped systems. A common
feature of these systems is that they contain a spatially open component that facilitates long range transport. More precisely,
transport proceeds in a spatially symmetric and periodicmultiple well potential. Thus transport is characterised by particles
overcoming successive energetic barriers created by the potential landscape.

The cooperative effects between the particles becomes apparent in Section 3.2 when the autonomous Hamiltonian
systems are considered. In the uncoupled limit the low dimensional systems decompose typically into two integrable
subsystems and the dynamics are fully understood. However, the dynamics become more complicated when the particles
are coupled. As these systems are conservative a coordinated energy exchange between the particles is often required for
directed transport to ensue. Interestingly enough, these systems contrast well with the non-autonomous one- and-a-half
degree-of-freedom Hamiltonian systems, where transport occurs through intermittent periods of directed motion in so-
called ballistic channels. The autonomous two degree-of-freedom counterpart considered here relies on a rather different
mechanism for directed transport that is provided solely by regular structures in phase-space.

With the inclusion of external driving and damping (Section 3.3) the transport dynamics are controlled by various
coexisting attractors in phase-space. The nature and stability of these attractors is determined by the system parameters. As
before, cooperative effects play a key role when it comes to particle transport. Notably, the coupling between the particles
can result in a suppression of chaos that allows, for example, for collective periodic motion of rotational type.

3.2. Transient-chaos induced transport in autonomous systems

In this part we review the works on autonomous Hamiltonian systems modelling two coupled units. The guiding aim
is to understand the conditions under which directed transport in phase-space is supported. In particular, analytical and
numerical results are produced illustrating the effects that the interaction between the two units has on the direction and
velocity of transport.

The focus of this section is on the deterministic transport properties of systems of two coupled particles or units. In
particular, much attention is given to the relationship between various transport scenarios and the coupling between the
units. Notably, the nature of the interaction between the units that allows for directed transport (on average) is scrutinised.

Thework presented in the first part of this section serves as a bridge between single unit systems andmany unit systems.
Importantly, two unit systems are the first non-trivial step from the lower of these limits, bringing with it new types of
motion, such as hyperchaos [127], that have important implications when it comes to transport. More than that, the work
presented in this section explores novel mechanisms pertaining to directed transport that are a direct consequence of the
interaction between the units.

In Section 3.2.1 the first example treated is a spatially symmetric system containing two open components allowing that
either unit can undergo directed transport. Byway of symmetry analysis, it is clear that if a constant energy surface is entirely
populated by initial conditions then no current can emerge. However, this may not be the case for other, more physically
relevant, sets of initial conditions. For one such set, some qualitatively different transport scenarios are outlined and their
relation to the net current described. As a general point for the class of systems discussed in Section 3.2, the mechanism
promoting directed transport in these systems is quite distinct from systemswhere transport proceeds over finite periods in
so-called ballistic channels, each period being separated by an interval of chaotic motion. The novel mechanism for transport
presented here, where chaos is required only in a transient period of the dynamics (after which transport is provided solely
by regular structures), is illustrated and the implications discussed.

The Hamiltonian systems discussed here are of the form:

H(p, q) =
p2

2
+

P2

2
+ U(q) + V (Q ) + Hint(q,Q ), (50)
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where p (= (p, P)) ∈ R2, q (= (q,Q )) ∈ R2 are the canonically conjugated positions and momenta of coupled units.
Further, we assume from now on that these units are of unit mass. The units evolve in a potential given by Ueff(q) =

U(q) + V (Q ) + Hint(q,Q ), where U(q) and V (Q ) are positive semi-definite functions, and in addition, are coupled via an
interaction potential Hint(q,Q ). It may be the case that U and V describe the same potential landscape. However, to keep
the results as general as possible, we consider both cases, i.e. when the potential landscapes are the same, and also when
they differ. Crucially, a prerequisite for the occurrence of transport is that these systems contain an open component. That
is, on surfaces of constant energy the systemmust be unbounded in at least one of the spatial coordinates, thus allowing for
the possibility of unbounded and directed transport. Therefore, we assume that all systems explored here contain an open
component. The equations of motion, corresponding to this class of Hamiltonian systems, are given by

q̈ = −
∂Ueff(q)

∂q
& Q̈ = −

∂Ueff(q)

∂Q
. (51)

Before moving onto the first subsection in this part, it is worthwhile discussing a particular potential landscape that is
used in all of the forthcoming sections. This potential is spatially symmetric and periodic (of period 1). It is described by the
equation

U(q) = U(q + 1) =
1 − cos(2πq)

2π
. (52)

U(q) has minima at qmin = n, with U(qmin) = 0, and maxima at qmax = n + 0.5, with U(qmax) = 1/π (≈ 0.318), where
n ∈ Z. As mentioned, the potential is spatially symmetric, i.e. U(q) = U(−q).

For now let us suppose that a single unit is evolving in a spatially symmetric and periodic potential with no external
forces present. The occurrence of transport can then be viewed as a string of consecutive escape processes where the unit
overcomes the potential barriers located at qn+0.5

max (n ∈ Z) with increasing |n|. The only requirement for directed transport
is that the system possesses a sufficient amount of energy so that the unit can overcome these barriers.

An analogous statement regarding transport can be made for the case of two coupled units. However, directed transport
in this case may require not just a sufficient amount of system energy, but also a coherent energy exchange between the
units. This is elaborated upon in the next section. To conclude this section an interaction potential used in the coming section
is presented and its properties briefly discussed. The interaction potential is of the form

Hint(q,Q ) = D

1 −

1
cosh(q − Q )


, (53)

which is dependent on the distance d = |q−Q |. The strength of this coupling is regulated by the parameter D. Like the local
potential U(q), the interaction potential is also spatially symmetric Hint(q,Q ) = Hint(−q, −Q ). It is important to note that
the gradient dHint(x)/dx goes to zero asymptotically; i.e. as the relative distance |q − Q | increases, the related interaction
forces, ∂Hint/∂q and ∂Hint/∂Q , vanish asymptotically, allowing for transient chaos [128–131]. That is, for large distance
|q − Q | ≫ 1, the interaction vanishes with the result that the two degrees-of-freedom decouple, rendering the dynamics
regular. This is crucial for what is presented in the coming sections.

Transport in autonomous Hamiltonian systems is remarkable due to the fact that a system requires no additional input of
energy, in the form of an external time-dependent drive for example, for said transport to occur. Rather an internal energy
distributionmust take place before transport can take place. This effect is evenmore remarkable in systems of coupled units
when the system’s energy does not suffice to allow that both units can undergo rotational motion3 at the same time. In this
case the subsystems, related to each unit, must work cooperatively to achieve transport. We next show that the strength of
the coupling between the subsystems is crucial to the resulting dynamics. More than that, some general features of systems
of coupled units are exposed.

3.2.1. Case of a spatially symmetric model
Let us introduce the model that is used in this section. This model is minimal in two respects. The first is that U and

V describe the same potential landscape—the so-called spatially symmetric and periodic potential. The second is that this
system contains only one parameter, namely the parameter that regulates the strength of the bond between the two units.
Thus, there are two units evolving in the spatially symmetric and periodic potential (Eq. (52)) that are coupled via the
interaction potential (Eq. (53)).

The equations of motion are given by [132]

q̈ = − sin(2πq) − D

tanh(q − Q )

cosh(q − Q )


, (54)

Q̈ = − sin(2πQ ) + D

tanh(q − Q )

cosh(q − Q )


. (55)

3 In this review rotational motion refers to motion where a unit(s) overcomes consecutive potential barriers in a periodic fashion.
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For the numerics in the coming sections the initial set-up is as follows. The two units are separated by a sufficient distance
such that they are effectively uncoupled, i.e. the energy contained in the interaction potential saturates: Eint ≈ D. One unit is
situated at the origin, while the other unit is in a potential well that is sufficiently far from the origin, so that the effect of one
unit on the other is almost negligible. Further, the unit at the origin is at rest. The additional unit is given an initial velocity
that sees it move towards the unit at rest (these units are henceforth be called unit A, associated with the variables (p, q),
and unit B, associated with the variables (P,Q ), respectively). Of course, the energy supplied to unit Amust be greater than
that required to overcome potential barriers of the potential U(q)—that is EA(0) > Eb = 1/π , where EA(0) is the energy
possessed by unit A at time t = 0 and Eb is the barrier height of the potential U(q). Thus, as the relative distance |q − Q |

decreases, the energy exchange becomes more pronounced (depending on the value D) and the system dynamics become
more complex.

For D ≠ 0 the units can interact via the interaction potential and exchange energy. This exchange excites the additional
(initially resting) unit and, to varying degrees, influences the motion of the unit that has entered the interaction region.
Again, it is important to note that both components of this system are open and thus it is feasible that either unit escapes.
For large |q − Q | ≫ 1 the interaction between the units vanishes, and again the dynamics is represented by regular
rotational motion (assuming sufficient system energy). For the systems considered here, the energy is kept sufficiently low
such that the possibility of both units escaping independently is excluded, and the cooperative effects between the units
come to the fore.

As mentioned earlier, the initial conditions for unit B are Q = P = 0. The unit A starts as a virtually free unit in
the asymptotic region, i.e. it approaches the interaction region from a far distance. The initial amount of energy E = 0.9
lies above the highest possible energy of the saddle-centre points but, for not too low coupling, below almost all of the
saddle–saddle points of the effective potential (see [133]). The initial positions of the units A are contained within the well
whose minimum is located at q ≃ −25 and the corresponding initial momenta are determined as those points populating,
densely and uniformly, the level curve

E =
1
2
p2 + U(q) + Hint(q, 0), (56)

in the (q, p)-plane. Asymptotically, the interaction potential attains a value approaching D. Therefore, as the units begin in
the asymptotic region and as the initial conditions depend explicitly on D, no two sets of initial conditions are the same.
The energy is fixed at E = 0.9, which is less than three times the barrier height of the spatially symmetric and periodic
potential, Eb = 1/π ≈ 0.3183. It should be emphasised that for unit B to escape, it must gain a sufficient amount of energy
from its interaction with unit A. With no interaction this system contains a strong positive current, as unit A can escape to
infinity feeling no effect from unit B. It is worth adding that for these initial conditions with D ≠ 0 the problem becomes a
unit scattering problem with the stationary unit playing the role of the scatter.

We illustrate someof the qualitatively different transport scenarios that are present in this systemby varying the strength
of the coupling parameter D. Before this however, it is useful to present a table of D values that are used in this section along
with their respective currents. Unit current is assessed quantitatively by the mean momentum, which is defined by taking
the averaged momentum of an ensemble of units, i.e.

p̄ =
1
Ts

 Ts

0
dt⟨p(t)⟩, (57)

where Ts is the simulation time, and the ensemble average is given by

⟨p(t)⟩ =
1
N

N
n=1

2
i=1

pi,n(t), (58)

with N being the number of initial conditions. The current, along with details of the calculation, is discussed in detail below.
Below is a table of representative coupling strengths with their respective current values.

D p̄
0.3 0.925
0.5613 −0.239
0.5617 0.262
0.5672 0.009
0.58169 −0.0001

Fig. 26 contains plots showing the temporal evolution of the coordinates q, Q for the five D values contained in the table.
For comparison, for each D value, the initial positions of the pair of units are the same, i.e. with q(0) = −25.5 and Q (0) = 0,
and the initial momentum p(0) of unit A follows from the relation given in Eq. (56), while unit B has zero momentum,
P(0) = 0. Slightly altering these initial conditions can have a large impact on the path that the units take, as for a large
range of the coupling strength the dynamics is chaotic.
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Fig. 26. Example trajectories for an autonomous system consisting of two nonlinearly coupled units, both evolving in a periodic and spatially symmetric
potential. Each panel differs by the strength of the parameter D regulating the strength of the coupling between the units. The red line shows the temporal
evolution of Unit A, which has an initial condition q(0) = −25.5 and p(0) as obtained from Eq. (56), while the blue line shows the time evolution of unit B
with initial condition for each trajectory chosen as Q (0) = P(0) = 0. Note the different time-scales.
Source: Figure adapted from Ref. [132].

The D values in the table above have been chosen as they represent, in addition to typical system dynamics, transport
scenarios with varying contributions to the net current. With D = 0.3 (Fig. 26(a)) we see that unit A is able to pass straight
through the interaction region almost unscathed. Unit B does receive some energy from the interaction, but this energy only
allows for small oscillations about its starting position. This set-up favours a strong, positive current. With regard to unit
B leaving its initial potential well, there appears a blow-up at D ≈ 0.562, after which we can expect both units to travel
multiple potential wells together. As can be seen in Figs. 26(b) & (c), both with D < 0.562, unit B can largely influence the
path of unit A without actually leaving its starting potential well. Setting D to 0.5613 (Fig. 26(b)) we see that the dynamics
of the system is quite different. The interaction between the units is such that unit A can pass through the interaction
region (to a certain extent) and subsequently be pulled back, escaping in the negative q direction and thus contributing to
current reversal. Again unit B receives little energy from the interaction. A similar phenomenon can be seen for D = 0.5617
(Fig. 26(c)). This time unitA oscillates around q = 0 a number of times before escaping in the positive q directionmaintaining
the original direction of the current.

Some of the most interesting behaviour observed in this system can be seen in the remaining two figures. Fig. 26(d)
show a trajectory with D = 0.5672. There are number of striking things that can be noted about this trajectory. Firstly, the
duration of time that the trajectories ‘stick’ together before one escapes. In this case unit B escapes in the positive q direction.
This is substantially longer than the escape times presented in the previous figures. Also, both units take excursions to the
left and right before the escape of unit B. However, themost notable thing about this figure is that it is unit B that escapes, not
unit A as for the previous D values. Thus, unit B is able to gain enough energy to escape from its starting potential well, and
subsequently from any force that it feels from unit A. Unit A has sacrificed its energy and has become trapped. This situation
describes an interchange of the roles played by the units, with the initially free unit becoming trapped and the initially trapped
unit becoming free.

The final figure (Fig. 26(e)), withD = 0.56169, show similar behaviour in that the units seem to ‘stick’ together. However,
neither unit escapes, but instead are, in some sense, stuck to each other for the duration of the simulation. This is a process
known as dimerisation, where the units, each initially acting as a monomer, form a bound unit. This process is evident in
some of the previous figures, however in this case, the process is permanent. Both units undergo large excursions, closely
following the line q = Q . For this particular D value, the units are in a continual and most importantly, a substantial energy
exchange. This allows the units to travel together in an erratic fashion undergoingmultiple changes of direction and visiting
multiple potential wells. Although an independent escape for one of the units remains a statistical possibility, it requires an
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optimal energy fluctuation that sees one unit sacrifice all of its energy to the other. This is highly unlikely given the fairly
strong coupling between the units.

This symmetric model, which consists of two spatially symmetric and periodic potentials that are coupled via an
interaction potential, proves to be a rich source for complex dynamics which produces numerous interesting results. In
fact, a number of transport scenarios are possible. The units can undergo independent motions: either, a single unit travels
through the potential landscape (the other remaining trapped), or both units are transporting. Alternatively, the units can
travel through this landscape in close proximity continuously exchanging energy (this includes the possibility of complete
synchronisationwhere there is no energy exchange). The coupling strengthdetermineswhich of these scenarios are possible.
Furthermore, with fine tuning of the system parameter which regulates coupling strength, unit scattering leading to the
emergence of a non-zero net current, or bond formation (dimerisation) yielding a zero net current, are possible outcomes
in this model.

A novel aspect of these autonomous Hamiltonian systems is that directed transport, when it occurs, is regular and
permanent. Chaos is needed only in an initial phase of the dynamics to guide trajectories beyond separatrices into the range
of unbounded motion. This contrasts with the transport observed in non-autonomous Hamiltonian systems where there is
a mixed phase-space [126]. In these non-autonomous systems, finite bursts of almost regular transport are separated by
periods of chaotic motion. Thus the autonomous systems, where directed transport is provided solely by regular motion,
appear to be favourable with respect to directed transport. However, it should also be emphasised that the transport
observed in this autonomous case is predominantly a cooperative effect which uses a favourable energy exchange between
subsystems.

An interesting observation is that according to the theory of time-reversal symmetry, this symmetric model should
produce a zero net current for all values ofD. The explanation of why this case, and systems alike, can still produce a directed
current is the subject of Section 3.2.2. This section looks at time-reversal symmetry for the class of systemswhose equations
of motion are given by Eq. (51) (of which our model is a member). It is explained in detail how this symmetry is broken
in practice, thus allowing for the emergence of a non-vanishing net current. Further, a second model is introduced below
that is similar to the case studied here but with the exception that one of the spatially symmetric and periodic potentials
is replaced by a different potential. This new potential serves to break one of the spatial symmetries of the system. The
consequences of this broken symmetry are also examined.

In systems that satisfy certain spatial and temporal symmetries it is possible to find, in phase-space, two trajectories that
nullify each others contribution to the net current. That is to say, for each trajectory in phase-space there exists another
complementary trajectory such that collectively both trajectories produce zero net current. Therefore, if a system is to
express a non-zero net current, some of these symmetries must be broken. Quite often this is achieved through the addition
of a periodic (but non-symmetric) time dependent drive to the system [23,80,52]. Analogously, in the autonomous case the
introduction of a static bias force that penetrates the plane of motion, usually suffices when breaking the spatial symmetry,
thus allowing for the emergence of a non-zero current [113].

We search for the mechanism that serves to break the spatio-temporal symmetries and thus allow for the possible
occurrence of a non-zero current in autonomous systems modelling the interaction of coupled units. Crucially, in systems
(with a mixed phase-space) that rely on regular interludes between periods of chaotic motion for directed transport, the
chaotic periods are seen as destructive with regard to directed transport, in that the average velocity of trajectories in the
chaotic component of phase-space will be close to zero. In contrast, the systems looked at here require chaos in an initial
stage of the dynamics so that trajectories can be captured by hyperbolic structures allowing them to escape. The emergence
of a non-zero net current is still dependent on other factors. Particular attention is given to the symmetry properties induced
by the inclusion of an interaction potential. The symmetry properties derived are illustrated via an example model system.
This model is introduced next.

3.2.2. Case of a spatially asymmetric model
The above discussed symmetric model was idealised in that both coordinates of the system obeyed a spatial symmetry;

namely the system remains invariant under a change of sign of both coordinates. This is not true of the following asymmetric
modelwere a newpotential is introduced that has the effect of breaking a spatial symmetry for one of these two subsystems.
Rather than having two units each evolve in a spatially symmetric and periodic potential, as in the symmetric model case,
in this model only one unit evolves in such a potential. This unit is coupled to a second unit (which is unable to contribute
to the net current due to energy constraints) that serves as an energy deposit from which the unit evolving in the spatially
symmetric and periodic potential can draw energy. The second potential is an anharmonic unit and interactions with this
unit are local in nature due to the type of interaction potential and the finite amount of energy injected into the system. It
is defined by

V (Q ) = exp(−Q ) + Q − 1. (59)

Unlike the spatially symmetric and periodic potential which has bounded potential energy U(q) ≤ Eb = 1/π , this
anharmonic unit has unbounded potential energy for ±Q ; i.e V (Q ) → ∞ as Q → ±∞. Note the asymmetry of this
potential, i.e. V (Q ) ≠ V (−Q ), as this is importantwhen the symmetry properties of thismodel are discussed. Beforemoving
on to themain focus of this section it isworthwhile exploring some of the coupled systemdynamics. The equations ofmotion
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Fig. 27. (Colour Online) Example trajectories in the spatially asymmetric model described by Eqs. (60)–(61). The top panels show the time evolution
of the coordinates q (solid blue line) and Q (dashed red line) for three different values of the coupling strength D: (a) D = 0.4, (b) D = 0.75, and (c)
D = 1.5. The bottom panels show the corresponding evolution of the energies. The unit with coordinate q has dynamics that take place in a periodic and
symmetric potential, while the unit with coordinate Q has dynamics that take place in an asymmetric and anharmonic potential. The units are coupled via
an symmetric anharmonic potential.
Source: Figure taken from Ref. [134].

are [134]

q̈ = − sin(2πq) − D

tanh(q − Q )

cosh(q − Q )


, (60)

Q̈ = exp(−Q ) − 1 + D

tanh(q − Q )

cosh(q − Q )


. (61)

Let us assume a finite system energy. For D = 0, the system decouples into two integrable subsystems and the dynamics
is characterised by individual regular motions of the unit in the spatially symmetric and periodic potential, and bounded
oscillations of the additional degree-of-freedom (due to the energetic constraints), respectively. For D ≠ 0, the subsystems
interact, thereby exchanging energy. While the Q -unit performs solely bounded motion there is the possibility that, for
an escaping unit, the corresponding coordinate, |q|, attains large values and thus the related interaction forces, ∂Hint/∂q
and ∂Hint/∂Q , vanish asymptotically, allowing transient chaos [130,131,135]. That is, for large distance |q − Q | ≫ 1, the
interaction vanishes with the result that the two degrees-of-freedom decouple, rendering the dynamics regular.

Looking at example trajectories for three representative coupling values reveals some of the system’s dynamics. Fig. 27
presents the time evolution of the coordinates q & Q for D = 0.4, 0.75, 1.5. In addition, the corresponding partial energies
of the unit and the deposit degree-of-freedom are presented. The partial energies for both units are given by

Eq =
1
2
q̇2 + U(q) +

1
2
Hint(q,Q ), EQ =

1
2
Q̇ 2

+ V (Q ) +
1
2
Hint(q,Q ), (62)

where the interaction energy has been evenly divided between the two units.
Three qualitatively different transport scenarios are presented. Note that for the numerics the system’s energy is fixed

at E = 1.5. Further, the initial conditions have been chosen so that all the system’s energy is initially in the deposit degree-
of-freedom. For the low value D = 0.4 (left column) the unit evolving in the spatially symmetric and periodic potential
undergoes small amplitude oscillations about a potential minimum. Crucially, with regard to transport, these oscillations
are much lower than the barrier height Eb = 1/π of the spatially symmetric and periodic potential. In contrast, the deposit
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degree-of-freedom sees oscillations of much larger magnitude. Looking at the partial energies of the unit in the spatially
symmetric and periodic potential and the anharmonic unit, it can be seen that there is an insufficient energy exchange to
allow for the unit in the spatially symmetric and periodic potential to overcome the barrier height Eb—a prerequisite for the
occurrence of transport. The dynamics changes drastically when the coupling strength is increased to D = 0.75 (middle
column). The early dynamics (t < 10) is similar to the situation described above. Subsequently, the unit in the spatially
symmetric and periodic potential escapes from its starting potential well and travels to multiple wells in both directions. At
t ≈ 40 the unit in the spatially symmetric and periodic potential gains sufficient energy to allow it to undergo independent
directed transport. That is, after a chaotic transient, the two subsystems decouple rendering the dynamics regular. The
chaotic exchange of energy preceding the directed transport of the unit in the spatially symmetric and periodic potential is
clearly visible in Fig. 27. It is also clear that after the chaotic transient, the energy exchange between the twounits terminates.
A further increase in the coupling strength to D = 1.5 (right column) results in a third qualitatively different transport
scenario. It appears that the unit in the spatially symmetric and periodic potential is free to travel multiple potential wells.
However, for the duration of the simulation it is confined to potential wells in the range −2.5 < q < 2.5. The reasons for
this are two-fold. Firstly, as is proven rigorously [123], with D = 1.5 (and E = 1.5) the possibility of directed transport
for the unit in the spatially symmetric and periodic potential is excluded. Secondly, the system’s (finite) energy means that
oscillations of the anharmonic potential are bounded. Combined, this results in two units that remain in close contact and
under constant chaotic energy exchange.

3.2.3. Symmetry breaking and emergence of a current
It was shown that with a suitable choice of parameters the second asymmetric model can exhibit directed transport,

which is a necessary, but not sufficient, condition for a system to show a non-zero net current. However, the class of systems
that this asymmetric model belongs to possesses time-reversibility symmetry and the implications of this with regard to
the net current are extremely important. These implications, and amechanism for destroying this symmetry, was discussed
in Ref. [136] (and further in Ref. [123]) and will be the focus of this section.

The class of systems in question are Hamiltonian and of the form

H(p, q) =
1
2
p2

+ Ueff(q) (63)

where p, q ∈ Rn, p and q are the canonically conjugated momenta and positions, and Ueff(q) is the potential function. With
transport and directed current being of interest, it is assumed that Ueff(q) provides an open component. To reiterate, this
means that on constant energy surfaces, the system may be unbounded in one, or more, of its coordinates.

The corresponding Hamiltonian equations ṗi = −∂H/∂qi and q̇i = ∂H/∂pi, 1 ≤ i ≤ n, exhibit the time-reversibility
symmetry, i.e. there exists a time-reversal operator τ̂ such that if X is a solution, then so is τ̂X. In more detail, suppose that
solutions take the form X(t) = [p(t), q(t)]. Applying the time-reversal operator yields τ̂ [p(t), q(t)] = [−p(−t), q(−t)].
This operation is involutory as τ̂ 2

[p(t), q(t)] = [p(t), q(t)]. As for the implication of time-reversibility with respect to the
net current, consider a solution with initial condition (at t = 0) given as X(0). Given a finite observation time T (relevant for
numerical and experimental studies), let X(t) evolve from X(0) to X(T ). This trajectory is called the forward trajectory.
At this point the time-reversal operator is applied which switches the sign of the momenta and changes the direction
of time. This creates a new initial condition τ̂X(T ) which can be evolved in (negative) time. This trajectory is called the
backward trajectory. In fact, when the system is evolved from this new initial condition it traces over the forward trajectory
in coordinate-space. Note that the forward and backward trajectories coincide in coordinate-space, but not in phase-space
due to the change in the sign of momenta. Given the general nature of the above initial condition X(0), we can conclude that
on constant energy surfaces, for each such initial condition there exists a corresponding initial condition τ̂X(T ) such that
they cancel each others contribution to the net current. Therefore, for systems with time-reversibility symmetry there is no
preferred direction of the flow thus preventing the emergence of a directed current.

The content of the above discussion is shown schematically in Fig. 28. Imagine q = θ is the angle of rotation of a pen-
dulum, and p = θ̇ is the corresponding angular velocity. Then the top half of the figure (in red) shows the phase por-
trait of a pendulum, with initial condition X(0) = (p(0), q(0)), undergoing rotational motion. The trajectory terminates at
X(T ) = (p(T ), q(T )). The bottom half of the figure (in blue) is the time-reversed counterpart of this trajectory, X(T −t), with
the initial condition τX(T ) = (−p(T ), q(T )). With a view to the present work, we can imagine a single unit, with position
q and momentum p, undergoing rotational motion in a spatially symmetric and periodic potential.

Applying the time-reversal operator to the system and the original initial condition X(0) produces another possible
motion of the system [137]. However, it is not always the case that these two trajectories produce average velocities that are
equal inmagnitude but opposite in sign. For example, its possible to envisage a potential such that a unit moving to the right
will fall into a ‘trap’, while the unitmoving to the left will experience unboundedmotion. Clearly, the sumof the two average
velocities will not equal zero. The point emerges that to produce (and guarantee that) two trajectories with zero average
velocity, the first needs to be evolved to some terminal time t = T at which point the time reversal operator is applied.

It should also be mentioned that the act of selecting an initial condition can be sufficient in itself to violate time-
reversibility symmetry. That is, even though the equations of motion are time-reversal symmetric, not all solutions need
necessarily have this symmetry. This is the case for trajectories where the initial condition and its time reversed counterpart
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Fig. 28. Time reversal symmetry in the case of a simple pendulum. Left: Schematic illustration of the forward (red) and backward (blue) trajectories
for a unit in the regime of rotational motion. The forward trajectory has initial condition X(0) and terminal coordinate X(T ), whereas the time-reversed
trajectory has initial condition τX(T ) and terminal coordinate τX(0). Right: Schematic illustration of the forward (red) and backward (blue) trajectories
for a unit in the regime of librational motion. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
Source: Figure taken from Ref. [123].

follow distinct paths in phase-space. As an example of such a trajectory consider a continuously rotating pendulum (cf.
Fig. 28). So by creating a trajectorywith time-averaged velocity ν ≠ 0, over an observation time of duration t = T , and initial
condition X0, time-reversibility symmetry has been broken, unless a second initial condition τ̂XT is chosen that produces a
trajectory with time-averaged velocity −ν. This is not true for self-reversed trajectories where the initial conditions X0 and
τ̂XT produce trajectories that coincide in phase-space. The librating trajectories of a pendulum are self-reversed. See Fig. 28
for a schematic illustration of this. The same principles apply to trajectories that wander chaotically in phase-space.

Given what has just been discussed, it seems a rather hopeless situation to a find Hamiltonian of the form given in
Eq. (63) that expresses a non-zero net current, because every initial condition is related to another that negates its
contribution to the current. This statement is true as long the entire energy surface is populated with initial conditions.
However, for systemswith an open component, i.e. unbounded in at least one of its coordinates, it is not feasible to populate
an entire energy surface with initial conditions. Therefore, it is more natural to define a finite set of initial conditions which,
given the infinite extent of (at least one of) the coordinates can be regarded as localised in space. Such sets of initial conditions
are frequently used in applications (see [138] for an example), and are chosen to be physically relevant, such as for the
problemof a unit flowemergingwhen the units are initially trapped in a singlewell of a spatially infinitely extendedmultiple
well potential. Indeed this is done when the second model is further examined in a later section.

Looking more closely at the implication of choosing localised initial conditions, it is supposed that the coordinates are
localised in the domain qj,l ≤ qj(0) ≤ qj,r with 1 ≤ j ≤ n representing the index of each degree-of-freedom (which for
the present discussion is not restricted to two), and the subscripts l and r denote left and right respectively. Let a trajectory
(with regard to a finite observation time T ) be transporting if (i) at least one of the coordinates qj(t) escapes from the domain
of the localised initial conditions in some time 0 < tescape ≪ T and (ii) it subsequently undergoes directed motion, that is,
⟨pj(t)⟩ ≠ 0 for tescape ≤ t ≤ T where ⟨·⟩ denotes the average with respect to time. This gives a trajectory moving away
from the set of localised initial conditions such that at the end of the observation time one of the terminal coordinates
obeys qj(T ) < qj,l or qj(T ) > qj,r for some j. Thus, the situation has arisen where the initial condition of the corresponding
backward trajectory, which would compensate the contribution of the forward trajectory to the current, is not contained in
the set of localised initial conditions. This seems to suggests that in systems where time-reversibility has been broken, via
the use of localised initial conditions, there will be a non-zero directed current. This is not necessarily the case. In fact other
symmetries need first to be violated, i.e. spatial symmetries. This is seen more clearly when the symmetry properties of the
second, asymmetric model are considered. First, let us examine the conditions that allow for the occurrence of a non-zero
current in the symmetric model case.

3.2.4. The emergence of a non-zero current in the symmetric case
Before moving on, let us return to the previously discussed symmetric model and examine the initial conditions used

there. It is worth noting that as the system is spatially symmetric and yet a non-zero current can emerge in the ensemble
dynamics, the choice of initial conditions must consequently be important. First, let us recall what these initial conditions
are. Let us denote some initial condition by X(0) where X(0) = (p(0), q(0), P(0),Q (0)) with Q (0) = P(0) = 0, p(0) > 0
and q(0) ∈ (−25.5, −24.5). Thus, the initial dynamics will see the coordinate q(0) approach Q (0).

Applying the time-reversal operator to X(0) yields τX(0) = X̂(0) = (−p(0), q(0), −P(0),Q (0)). The flow, generated
by the equations of motion with initial conditions X(0) and X̂(0), do not necessarily produce zero-averaging counter-
propagating trajectories. This is clear when one considers that with X(0) the coordinate q(0) will approach Q (0). However,
under the flow with initial condition X̂(0) the distance between these coordinates is monotonically increasing. This holds
true for all such initial conditions defined above. Thus, the presence of the interaction potential breaks time-reversibility
for this set of initial conditions. This echoes Loschmidt’s paradox in that the underlying system obeys time-reversibility, yet
some ensembles do not obey the symmetry. Thus, this system has helped to illuminate an important point, from the point of
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view of current generation. Namely, a system (with initial condition X(0)) under time-reversal does not necessarily produce
counter-propagating trajectories, X(0) & τX(0), that combined have zero averaged current.

In fact, the appropriate initial condition X̂(0) thatwould produce the counter-propagating trajectory negating the current
contribution of the trajectory with initial condition X(0) is given by X̂(0) = (−p(0), −q(0), 0, 0). Crucially, the set of initial
conditions described above does not contain X̂(0), and thus this explains the emergence of a current. It should be noted that
X̂(0) is not created through any time-reversal operation. Rather, this initial condition is generated from the system’s spatial
symmetries. Another point to note is that if the original initial conditions X(0) are evolved for any time T > 10 (which the
simulations exceed by far) then the time-reversed initial condition τX(T ) is outside the set of localised initial conditions (as
described above). Thus the temporal and spatial symmetries have been violated through the choice of initial conditions.

3.2.5. Time-reversal symmetry manifolds
The system Eq. (63) possesses an energy integral

E =
1
2
p2

+ Ueff(q). (64)

There exists a closed maximum equipotential surface Ueff(q) = E bounding all motions and one has p = P = 0, on this
surface. Moreover, for Hamiltonian systems of the form Eq. (63) time-reversibility is manifested in coordinate-space in the
symmetry features induced by reflections on the time-reversibility symmetry manifolds.

In the case of the two models discussed, or any two-degree-of-freedom system for that matter, the symmetry manifolds
are represented by symmetry lines. In general, for n-degree-of-freedom systems, these symmetry manifolds are obtained
by setting the velocities (momenta) equal to zero. This produces an n-dimensional ‘mirror’ plane,

M = {q | p = 0} q, p ∈ Rn (65)

where the trajectories starting on this plane will follow the same path in coordinate-space in forward and backward time.
This is clearwhen one considers the formof theHamiltonian being even in themomentap and the fact that the time-reversal
operator changes the sign of the momenta p → −p. More accurately, the time reversibility manifolds are given by

Sk : −
∂Ueff

∂qk
= Fk(q) = 0, 1 ≤ k ≤ n. (66)

Let us consider reflections of a trajectory, projected onto coordinate space, on the symmetry manifolds Sk induced by the
corresponding operators R̂k. First note that the reflections spoken of here are not spatial reflections. Rather, these reflections
map each point of a trajectory onto another, q → R̂k(q), on equipotentials, Ueff(q) = Ueff(

m
k=1 R̂k(q)), such that the sign

on the right hand side of the equations of motion for ṗk are reversed, sign(Fk(R̂k(q))) ≠ sign(Fk(q)), with 1 ≤ k ≤ n.
Observe that upon reflecting on all symmetry manifolds the relation

Ueff(q) = Ueff


m

k=1

R̂k(q)


, 1 ≤ m ≤ n (67)

is left invariant under permutations of the reflection operators. In fact, time-reversing symmetry is in coordinate-space
tantamount to invariancewith respect to reflections on the symmetrymanifolds. Inmore detail, any self-reversed trajectory,
projected onto coordinate-space, repeatedly crosses every symmetry manifold Sk upon which each time the sign of the
corresponding force −∞ < Fk(q) < ∞ changes. Moreover, each crossing subsequent to the previous one occurs from the
opposite direction. Thus there must be turning points for the trajectory, contained in the maximum equipotential surface
Ueff(q) = E, implying bounded motion and no directed flow can arise. Notice that no assumptions with regard to the
spatial symmetries of the trajectory are needed. In contrast, as transporting (unbounded) trajectories are not invariant with
respect to reflections on the symmetry manifolds, preservation of time-reversing symmetry is not possible. A transporting
trajectory may escape without having crossed a symmetry manifold at all. However, if it does cross then after all such
crossings of a symmetry manifold, the escaping trajectory promotes directed transport. Nevertheless, reflections on the
symmetry manifolds, mapping a transporting trajectory onto another transporting one, can induce spatial symmetries such
that these two trajectories mutually compensate each others contribution to the net flow. Let the point qO in coordinate-
space be an initial condition associated with a transporting trajectory. Reflecting in coordinate-space on the symmetry
manifolds Sk transforms an original point, qO, into its image point, qI , according to R̂kqO = qI,k reversing the sign on the
r.h.s. in the equations of motion for ṗk according to sign(Fk(qO)) ≠ sign(Fk(qI,k)). However, the magnitude of the gradients
Fk = −∂Ueff/∂qk is not necessarily maintained. Reflection on all of the symmetry manifolds yields

n
k=1

R̂kqO = qI and Ueff(q0) = Ueff(qI) (68)
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reversing the sign in each of the r.h.s. of the equations of motion for the evolution of the momenta sign(Fk(qI)) ≠

sign(Fk(qO)), 1 ≤ k ≤ n. With the time evolution of a coordinate expressed as

qk(t) = qk(0) +

 t

0
dt ′{pk(0) +

 t ′

0
dt ′′[−Fk(q(t ′′))]}, (69)

we conclude that, for the pair of trajectories emanating from qO and qI , symmetry (zero net flow) results if (pI , qI) =

(−pO, −qO) so that Fk(qI) = −Fk(qO), 1 ≤ k ≤ n. This is the case when the potential is even in the coordinates, that is
Ueff(q) = Ueff(−q) (the symmetric model for example). Then there exist pairs of current-annihilating counterpropagating
trajectories, X(t), starting from X(0), and −X(t), starting from −X(0). In other words, reversion symmetry under reflections
on the symmetry manifolds is needed for zero net flow which, together with invariance with respect to changes of the
sign of the momenta, amounts to parity-symmetry of the system H(p, q) = H(−p, −q). Conversely, violation of reversion
symmetry with respect to at least one of the coordinates qk establishes a prerequisite for the occurrence of directed flow.

3.2.6. The effect of broken symmetries
It is useful to see how the above theory on spatio-temporal symmetries can be applied in practice, and in particular

to observe the effects of breaking these symmetries. For this reason, the spatio-temporal symmetry properties of the
asymmetric model are next examined. Particular attention is given to the phase-space dynamics and to current generation
where the effects of broken symmetries is most clearly visible.

The asymmetric model has an effective potential given (in short) by

Ueff(q) = U(q) + V (Q ) + Hint(q,Q ) (70)

where U(q) is the in the spatially symmetric and periodic potential, V (Q ) is the anharmonic (deposit) potential, and
Hint(q,Q ) is the interaction potential. Some properties of the in the spatially symmetric and periodic potential and
interaction potentialswere discussed in the introduction to Section 3. However, it isworth reiterating those that are relevant
in this section. The in the spatially symmetric and periodic potential is of period one and observes the coordinate symmetry
U(q) = U(−q). This amounts to symmetry with respect to qn = n/2 for every integer n. Likewise, the interaction potential
is invariant under reflections of its argument, namely (q − Q ) ↔ −(q − Q ). In contrast, the deposit degree-of-freedom
V (Q ) does not obey such a reflection symmetry. That is, V (Q ) ≠ V (−Q ) resulting in equations of motion (cf. Eqs. (60) and
(61)) that do not remain invariant under reflections in Q .

Even with the anharmonic part V (Q ), which breaks a reflection symmetry of the system, the asymmetric model case still
possesses time-reversal invariance. Thus, if the phase-space is entirely populated with initial conditions, then the system
will produce a zero net current. This raises the question of what effect localised initial conditions imply for the system’s
current output.

At this point it isworthwhile describing exactly the set of initial conditions thatwere used in the numerical analysis of the
asymmetric model. These initial conditions were chosen such that the unit in the spatially symmetric and periodic potential
was at rest at the origin, with the system’s energy initially residing in the deposit degree-of-freedom and the interaction
potential. In more detail, at time t = 0, the unit’s position and velocity were given by q(0) = q̇(0) = 0. Thus the unit in the
spatially symmetric and periodic potential begins its time evolution with zero energy. Assuming system energy E, the set of
initial conditions for the remaining degrees-of-freedom are chosen to populate uniformly and densely the level curve

E =
1
2
Q̇ 2

+ V (Q ) + Hint(0,Q ) (71)

in the (Q , Q̇ )-plane. This set is topologically a circle. Importantly, these initial conditions are unbiased in the velocity,
i.e. Q̇ ↔ −Q̇ .

Returning to the symmetry analysis we now turn our attention to the time-reversal symmetry manifolds. As this is a
two-degree-of-freedom system, the symmetry manifolds will exclusively be termed symmetry lines. Setting the velocities
in Eq. (60) & Eq. (61) equal to zero obtains Ref. [134]

S1 : sin(2πq) + D
tanh(q − Q )

cosh(q − Q )
= 0, (72)

S2 : exp(−Q ) − 1 + D
tanh(q − Q )

cosh(q − Q )
= 0. (73)

The symmetry line S1 exhibits the following symmetry:

Q → −Q ,
n
2

+ q → −
n
2

− q : S1,n → −S1,−n (74)

with n labelling the branches of the symmetry line as S1,n. The occurrence of the multiple branches of the S1 symmetry line
can be understood by considering the symmetries of the spatially symmetric and periodic potential. In contrast, S2 yields a
single branch containing no apparent symmetries.
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Fig. 29. (Colour Online) Time-reversal symmetry lines in the coordinate plane (q,Q )—see Eqs. (72)–(73). The coupled particle (conservative) dynamics
take place in a spatially asymmetric potential. The system’s energy is E = 1.5 and the energetically accessible region is bounded by the two curves indicated
by Be . The dashed (red) line corresponds to the location of the initial conditions projected onto coordinate-space. Arrows indicate the direction of flow in
different regions, as determined by the sign of the forces −∂Ueff/∂q and −∂Ueff/∂Q .
Source: Figure taken from Ref. [134].

The two cases, coupled and uncoupled, result in markedly different dynamics. Notably, uncoupling the two subsystems
produces integrable dynamics. The dynamics becomes non-integrable (chaotic) when the two subsystems are coupled. This
complexity is also manifested in the symmetry lines S1 and S2. To see this, consider first the uncoupled case. With the
coupling parameter D = 0, the equations representing the symmetry lines are simplified and solutions take the form
q = n/2 for all n ∈ Z and Q = 0. For D ≠ 0 the solutions to the equations for S1 and S2 become more complicated.
This point is illustrated in Fig. 29 which shows the time-reversal symmetry lines when D = 0.75. For illustration, only
the branches of the symmetry line S1,n, with n = −1, 0, 1, related to the starting potential well are shown. The direction
of flow, as determined by the sign of the forces −∂Ueff/∂q and −∂Ueff/∂Q , is indicated by arrows in the different regions
in the coordinate plane. Boundaries of the energetically-allowed region in coordinate-space are represented by the two
lines labelled Be. Reflections of a trajectory, projected onto coordinate space, on the symmetry lines Sk are induced by the
corresponding operators R̂k mapping each point on the trajectory to another one on equipotentials

Ueff(q,Q ) = Ueff


2

k=1

R̂k(q,Q )


, (75)

such that the sign on the r.h.s. in the equations of motion is reversed, i.e.,

sign(∂Ueff(q,Q )/∂q) ≠ sign(∂Ueff(R̂1(q,Q ))/∂q) (76)

upon reflection on S1, and

sign(∂Ueff(q,Q )/∂Q ) ≠ sign(∂Ueff(R̂2(q,Q ))/∂Q ) (77)

upon reflection on S2. Note that the magnitude of the gradients ∂Ueff(q,Q )/∂q and ∂Ueff(q,Q )/∂Q is not necessarily
maintained.

It is clear that the symmetry lines for the uncoupled and coupled system are significantly different. Coupling the two
subsystems has the effect of contorting the symmetry lines. It should be stressed again that even though the time-reversal
symmetry lines differ for each value of the coupling parameter, the result for the net current is the same when the energy
surface is entirely populated by initial conditions. That is, when the energy surface is entirely populated by initial conditions,
the resulting current is zero regardless of the value D which regulates the coupling strength.

Now the issue of localised initial conditions can be addressed. The initial conditions described above are shown, projected
onto the (q,Q )-plane, as the red dashed line in Fig. 29 which shows the time-reversal symmetry lines for D = 0.75. Notice
that one branch of the symmetry lines S1,0 divides the initial conditions into two segments, each promoting transport in
different directions. For the segment lying to the left of S1,0 the flow is in the direction of positive q, while in the segment to
the right of S1,0 the flowmoves in the direction of negative q. Crucially, there is an imbalance in the size of the segments, and
thus initially there is an unequal number of trajectories moving towards the two chaotic saddles located at the intersections
of S1,1 and S1,−1 with S2. This imbalance and the fact that the system contains an open component allows for the emergence
of a non-zero directed current.
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Previously, it has been stated that broken spatial-symmetries are of no consequence (with respect to the current) for
systems with an energy surface entirely populated with initial conditions. However, the above discussion shows that for lo-
calised initial conditions broken symmetries play an important role. Namely, the asymmetric V (Q ) breaks time-reversibility
for the localised initial conditions described above. Moreover, using a different potential V (Q ), which is invariant under re-
flections in Q , would restore the symmetry between counterpropagating trajectories, leading to a zero current.

It is worth re-emphasising that the mechanism responsible for the non-zero net current presented in this section is
novel in that it does not require a mixed phase-space, induced by time-periodic driving, consisting of regular and chaotic
components [79,85,52]. Rather, for the autonomous systems discussed here chaos is only needed in an initial stage of
the dynamics to guide trajectories onto regular paths [99,134,136]. After the finite period of transient chaos, the units
subsequently undergo regular rotational motion. This is in contrast to the sticking episodes close to tori, of finite duration,
that provide a non-zero net current in the non-autonomous Hamiltonian case.

A step in this direction, i.e. of directed transport in autonomous systems,was taken by [139]. In a three degree-of-freedom
system,modelling amolecularmotor, the external time periodic drivingwas replaced by an autonomous degree-of-freedom
that acts as an energy store. They observed that energy was able to propagate through the system resulting in directed
transport. However, their results differ from the results presented in this section in two respects. Firstly, transport in the
molecularmotormodel was aided by thermal fluctuations. Secondly, although on the one hand noise aided transport, on the
other it also had the effect of destroying transport. Thus, the intervals transport (which are of finite duration) are separated
by periods of bounded motion.

3.3. Collective transport in time-dependent driven systems

In Section 3.2 the Hamiltonian dynamics of autonomous systems of two coupled units were explored. This part continues
in a similar vein. However, the equations of motion are augmented by the inclusion of time-dependent driving and
dissipative terms, thus adding further complexity to the coupled dynamics. Further, the short range interaction potential
Eq. (53) (which allows for the occurrence of certain phenomena, in particular transient chaos) is replaced by a potential that
allows for long range interactions between the particles.

In Section 3.3.1 the driven and damped dynamics of two interacting particles evolving in a symmetric and spatially
periodic potential is considered. The latter is exerted to a time-periodic modulation of its inclination. For directed particle
transport mediated by rotating periodic motion, exact results regarding the collective character of the running solutions
are derived. Section 3.3.3 reports on the cooperativity-induced negative mobility in the dynamics of two coupled particles
climbing in unison against the direction of the bias force. Section 3.3.4 deals with the transport dynamics of systems with
many degrees of freedom in form of an extended linear chains evolving in a spatially symmetric and periodic potential. By
means of adiabatically slow modulations of the potential landscape the extended chain of coupled particles escapes from
the confinement of a potential well, and subsequently enters a regime of long lasting transients where the entire chain
transports in a ballistic fashion.

3.3.1. Collective periodic running states in coupled particle dynamics
The considered systems consist of two coupled particles each evolving in a spatially symmetric and periodic potential.

The particles are driven by a time periodic force and damped. These systems are nonautonomous and without conservation
of energy. They possess coupled inertial dynamics of the form [140]

q̈1 = − sin(2πq1) − γ q̇1 + F1 sin(Ω t + θ0) − κ(q1 − q2) , (78)

q̈2 = − sin(2πq2) − γ q̇2 + F2 sin(Ω t + θ0) + κ(q1 − q2) , (79)

where γ is the strength of the damping, F1,2 are the driving amplitudes, and Ω , θ0 are the driving frequency and phase
respectively. κ represents the strength of the linear coupling between the two particles.

The focus of this section is on how the coupling strength influences the dynamics of the system above (Eqs. (78) and (79)).
However, it is useful for what is to come to understand the uncoupled dynamics (κ = 0) of this system [97]. That is, the
dynamics of a single driven and damped particle evolving in a spatially symmetric and periodic potential. The dissipative
nature of this system means that all orbits will eventually evolve = to one of the systems, possibly coexisting, attractors.
The type of attractors present will depend on the parameters used, while the particular attractor that an orbit evolves to is
dependent on the initial condition. This is illustrated in Fig. 30 where two qualitatively different attractors are shown. The
parameters used are γ = 0.1, Ω = 2.25, θ0 = 0. The strange chaotic attractor (blue) results when the driving amplitude is
F = 1.3. Increasing this driving amplitude to F = 1.5 results in the periodic attractor (red). With regard to a net current the
transporting orbits evolving on the periodic attractor will yield a non-zero net current, whereas the trajectories landing on
the strange chaotic attractor are, on long time scales, typically expected to produce a vanishingly small contribution to the
net current. However, as is seen later, it is possible for trajectories evolving on a chaotic attractor in a higher dimensional
phase-space to produce a non-zero current.

Thus, the single particle system exhibits a rich source of interesting dynamics. The full system, Eqs. (78) and (79), presents
a further opportunity for new and interesting behaviours. For now consider the uncoupled case κ = 0. Thus, depending
on the strength of the driving amplitudes F1 and F2 (with the remaining parameters as given above), there are a number of
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Fig. 30. Deterministic driven and damped dynamics of two coupled units, as defined by Eqs. (78)–(79). Left panel: Stroboscopic map with sampling rate
2π/Ω , with Ω being the frequency of the two external periodic driving forces. Shown are the strange (blue) and periodic (red) attractors corresponding
to driving strengths F1 = 1.3 and F2 = 1.5 respectively, in the uncoupled κ = 0.0 regime. The remaining system parameters are the damping strength
γ = 0.1, the driving frequency Ω = 2.25, and the driving phase θ0 = 0. The coordinates q are given mod (1). The dot (red) has been enlarged for
emphasis. Right panel: A corresponding example trajectory for motion on the strange (blue line) and periodic (red line) attractor.
Source: Figure taken from Ref. [140].

possible combinations of attractor for the underlying subsystems. For driving amplitudes F = 1.3 (strange chaotic attractor)
and F = 1.5 (regular attractor) there are three combinations of attractors for the underlying subsystems—regular/regular,
regular/strange, and strange/strange. The complexity of this system arises when the two subsystems are coupled, i.e κ ≠ 0.

With a view to the discussion in Section 3.3 regarding symmetries, it is worth briefly exploring the symmetry properties
of this system which now includes driving and damping terms. To begin, let us assume equal driving amplitudes F1 = F2.
Firstly note that the particle exchange symmetry q1 → q2, q2 → q1 is preserved. Thus synchronous solutions, for example,
are permitted. However, time-reversibility is broken here due to damping,meaning that these systems have a clear direction
of time (which is easily verified by applying the time-reversal operator to the equations ofmotion). This is a generic feature of
dissipative systems. The implication is that applying the time-reversal operator to a forward trajectory does not necessarily
produce another trajectory that is permitted under the equations of motion. Going further, the corresponding backward
trajectory that would cancel the forward trajectories contribution to the net current is not obtained through the time-
reversal operation. In this sense, all sets of initial condition are be biased. This is only a necessary condition for the generation
of a non-zero net current. The actual current is determined by the basins of attraction in which the initial conditions lie, and
by extension their corresponding attractors. Finally, in the case of unequal driving amplitudes F1 ≠ F2 the above discussion
on time-reversibility is still valid. The difference now is that the particle exchange symmetry is broken, and thus synchronous
motion becomes hindered (except in the range of very strong coupling between the units).

We now look at the transport features present in the system.

3.3.2. Features of collective driven transport
In this section we examine a very particular type of solution for the full system.
This solution, which is named the periodic running solution, is desirable for achieving directed particle transport.
The periodic running solutions are characterised by

qi(t + T ) = qi(t) + mi, q̇i(t + T ) = q̇i(t), i = 1, 2, (80)

where T is the duration of the period, and the mi are constants representing the distance travelled over the course of a
period. This is a periodic running solution in that over one period the particles each travel a uniform distance, and yet the
momentum variables are periodic in the standard sense. Notice that such a solution has a non-zero average velocity. That is

⟨q̇i⟩ =
1
T

 T

0
dt q̇i(t) =

mi

T
≠ 0. (81)

Thus particle i runs to the right (left) when mi > 0 (mi < 0), for i = 1, 2. For the dimer the net transport may be zero if
m1 + m2 = 0, that is m1 = −m2 and the particles run in a counterpropagating fashion with the same average velocity.
However, this solution is not possible.

The main results regarding the character of periodic running solutions are contained in a theorem in [133] and can be
summarised as follows: By assuming such a solution, described by Eq. (80), it has been possible to deduce important features
of transport when the particles are in a periodic running state. Firstly, in such a state the particles will travel an equal
distance and counterpropagating trajectories are excluded, i.e. the particles must travel in the same direction, viz.m1 = m2.
Further, non-trivial periodic solutions are impossible without the time-periodic external modulations. That is, all periodic
running solutions must be frequency locked to certain multiples of the external time-periodic modulations. In more detail,
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Fig. 31. (Colour Online) Time evolution of the coordinates q1,2(t) of the two interacting driven and damped units in a periodic running state that is
frequency-locked to the external time-periodic modulation. The system dynamics are defined by Eqs. (78)–(79). The parameter values are given by
Ω = 2.25, F1 = F2 = 1.3, θ0 = 0, γ = 0.1, and κ = 0.46. For comparison, sin(Ωt) oscillating around q = 1564 with unit amplitude and frequency
Ω = 2.25 is shown (dashed line).
Source: Figure taken from Ref. [133].

let F(t) = F sin(Ωt+Θ0), with period T0 = 2π/Ω , represent the external time-periodic driving of the system. For solutions
that are frequency-locked to F(t), it holds that the distance between the particles performs periodic oscillations, i.e.

q1(t + T ) − q2(t + T ) = q1(t) − q2(t). (82)

Moreover, the period T is determined by

T = 2lT0 (83)

for some l ∈ Z. The coordinates obey

q1


t +

1
2
T


= q2(t) + k, q2


t +

1
2
T


= q1(t) + k, (84)

with k ∈ Z \ {0} and hence

qi(t + T ) = qi(t) + 2k, i = 1, 2. (85)

The existence of periodic running solutions is remarkable as with the help of a multidimensional Melnikov method it
can be proven that the system exhibits Smale-like horseshoe chaos in its dynamics and hence, is nonintegrable (for details
see [133]).

Let us look closer at the periodic running solutions described by Eq. (80). It is clear that in the uncoupled regime, κ = 0, a
periodic running solution is not possible given that both particles have trajectories that evolve on strange attractors. Turning
to the coupled regime, notice then that in the case of identical particle motion, or in-phase motion, the particles effectively
decouple. Thus the dynamics is determined by two independent units which evolve on strange chaotic attractors. This holds
for all values of κ showing that transporting in-phase (synchronous) motion supported by a regular periodic attractor is
excluded. However, this does not exclude the possibility of a periodic running solutionwhere the two particles havemotions
that are out of phase. Such a solution can be seen in Fig. 31 where the time evolution of the coordinates q1,2 is shown, and
the coupling strength is chosen as κ = 0.46. It is apparent that both are frequency locked to the external driving. This is also
illustrated in Fig. 31 by the inclusion of the function F(t) = sin(2.25 t) oscillating around q = 1564. This figure highlights
the cooperation between the particles which allows directed transport to take place. One unit will move backward in order
for both units to move forward. In an alternating manner, one unit will sacrifice for the benefit of the dimer.

Importantly, from Fig. 31 it can be deduced that the temporal behaviour of the coordinates follows the relations given in
Eqs. (82)–(85).

Concerning the influence of the coupling, let us take as example coupling strengths κ = 0, where there exist strange
attractors for both particles, and κ = 0.46, where the motion can be periodic, it seems that the coupling strength plays a
key role for the dynamics of the system. The fact that the system exhibits rich and complex dynamics is expected given that
the phase-space is five dimensional. Conversely, the fact that the two chaotic subsystems can combine to produce regular
periodic motion is less expected. This is quite important as it confirms that there is a phenomenon in which chaos combines
with chaos to form regular periodic motion. By this, it is meant that in the uncoupled regime both subsystems support chaotic
motion, but in the coupled regime there exist periodic solutions.

With regard to the emergence of a non-zero current, the favourable coupling strengths are those that are associated with
motion on periodic attractors in phase space. It may be the case though that there are multiple coexisting attractors, each
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Fig. 32. Example trajectories of two driven and damped units in a biased periodic potential with dynamics given by Eqs. (86)–(87) (red and blue curves
respectively). One sees the time evolution of the two coupled units (κ = 0.327) which are travelling in the opposite direction to the applied bias. The
two lines represent the trajectories of the individual units. The remaining parameters are as follows: the constant external bias force F0 = 0.1, damping
γ = 0.11, periodic driving strength F = 1.3, driving frequency Ω = 2.22, and driving phase θ0 = 0. The scale factors are t0 = 8 · 104 and q0 = −26690,
respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Source: Figure adapted from Ref. [114].

contributing to overall dynamics with a different weight, and it is these weights that determine the strength of the resulting
net current. Theseweights can of course be related to the size of the corresponding basis of attraction [133]. Conversely, there
exist values of the coupling strength yielding symmetry between coexisting attractors which take trajectories in opposite
directions. Thus an equal number of trajectories travel in the range of positive and negative coordinates, i.e. the basins of
attraction, promoting motion in different directions, are of the same size. This results in a zero current.

3.3.3. Interaction-induced negative mobility
Here we review work on the driven and damped dynamics of two coupled units evolving in a spatially symmetric

and periodic substrate potential which is subjected to a static bias force of magnitude F0 serving to tilt the potential
landscape such that unitmotion to the right is favoured [114]. In addition, each unit is driven by an external time-dependent
modulation of amplitude F , frequency Ω , and phase θ0 with the same magnitude, but out-of-phase, to its counterpart. It is
shown that, within a range of coupling strengths, the coupled units can become self-organised and go, as periodic running
states, frequency locked with the driving, against the direction of the bias force.

The equations of motion for this system are given by [114]
q̈1 = − sin(2πq1) − γ q̇1 − F sin(Ωt + θ0) − κ(q1 − q2) + F0, (86)

q̈2 = − sin(2πq2) − γ q̇2 + F sin(Ωt + θ0) + κ(q1 − q2) + F0. (87)
Notice the out-of-phase character of the periodic modulation of the two units expressed by the different sign of the
modulation amplitude F . The additional parameters γ and κ regulate the strength of the damping and coupling respectively.

We stress that in our system the two units, forming a dimer, are supposed to perform one-dimensional motion in parallel
directions each of them in a spatially symmetric and periodic potential. That is, for equal coordinates q1 = q2 = q the axis
of the dimer (virtual line connecting the two units) is perpendicular to the q-direction.

In general, the system will exhibit a rich and varied behaviour as a function of its parameters γ , F , κ , ω, θ0, and F0.
However, one of our main objectives, as was previously mentioned, is to explore coupling phenomena within the system,
and therefore in much of this study we will fix the remaining parameters while varying the coupling parameter κ .

Fig. 32 displays the existence of negative mobility for the coupled dynamics, i.e. solutions in which the motion goes
against the direction of bias. In the uncoupled case, the units follow the direction of the bias. Below we demonstrate that
the mechanism allowing for such motion is cooperation between the units where they pull each other over consecutive
potential barriers. Inmore detail, a coordinated energy exchange between the units allows them to collectively climb against
the direction of the tilt.

As an explanation of this phenomena, we describe the mechanism that makes negative mobility possible. Fig. 33 shows
snapshots of a two-unit compoundmoving in the opposite direction of the bias force where the units move in the respective
potential landscape given by

U(q1, t) =
1
2π


1 − cos(2πq1)


+ F sin(Ω t + θ0)q1 − F0q1, (88)

U(q2, t) =
1
2π


1 − cos(2πq2)


− F sin(Ω t + θ0)q2 − F0q2. (89)

Note that the potential energy as given above relates to the on-site potential not containing the unit interaction part. These
seven snapshots, taken over one period of the driving, show the relative position of each unit (henceforth unit 1 – left panels
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Fig. 33. (Colour online) Snapshots of driven and damped dimer motion going against the bias force, taken over a period T of the external time-periodic
modulation. The corresponding equations of motion are Eqs. (86)–(87). Reading from top to bottom, each row shows the evolution advanced by a time T/6
starting from an initial time t = t1 . The bottom axis is q and the left/right axes U(q). Arrows indicate direction and magnitude of a units momentum. Left
(right) column: unit 1 (2). The parameters are set as F0 = 0.1, γ = 0.11, F = 1.3, Ω = 2.22, θ0 = 0, and κ = 0.372.
Source: Figure adapted from Ref. [114].

and unit 2 – right panels) versus its position in the potential landscape. In addition, arrows where present indicate the
direction and magnitude of momentum for the respective units, with no visible arrow indicating a vanishing momentum.
It can be seen that negative mobility is the product of coupling between the units and the effect of the time modulated
potential. For example, at the beginning of the period unit 1 has a positive momentum in the direction of the bias force.
However, this is countered by the height of the potential barrier, and by the coupling to unit 2 which has an even stronger



D. Hennig et al. / Physics Reports 586 (2015) 1–51 45

negative momentum. Thus motion in the direction of bias is hindered. Regarding negative mobility we underline that the
opposite time-periodic forces make it only possible that for one unit the current inclination of the washboard potential is of
such form that the unit is temporarily locked in a potential well (thus hampering its dragging influence on the other unit in
the unwanted direction of the tilt) while the other unit experiences awashboard potential whose current inclination favours
motion against the static tilt force F0. These phases of temporary locking and running against the tilt alternate between the
units. This cooperative effect between the units, together with the finely tuned modulations of the potential combine, for
the duration of the period, aiding motion against the bias force. Consequently, in one period of the driving, the dimer moves
one spatial period against the bias force.

We remark here that in the work [114] we have also demonstrated the robustness of the motion against the bias of the
tilt force with respect to additionally present thermal fluctuations.

3.3.4. Adiabatic driving and directed transport in many unit systems
Here we report on the Hamiltonian dynamics of a one-dimensional chain of linearly coupled units in a spatially periodic

potential which is subjected to a slowly varying time-periodic, mono-frequency external force. The average over time and
space of the related force vanishes and hence, the system is effectively without bias which excludes any ratchet effect.
We pay special attention to the escape of the entire chain when initially all of its units are distributed in a potential well.
Moreover for an escaping chain we explore the possibility of the successive generation of a directed flow based on large
accelerations.

3.3.5. The driven chain system of interacting units
We study a one-dimensional chain system consisting of linearly coupled units with Hamiltonian of the following

form [141]

H =

N
n=1


p2n
2

+ U0(qn) + U1(qn, t)


+
κ

2

N−1
n=1

(qn+1 − qn)2 , (90)

wherein pn and qn denote the canonically conjugate momenta and positions of the units evolving in the spatially periodic,
spatially-symmetric potential of unit period, i.e.,

U0(q) = U0(q + 1) = − cos(2πq)/(2π). (91)

The external, time-dependent forcing field

U1(q, t) = −F sin(Ω t + Θ0)q (92)

causes time-periodic modulations of the slope of the potential. It has to be stressed that there is no additional bias force
involved in the sense that the following average over time and space vanishes, i.e. 1

0
dq
 T=2π/Ω

0
dt

∂U(q, t)
∂q

= 0, (93)

with U(q, t) = U0(q) + U1(q, t). The units interact linearly with coupling strength κ . Remarkably, as pointed out in prior
literature [79] in the limiting case of uncoupled units, i.e. κ = 0, there results an (unexpected) asymmetry of the flux of
units, emanating from one potential well, and flowing to the left and right potential wells which indicates the existence of
directed transport without breaking the reflection symmetry in space and time in this system. One reason for the occurrence
of phase-dependent directed transport is the lowering of the symmetry of the flow in phase space by the ac-field where this
asymmetry vanishes only for specific values of the initial phase Θ0 [79]. In Ref. [142] the authors report further on this
exceptional situation and show that directed transport is sustained on fairly long time scales despite the presence of chaos.
In particular it has been demonstrated that for sufficiently small forcing frequencies,Ω ≪ 1, thewidth of the arising chaotic
layer diverges leading to a strong enhancement of the chaotic transport [142].

The equations of motion derived from the Hamiltonian in Eq. (90) read as

d2qn
dt2

+ sin(2πqn) = F sin(Ω t + Θ0) + κ[qn+1 + qn−1 − 2qn]. (94)

The analysis here deals with zero initial phase of the external force term, viz. Θ0 = 0. The influence of the phase Θ0 on the
generation of directed motion in the periodic potential U0(q) has been studied under adiabatically slow driving in detail in
Ref. [143]. We stress that averaging over the initial phase Θ0 yields vanishing net current in the periodically driven system.

3.3.6. Extremely long transients of directed transport
In our dynamical studies the initial conditions are chosen such that the units are initially contained in a potential well.

Furthermore, in the uncoupled case, i.e κ = 0, escape from the potential well induced by the driving force, as discussed
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Fig. 34. (Colour online) Typical spatio-temporal evolution of the coordinates qn(t) for a chain of N = 100 coupled driven units, each evolving in a spatially
periodic potential — see Eq. (94). Initially the coordinates are uniformly distributed within the interval |qn(0)− q̃0| < ∆qwith an average q̃0 = −0.35 and
width ∆q = 0.01 and zero momenta, i.e. pn(0) = p̃0 = ∆p = 0. The coupling strength is κ = 0.3 and the periodic external driving strength and phase are
F = 0.05 and Θ0 = 0, respectively. In the left (right) panel, the driving frequency is Ω = 10−1 (Ω = 10−3).
Source: Figure adapted from Ref. [141].

in [143], is excluded. To ensure trapping in the driven but uncoupled dynamics the orbits have to lie fairly deep inside the
separatrix, yielding there a large island of stability with dynamics that is still regular.

Likewise, without the weak external ac-field and when the units are coupled the chain is supposed to remain trapped in
the potential well despite the arising chaotic motion.

In terms of phase space structure we recall that in the case of individual units, i.e. κ = 0, in the corresponding adiabati-
cally driven system of one-and-a-half degree of freedom there arises a broad stochastic layer from the connection of various
zones of instability due to resonance overlap. Non-contractible KAM tori confine the stochastic layer from below and above
and form impenetrable barriers for motion in phase space. For the weakly nonintegrable system the chaotic sea contains
still islands of regular motion. Provided these islands possess non-zero winding numbers orbits with initial condition inside
such an island facilitate transport. Moreover, themotion around these islands is characterised by the stickiness to them that
can lead to trapping of the trajectory for a long time [131,76,144,81]. This is due the intricate structure of the stochastic
layer where close to resonances at the boundary between regular and chaotic regions there exists a hierarchy of smaller and
smaller islands and surrounding cantori. The latter can severely restrict the transport in phase space and thus effectively
partition the chaotic layer [76,78].

It seems that the cantori are the less leaky the smaller themodulation frequencyΩ . Hence they formalmost impenetrable
barriers that confine trajectories for a very long but transient period. One should remark that eventually this transient period
of directed motion terminates because the trajectory escapes through one of the holes in the cantori and accesses other
regions of the chaotic layer. Therefore the motion does not necessarily proceed unidirectionally and unless the trajectory
becomes captured by ballistic channels [126,86,87] it itinerates within the chaotic layer going along with changes of the
direction of motion.

For nonlinear Hamiltonian systemswithN ≥ 2 degrees of freedom only a few numerical results addressing the existence
of an enhanced trapping regime are known [145,146]. It is supposed that the role played by cantori in driven systems
with N = 1 is played by families of N-dimensional tori, constituting partial barriers in the 2N-dimensional phase space,
where the chaotic trajectory can stick to [145,146]. On the other hand Arnold diffusion is possible and hence in principle a
chaotic trajectory, wandering along the entire stochastic layer, can explore the whole phase space [147,148]. However, due
to stickiness to higher dimensional invariant tori Arnold diffusion can be suppressed so that certain stochastic regions are
distinguished in which the trajectories become trapped for longer times [145].

We demonstrate that it is possible to generate directed motion with adiabatic periodic modulations of the slope of the
spatially periodic potential.

Concerning the initial conditions we proceed in the following way: Initially an amount of energy En = 0.5p2n +U0(qn) <
∆E is applied per unit such that the whole chain is elongated homogeneously along a fixed position q̃0 near the bottom
of the well. Then, the position and/or momenta of all units are randomised. The random position values are chosen from a
bounded interval |qn(0) − q̃0| ≤ ∆q and, likewise, the random initial momenta, |pn(0) − p̃0| ≤ ∆p. The whole chain is thus
initialised close to an almost homogeneous state, but yet sufficiently displaced (∆q ≠ 0) in order to generate non-vanishing
interactions, entailing the exchange of energy among the coupled units.

First we note that in the casewithout externalmodulation of the slope there occurs the formation of a pattern of localised
states due to modulational instability (not depicted here). Due the irregular dynamics it happens that occasionally a unit
overcomes the potential barrier but no coordinated motion of the chain results.

Remarkably, applying the adiabatic modulation the entire chain not only escapes from the potential well but manages
also to travel freely and unidirectionally over a giant distance as seen from the spatio-temporal evolution of qn(t) in
Fig. 34. In comparison for faster modulations no directed motion of the chain is obtained. The chain consists of 100 coupled
units and open boundary conditions are imposed. The profile of the chain continuously undergoes changes with ensuing
deviations from a flat state. Nevertheless the intriguing feature of transients of extremely long-range transport of the chain
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Fig. 35. (Colour Online) Temporal evolution of themean value ⟨q⟩ = ⟨
1
N

N
n=1 qn⟩ for chains ofN = 100 coupled units, each evolving in a spatially periodic

potential, driven with different driving frequencies as indicated in the plot. The corresponding equations of motion are described by Eq. (94). Ensemble
averages, denoted by ⟨··⟩ were performed over 100 realisations of the initial conditions: Initially the coordinates of each unit are uniformly distributed
within the interval |qn(0) − q̃0| < ∆q with an average q̃0 = −0.35 and width ∆q = 0.01 and zero momenta, i.e. pn(0) = p̃0 = ∆p = 0. The coupling
strength is κ = 0.3 and the periodic external driving strength and phase are F = 0.05 and Θ0 = 0, respectively.
Source: Figure adapted from Ref. [141].

is provided by collective motion which is also reflected in the temporal behaviour of the mean value of the coordinate
⟨q⟩ = ⟨

1
N

N
n=1 qn⟩ shown in Fig. 35. Ensemble averages, denoted by ⟨··⟩were performed over 100 realisations of trajectories

whose initial condition lie in the range given in the caption of Fig. 34. Note that while for driving with Ω . 10−2 on average
no directed motion results for sufficiently slow modulations (here illustrated for Ω = 10−3) a large directed current is
observed. Conclusively, concerning transport, the many unit system exhibits features equivalent to that observed in the
system of individual units [143].

In fact, our findings imply that in the driven N-unit system the motion takes place in ballistic channels [126] associated
with stickiness toN-dimensional invariant tori. Notably, in theN-unit system themean value ⟨q⟩ evolves in the samemanner
as the single coordinate in the individual unit counterpart, viz. it exhibits effective growth. Thus, the collective directed
motion of the numerous microscopic degrees of freedom is manifested at a collective level in the evolution of the mean
value of q.

4. Summary and outlook

This review has considered systems of coupled oscillatory units, both in the absence and presence of time-dependent
forcing and/or environmental noise sources. The main focus was on the objective of dynamics driven escape events and in
the case of non-confining potential landscapes on the possibility of undergoing an escape driven directed transport. By use of
both analytical and numerical means, themain goal has been to develop a thorough understanding of the coupled nonlinear
dynamics in such systems. Of particular interestwere the conditions underwhich collective escape and/or directed transport
may emerge. Sometimes this is a trivial artefact of the initial conditions, including the choice of suitable parameter regimes.
Given the case, for example, that there is insufficient energy available for the particles to overcome the potential barriers,
would then imply a vanishing transport and consequently no emerging directed current. It may also be the case that there
is sufficient energy available, but the coupling between the particles is rather weak so that the initial direction of motion
may be maintained, yielding a non-zero current. However, quite often it is the case that escape and subsequent directed
transport can only emerge within a synergy where the particles work together. That is, cooperative effects become then
prominent in yielding possible escape and/or finite transport.

A key point that has been evident throughout this review is that the constructive cooperation between the particles
allows for novel escape mechanisms and transport scenarios that are absent in the case of a single particle dynamics.
Consider three examples; a first one elaborated in Section 2.1.1, a second one from Section 3.2, and yet another from
Section 3.3. In Section 2.1.1, we elucidated the case of a noise-free, i.e. a purely deterministic scenario, as well as a thermally
activated, noise-assisted escape process of a chain of coupled units out of a metastable potential well. Strikingly, in the
noise-free situation the chain is not only able to generate a critical elongation in a very efficient self-organised manner,
thereby successfully surpassing the potentials local maximum, but generally can also outperform its thermally activated
counterpart by achieving (especially for smaller energies) a considerably enhanced escape. In the deterministic (noise-free)
case, a substantial cooperation between the units expedites the formation of the critical configuration, viz. the transition
state, whereas thermal noisemay impinge on such cooperativity. In Section 3.2 it was observed that a resting particle is able
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to escape from its initial confining well and undergo directed transport, after a transient period of chaotic energy exchange
with a second particle. If the particles were uncoupled, this initially dwelling particle would remain trapped indefinitely as
this system obtains no assistance from external perturbations. Therefore, it is exclusively cooperation between the particles
that allows the initially resting particle to become transporting. Conversely, the process of a permanent bond formation
(dimerisation) may result, as a consequence of the coupling, yielding no net transport. In view of a potential for beneficial
applications, this process may be seen as a filter, capturing/blocking a particle by impeding its movement. As a second
example, let us turn to Section 3.3.1. For the particular model considered there, if the subsystems are uncoupled, then the
dynamics is chaotic with the individual particles exploring strange attractor dynamics. However, when the particles are
coupled, it is possible that themotion can become regular and periodic, cf. Fig. 31. Therefore, working synergetically together
the particles can suppress the effects of chaos. This effect of suppression of chaos has been observed in [140], where the
systems only positive Lyapunov exponent (in the uncoupled limit) decreased almost to zero as a result of coupling between
the particles.

This review also examined twodifferent coupling regimes. In Section 3.2 the couplingwas short-range in nature, allowing
for the effective decoupling of the particles (through increasing distance between the particles). In contrast, the coupling
used in Section 3.2 was such that the particles remain coupled even when the distance between them is large. It is worth
(briefly) discussing the differences between these regimes.

The conservative Hamiltonian systems of Section 3.2 were endowed with an initial small energy. Using a long range
coupling regime in this casewould preclude the unbounded directedmotion of a single particle, as the energywould quickly
become usurped by the interaction potential. Thus,many of the transport scenarios discussed in Section 3.2would not occur.
Therefore, it is preferable to work with a short range coupling in this case.

For the time-dependent driven and damped systems of Section 3.3 the external driving force can cause the rapid
separation of the particles. For short-range couplings this results in effectively decoupling the particle dynamics after short
periods of time, even for relatively strong coupling strengths. The dynamics in this case are not of potential use. This,
however, no longer holds true for long-range coupling where the dynamics have proven to be beneficial.

While the second part of this review looked mainly at systems of two coupled oscillators, it is certainly worthwhile to
extend these results to similar systems with an arbitrary number of degrees-of-freedom. One of the challenges is to develop
(reduction) tools, alternative to themethod of Poincarémaps, withwhich the underlying geometrical phase space structures
such as invariant hypertori in higher-dimensional phase-spaces can be visualised appropriately. However, this task becomes
hopeless rather quickly with increasing particle number N (or, more generally increasing number of degrees-of-freedom).
This feature is a consequence of the Froschlé conjecture [149]. Therefore, it is appropriate to have a gradual approach to
dimensional increase (as suggested by [150] for the problem of chaotic scattering in higher dimensional systems). Work in
this direction has already been carried out; see, for example, in Ref. [151]. Those authors used a technique known as colour
and rotation, where 3D projections of a 4D space are produced and the fourth dimension is represented by colour. While this
approach does provide useful information, it is not applicable to large dimensional systems.

Furthermore, the transition from regular to chaotic motion in higher-dimensional phase-spaces, assisted by unstable
periodic orbits needs to be investigated. That is, in order to gain insight into the transition from stability to complex
instability the structure of invariant manifolds associated with unstable periodic orbits needs to be explored. In particular
with regard to the emergence of transport scenarios in higher-dimensional phase-spaces, the question of whether the
phenomenon of stickiness of chaotic orbits to the vicinity of periodic orbits is exhibited by higher-dimensional dynamical
systems is of interest. Moreover, diffusive features in higher dimensional systems entailed by motion along unstable
invariant manifolds, corresponding to unstable periodic orbits with distinct magnitudes of eigenvalues of the linearised
systems merit to be addressed. A question of interest is whether multiple channels supporting diffusive behaviour coexist,
or whether there emerges a single dominant channel that prevails.

Further, it is worth considering the stochastic counterpart of the systems considered in the second part of this review. The
introduction of noise to a system affects the dynamics in numerous ways, depending on the type of noise and its strength.
With regard to solutions of a system, particularly periodic solutions, noise can be added to test the solutions stability.
However, of interest is the study of how trajectories that are close to a separatrix, which separates bounded fromunbounded
motion, behave. For example, can those trajectories that are in bounded regions of phase-space (or at a localisation/de-
localisation transition in parameter space) be subsequently kicked, under the influence of noise, into unbounded regions of
phase-space? Conversely, for those trajectories in unbounded regions of phase-space, is noise enhanced trapping [152] a
feature of the stochastic system?

Last but not least, our review here has been restricted to an interacting classical nonlinear dynamics. The inclusion of
quantum effects are much more demanding, both analytically and numerically. On the other hand, the phenomenon of
quantum tunnelling and chaos assisted tunnelling does reveal new routes for escape that are not classically available. This
may well enrich the characteristics for escape and directed and driven quantum transport [153]. In this spirit there remains
plentiful space and time for exciting future developments.
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