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Consider anomalous energy spread in solid phases, i.e., hΔx2ðtÞiE ≡ R ðx − hxiEÞ2ρEðx; tÞdx ∝ tβ, as
induced by a small initial excess energy perturbation distribution ρEðx; t ¼ 0Þ away from equilibrium. The
second derivative of this variance of the nonequilibrium excess energy distribution is shown to rigorously
obey the intriguing relation d2hΔx2ðtÞiE=dt2 ¼ 2CJJðtÞ=ðkBT2cÞ, where CJJðtÞ equals the thermal
equilibrium total heat flux autocorrelation function and c is the specific volumetric heat capacity. Its
integral assumes a time-local Helfand-like relation. Given that the averaged nonequilibrium heat flux is
governed by an anomalous heat conductivity, the energy diffusion scaling determines a corresponding
anomalous thermal conductivity scaling behavior.
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Fourier’s law of heat conduction states the relation
between local heat flux and local temperature. In one
dimension it assumes the familiar form jðx; tÞ ¼
−κ∂xTðx; tÞ, where jðx; tÞ is the local heat flux density,
Tðx; tÞ denotes the local equilibrium temperature, and κ is
the (normal) thermal conductivity. Upon combining it with
the local energy conservation law ∂tεðx; tÞ þ ∂xjðx; tÞ ¼ 0
and a local energy distribution relation εðx; tÞ ¼ cTðx; tÞ,
we arrive at the heat equation describing the normal spread
of energy, reading ∂tεðx; tÞ ¼ DE∂2

xεðx; tÞ, wherein c
denotes the specific volumetric heat capacity and DE ¼
κ=c is the thermal diffusivity [1].
Although Fourier’s law is obeyed ubiquitously in every-

day experimental measurements for three-dimensional
(3D) bulk materials possessing an inherent anharmonicity,
it nevertheless remains an empirical law lacking a funda-
mental proof [2–5]. An open issue is its validity in the
presence of spatial constraints caused by dimensionality.
Indeed, a long-standing, mainly theoretical debate over the
past two decades indicates that the Fourier law may fail in
one- and two-dimensional momentum-conserving systems,
thus giving rise to anomalous heat transport [4–8]. In such
systems, given a temperature bias ΔT across a sample of
length L, the nonequilibrium average heat flux typically
scales not inversely with L, but instead obeys a length-
dependent scaling relation, i.e.,

J ¼ σðLÞΔT ≡ κðLÞΔT
L

: (1)

Here, σðLÞ denotes the heat conductance. Commonly, one
then formally introduces κðLÞ≡ σðLÞL as an effective heat

conductivity, which exhibits an anomalous length depend-
ence [4,5]. Therefore, a strictly intensive material specific
property such as heat conductivity generally does not exist,
practically, at least, not on a finite length scale. A power-
law divergence κðLÞ ∼ Lα (α ≠ 0) is typically observed for
momentum-conserving 1D systems, while for 2D systems
κðLÞ ∼ log L [4,5]. It should be kept in mind, however, that
such an effective thermal conductivity κðLÞ then generally
does not relate to the local heat flux density in terms of a
local temperature gradient; consequently, Fourier’s law in
its usual form no longer holds.
This intriguing length-dependent behavior has not only

inspired a vivid theoretical activity [9–18] but also several
intriguing recent experimental investigations [19–21] on
low-dimensional materials such as polyethylene chains,
single-walled carbon nanotubes, and, more generally, low-
dimensional molecular chains. In all of these theoretical
and experimental studies, an anomalous length dependence
for κðLÞ is clearly observed over extended length ranges.
Here, our main objective is how such a length-dependent
thermal conductivity behavior can be uniquely related to
inherent, anomalous diffusive energy spread in solid
phases.
Because Fourier’s law is connected to normal energy

diffusion (see above), this violation of Fourier’s law has
been studied as well from the viewpoint of unbounded
anomalous particle diffusion xpðtÞ in 1D billiard models
[22–25], obeying hx2pðtÞi ∝ tβ, β ≠ 1. There, noninteract-
ing particles diffuse and transport (kinetic) energy anoma-
lously. A scaling relation α ¼ β − 1 was predicted for the
billiard models following a Lévy walk dynamic [25,26].
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Notably, such a relation was verified by several numerical
investigations on energy diffusion in 1D lattice systems
[27–31].
Explicit analytical studies are, however, available for

noninteracting Lévy walk models only [25,26]. Therefore,
the result α ¼ β − 1 is still restricted to cases with non-
confined particle diffusion rather than with energy diffusion
in solid phases. With the particles executing small displace-
ments about fixed lattice sites, the energy transport in solids
thus proceeds distinctly different from unconfined particle
motion. In other words, the definition of a mean square
deviation (MSD) of energy, i.e., hΔx2ðtÞiE ¼ hx2ðtÞiE−
hxi2E, along space x has no direct meaning from an
unconfined, diffusing particle dynamics viewpoint. As a
consequence, although those previous efforts aimed at
bridging energy diffusion and heat conduction from the
viewpoint of particle diffusion are inspiring, the general
scheme of nonequilibrium energy diffusion still remains an
open issue.
Here, we study the general features of energy diffusion

using linear response theory. We derive the evolution of the
nonequilibrium excess energy density profile during energy
diffusion processes [27,28,30,31]. Based on this, we derive
a dynamical equality that relates the acceleration of non-
equilibrium energy spread hΔx2ðtÞiE to the equilibrium
autocorrelation function of total heat flux CJJðtÞ. This
relation thus provides a sound and useful concept to
investigate nonequilibrium, generally anomalous heat
diffusion.
Local excess energy distribution.—In the following,

we limit the study of energy diffusion to isolated 1D
systems with no energy and particle exchange with heat
baths. The generalization to higher-dimensional cases is
straightforward.
Typically, the diffusion of energy refers to a relaxation

process in which an initially nonequilibrium energy
distribution evolves towards equilibrium, just as the relax-
ation of particle distribution in normal diffusion. We term
this nonequilibrium distribution the excess energy distribu-
tion, which is proportional to the deviation [27–31]
δhhðx; tÞineq ≡ hhðx; tÞineq − hhðxÞieq, where h·ineq denotes
the expectation value in the nonequilibrium diffusion
process, h·ieq denotes the equilibrium average, and hðx; tÞ
denotes the local Hamiltonian density. An illustration of this
relaxation process is depicted in Figs. 1(a) and 1(b) for the
relaxation of an arbitrarily chosen initial excess energy
distribution along a Fermi-Pasta-Ulam (FPU) chain [32,33].
Note that, for isolated, energy-conserving systems, this

total excess energy, δE ¼ R
δhhðx; tÞineqdx, remains con-

served [35]. Therefore, the normalized fraction of excess
energy at a certain position x at time t reads

ρEðx; tÞ ¼
δhhðx; tÞineq

δE
¼ δhhðx; tÞineqR

δhhðx; 0Þineqdx
: (2)

This quantity formally presents the analog of a probability
density for particle diffusion. In distinct contrast, however,
being a reference density, it can take on negative values,
cf. Fig. 1(a). Although not being a manifest probability
density, it nevertheless remains normalized during time
evolution, i.e.,

R
ρEðx; tÞdx ¼ 1. The MSD for energy

diffusion thus reads

hΔx2ðtÞiE ≡
Z
ðx − hxiEÞ2ρEðx; tÞdx ¼ hx2ðtÞiE − hxi2E:

(3)

Here, its first mean, hxiE ¼ R
xρEðx; tÞdx, remains constant

in time, cf. the Supplemental Material [35]. This MSD,
hΔx2ðtÞiE, can also assume transient negative values,
reflecting the fact that it is the variance hΔx2ðtÞiE for this
nonequilibrium excess energy distribution that spreads in
time t rather than the equilibrium average hðxðtÞ−
xðt0ÞÞ2ieq of the displacements of particle positions [1].
The first main objective is the evaluation of this very

excess energy distribution ρEðx; tÞ. In doing so, we use
(Kubo) linear response theory as put forward originally for
an ensemble of isolated systems [36–40]. We prepare at the
infinite past a nonequilibrium state fneq in terms of a
quenched canonical ensemble at temperature T,
fneq ∝ expð−βTHTÞ, with a total Hamiltonian HT ¼ Hþ
H0, where βT ¼ 1=ðkBTÞ, H ¼ R

hðxÞdx. Here, the part H0
accounts for the applied small perturbation to H by
substituting in HT the local Hamiltonian density by
hðxÞ → ½hðxÞ − ηðxÞhðxÞ�, ηðxÞ ≪ 1. This perturbation is
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FIG. 1 (color online). Numerical validation of the main result
in (9) for a FPU chain with a length N ¼ 401, specific heat c ¼
0.828 at a dimensionless temperature T ¼ 1 [33]. The red circles
and blue squares are the second derivative d2hΔx2ðtÞiE=dt2 as
obtained from the insets (a) and (b), respectively. The black solid
line depicts the result for the total heat flux autocorrelation CJJðtÞ,
i.e., the right-hand side of Eq. (9). Insets: (a) energy diffusion
along the FPU chain using the linear response result (6) with an
initial small Hamiltonian perturbation ηðxÞ that is composed of
two Gaussians of opposite weights; (b) nonequilibrium energy
diffusion as obtained from an initial near-equilibrium steady state.
For further details, see Ref. [35].
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then switched off suddenly at time t ¼ 0 [35]. This
so-quenched initial nonequilibrium state subsequently
undergoes an ergodic, isolated nonequlibrium dynamics
governed by the unperturbed Liouvillian containing hðxÞ
only, which relaxes in the long-time limit towards the
manifest equilibrium statistics with the canonical phase
space density feq ∝ expð−βTHÞ.
As detailed in the Supplemental Material [35], the

corresponding response function is given in terms of
the equilibrium spatiotemporal correlation of local
Hamiltonian density hðx; tÞ. The result explicitly reads

δhhðx; tÞineq ¼
1

kBT

Z
Chhðx; t; x0; 0Þηðx0Þdx0; (4)

where, for any two local quantities aðxÞ and bðxÞ,
we define Cabðx; t; x0; t0Þ≡ hΔaðx; tÞΔbðx0; t0Þieq, with
Δaðx;tÞ¼aðx;tÞ−haðxÞieq. Being in equilibrium, these
spatial-temporal correlations obey time-translational invari-
ance, i.e., Cabðx; tþ s; x0; t0 þ sÞ ¼ Cabðx; t; x0; t0Þ, for arbi-
trary s. For a homogeneous system, these equilibrium
correlations Cabðx; t; x0; t0Þ become spatially translation
invariant, yielding Cabðx − x0; t − t0Þ. Note that this require-
ment for homogeneity does not exclude disordered sit-
uations; tailored disordered systems are also homogeneous
as long as the disorder strength is uniform. Consequently,
the total excess energy δE ¼ R

δhhðx; 0Þineqdx can be
simplified to read

δE ¼
ZZ

dxdx0Chhðx − x0; 0Þ ηðx
0Þ

kBT
¼ cT

Z
ηðx0Þdx0; (5)

where c is the volumetric specific heat capacity andR
Chhðx; 0Þdx ¼ kBT2c has been used [35]. The normalized

excess energy distribution (2) then reads

ρEðx; tÞ ¼
1

N

Z
Chhðx − x0; tÞηðx0Þdx0; (6)

where N ¼ kBT2c
R
ηðxÞdx is the normalization constant.

For the nonequilibrium heat flow response, it was not
necessary to make use of the concept of a spatially
dependent temperature TðxÞ. Such a spatially dependent
temperature TðxÞ, if indeed it exists, would enter the result
via the initial preparation of the quenched, displaced
thermal equilibrium upon identifying the quasiforce
ηðxÞ≡ δTðxÞ=T ≪ 1. The energy distribution hðxÞ then
couples formally to the conjugate thermodynamic affinity
δTðxÞ=T, implying that βT ½1−δTðxÞ=T�hðxÞ¼ βTðxÞhðxÞ,
cf. Refs. [38–40]. Moreover, no time-dependent local
equilibrium temperature Tðx; tÞ enters the derivation
in Eq. (4).
Anomalous energy diffusion versus equilibrium heat flux

correlation.—The main result relating arbitrary ergodic
energy diffusion to the equilibrium heat flux autocorrela-
tion function can be obtained as follows. With the

conservation of local energy ∂thðx; tÞ þ ∂xjðx; tÞ ¼ 0,
we obtain [35]

∂2
t Chhðx; tÞ ¼ ∂2

xCjjðx; tÞ: (7)

Additionally, defining JL ¼ R L=2
−L=2 jðx; tÞdx to be the total

heat flux for a 1D system of length L, we have

CJJðtÞ≡ lim
L→∞

1

L
hJLðtÞJLð0Þieq ¼

Z
∞

−∞
Cjjðx; tÞdx; (8)

This autocorrelation function of total heat flux CJJ is the
central quantity that knowingly enters the Green-Kubo
formula for normal heat conductivity [36–41].
Upon combining Eqs. (3), (6), (7), and (8), we obtain the

central result for the MSD:

d2hΔx2ðtÞiE
dt2

¼ 1

N

ZZ
x2

∂2Chhðx − x0; tÞ
∂t2 ηðx0Þdxdx0

¼ 2CJJðtÞ
kBT2c

; (9)

where an integration by parts has been used twice. This central
equality constitutes an equation of motion for the MSD of
general energy diffusion. The corresponding initial condi-
tions are hΔx2ðt ¼ 0ÞiE ¼ ∬ x2Chhðx − x0; 0Þηðx0Þdxdx0=
N − ½∬ xChhðx − x0; 0Þηðx0Þdxdx0=N �2 and dhΔx2ðtÞiE=
dtjt¼0 ¼ 0. It is only the initial value for hΔx2ðtÞiE that
exhibits a dependence on the initially chosen energy pertur-
bation. The vanishing initial speed follows from the fact that,
for an inertial dynamics, Cjjðy; tÞ is an even function in time
t, being continuously differentiable at time t ¼ 0. Therefore,
any physically realistic energy diffusion process will start out
as a ballistic transport [42].
The numerical verification of the main finding in (9) is

depicted in Fig. 1 for the theoretical archetype model of
low-dimensional heat transfer, i.e., for a FPU chain, as
detailed in [35]. Inset 1(a) is obtained by evaluating
the linear response result (6) at dimensionless T ¼ 1 from
an initial small perturbation ηðxÞ with a positive and a
negative Gaussian weight. In inset 1(b), the full non-
equilibrium energy diffusion is simulated from an initial,
near-equilibrium steady state using a preparation with heat
baths of differing temperature. The energy diffusion pro-
ceeds after removing those heat baths. An ensemble of
4 × 108 realizations is used to obtain the depicted
nonequilibrium energy density distribution ρEðx; tÞ in
Fig. 1(b). The total heat flux autocorrelation function
CJJðtÞ is obtained in thermal equilibrium at a temperature
T ¼ 1 by averaging over an ensemble of 2 × 109 realiza-
tions. The specific heat, c ¼ 0.828, is calculated analyti-
cally according to its definition. Very good agreement
between theory and numerical experiments is obtained.
Let us recall the assumptions used in the derivation of

this intriguing result: For the application of linear response
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theory, the process is supposed to be sufficiently ergodic,
implying that no nonstationary (i.e., ageing) phenomena for
long-time correlations are at work, thus ensuring manifest
relaxation towards thermal equilibrium. This crucial ergo-
dicity assumption rules out all anomalous energy diffusion
processes that undergo ageing, as it occurs in many
continuous time random walk descriptions [43–47].
Those models, however, lack a microscopic Hamiltonian
basis. There exists, however, ergodic anomalous diffusion
dynamics stemming from a generalized Langevin equation
[47–54]. Likewise, microscopic Hamiltonian models
involving homogeneous disordered lattices exhibit subdif-
fusive heat conductivity [55,56]. Our result (9) is robust
against changes in the initial energy profile; it only affects
the initial value of hΔx2ðtÞiE. The main finding is
restricted, however, to near-equilibrium situations; matters
may change drastically with perturbations of the system
taken far away into nonequilibrium.
Relation to the Helfand scenario.—Inspired by the

Green-Kubo relation [36,41] for normal transport,
Helfand showed that the average over the canonical initial
thermal equilibrium of all phase space coordinates of
the squared displacement of the appropriate “Helfand
moment,” i.e., GLðtÞ ¼

R L=2
−L=2 x½hðx; tÞ − hhðxÞieq�dx,

obeys h½GLðtÞ −GLð0Þ�2ieq=L ¼ 2
R
t
0ðt − uÞCJJðuÞdu

[1,57,58]. Therefore, taking the second time derivative, it
follows with L → ∞ that

lim
L→∞

d2

dt2
h½GLðtÞ −GLð0Þ�2ieq

L
≡ d2hΔG2ðtÞieq

dt2
¼ 2CJJðtÞ.

(10)

Here, the initial conditions are hΔG2ðt ¼ 0Þieq ¼ 0 and
dhΔG2ðtÞieq=dtjt¼0

¼ 0. Consequently, the scaled equilib-
rium average of the squared displacement of the Helfand
moment, i.e., hΔG2ðtÞieq=kBT2c, differs from hΔx2ðtÞiE by
a constant shift, as determined by the initially chosen
excess energy profile. In the absence of the main relation
in (9), the mere result in (10) (with dimension
[lengthðenergyÞ2]) alone cannot provide the result for the
spread hΔx2ðtÞiE of (anomalous) nonequilibrium energy
diffusion. Observing the stated initial conditions, we next
integrate (9) to yield the corollary

dhΔx2ðtÞiE
dt

¼
Z

t

0

2CJJðt0Þ
kBT2c

dt0 ¼ 1

kBT2c

dhΔG2ðtÞieq
dt

:

(11)

This finding can be interpreted as a time-local Helfand-like
relation. This is true because, in contrast to the ordinary
Helfand relation for normal heat conductivity, i.e.,
κnormal ¼ hΔG2ðtÞieq=ð2tkBT2Þ, no explicit time derivative
enters [1,57,58]. In other words, Eq. (11) involves the time-
local quantity dhΔx2ðtÞiE=dt [or dhΔG2ðtÞieq=dt] rather
than a finite-time version hΔx2ðtÞiE=t [or hΔG2ðtÞieq=t].

This intriguing corollary (11) assumes an appealing form to
establish the relationship between anomalous energy dif-
fusion scaling and a generally anomalous scaling for the
thermal conductivity κðLÞ obeying J ∼ κðLÞΔT=L.
Normal energy diffusion.—For normal energy diffusion

the MSD increases asymptotically linearly in time; i.e.,
limt→∞hΔx2ðtÞiE=t ¼ 2DE. DE is termed the thermal
diffusivity. With time t → ∞ in (11), we find

κnormal ¼
Z

∞

0

CJJðtÞ
kBT2

dt ¼ c
2
lim
t→∞

dhΔx2ðtÞiE
dt

¼ cDE: (12)

This is just the familiar Green-Kubo expression for normal
heat conduction [1,36–41]. Arriving at this Green-Kubo
relation, it is important to recall that, in all those cited
derivations, one implicitly or explicitly uses the validity of
Fourier’s law, together with local thermal equilibrium,
i.e., a transport behavior for steady-state heat flux
jðxÞ ¼ −κ∇TðxÞ. For a small thermal bias ΔT, the spa-
tially constant gradient scales as ∇TðxÞ ¼ ΔT=L. This in
turn implies a length scaling for normal heat conductivity,
κðLÞ ¼ κLα¼0 ≡ κnormal, which is independent of system
size. Normal heat diffusion being proportional to time t
thus implies, with β ¼ 1, the self-consistent scaling rela-
tion α ¼ β − 1 ¼ 0.
Superdiffusive energy diffusion.—With ergodic super-

diffusive energy diffusion obeying hΔx2ðtÞiE ∼ tβ,
1 < β ≤ 2, the time-local Helfand relation (11) possesses
no long-time limit and the integral of CJJ diverges as well.
Therefore, no finite superdiffusive heat conductivity exists.
The typical way out in practice [4,5,59,60], however, is to
consider a finite system of length L and formally introduce
an upper cutoff signal time ts for heat transfer across the
sample. In terms of a characteristic scale for the speed vs of
phonon transport, one sets ts ∼ L=vs; vs is commonly
approximated by the speed of sound, which is renormalized
for nonlinearity [29]. By adopting this reasoning, the use of
the time-local Helfand relation (11) then implies an
asymptotic behavior:

κsuperL ∼
1

kBT2

Z
L=vs

0

CJJðtÞdt ¼
c
2

dhΔx2ðtÞiE
dt

����
t∼L=vs

: (13)

This finite-time Green-Kubo relation implies for the length-
dependent superdiffusive heat conductivity κsuperL ∼ Lα the
scaling relation

α ¼ β − 1: (14)

This result corroborates the relation derived for a specific
case of a billiard model where the particles undergo an
a priori assumed Lévy walk process [25,26].
Subdiffusive energy diffusion.—Let us next consider an

ergodic energy subdiffusion with hΔx2ðtÞiE ∼ tβ,
0 < β < 1. From the main relation in (9), it follows that

PRL 112, 040601 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

31 JANUARY 2014

040601-4



the total heat flux correlation CJJðtÞ ∼ βðβ − 1Þtβ−2. With
the relation for the exponent, i.e., δ ¼ β − 2 < −1, we find
that CJJðtÞ remains integrable over the total time ½0;∞Þ.
The time-local Helfand formula in (11) is thus applicable
for t → ∞, yielding

κsub ¼ lim
t→∞

c
2

dhΔx2ðtÞiE
dt

∼ lim
t→∞

tβ−1 ¼ 0; (15)

which indicates a perfect thermal insulator. How does this
vanishing of subdiffusive heat conductivity occur with
increasing size L? If we likewise may impose in (11) a
finite cutoff time scale ts ∝ L, we find that ergodic heat
subdiffusion occurs with κsub ∼ Lα, −1 < α ¼ β − 1 < 0.
Conclusion.—In this work we studied anomalous heat

diffusion in the absence of ergodicity breaking. The main
finding in (9) relates dynamically the acceleration of the
nonequilibrium energy MSD directly to the equilibrium
autocorrelation CJJðtÞ of the total heat flux. Equivalently,
this result assumes the form of a time-local Helfand relation
as specified with (11). Given the premise that anomalous
stationary heat flux follows a behavior in terms of an
anomalous heat conductivity, i.e., κðLÞ ∼ Lα, then implies
the scaling α ¼ β − 1. Because (9) applies for all times t, it
can be invoked as well for those intermediate cases where
an anomalous, length-dependent heat conductivity occurs
over a finite size [10–18].
The similarity between the global Helfand moment

scenario used for normal diffusion in Ref. [1] with the
time-local result in (11) suggests analogous relations as in
(9) to hold for other anomalous diffusion processes.
Particularly, what comes to mind is unbiased, anomalous
particle diffusion xpðtÞ. Unlike for energy diffusion in solid
phases, the position increments, i.e., ½xpðtÞ − xpðsÞ� ¼R
t
s x

:
pðt0Þdt0, are now given in terms of the particle velocity

x
:
pðtÞ. Indeed, with ergodic anomalous diffusion obtained
from an equilibrium generalized Langevin equation
dynamic [47,50–54], with x

:
p ¼ vðtÞ and hvðtÞieq ¼ 0,

mhv2ðtÞieq ¼ kBT, it readily follows that (9) implies
d2hx2pðtÞi=dt2 ¼ 2hvðtÞvð0Þieq for all times t [61].
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In this supplementary material we detail in a more explicit manner our theoretical and numerical analysis used in deriving our
main results and provide additional insight as needed in ourstudy.

SYSTEM UNDER STUDY AND DEFINITIONS

In the following we assume that no particle and charge exchanges assist the energy transport. We thus consider a 1D system
given by the Hamiltonian:

H =
∑

n

Hn(X), (1)

whereX denotes the complete set of canonical phase space coordinates({qi}, {pi}) describing the microscopic system dy-
namics.H(X) is composed as a sum of the corresponding discrete, local Hamiltonian of then’th particle dynamics with the
interaction between neighboring particles being short ranged. In a space-continuous description this total Hamiltonian then
assumes the form as an integral over a local energy densityh(x); i.e.,

H =

∫

h(x)dx, h(x) =
∑

n

Hnδ(x − qn). (2)

Given this local energy density the corresponding local energy current obeys the condition of local energy conservation,

∂th(x) + ∂xj(x) = 0 , (3)

or its discrete correspondence. A more detailed discussionand the specific definitions in terms of the system parametersand
interaction potentials can be found in the comprehensive two reviews [1, 2].

EVOLUTION OF THE EXCESS ENERGY DISTRIBUTION

Next, we derive the time-evolution of the excess energy distribution, using the discrete version. The corresponding result for
the space-continuous version follows in a straightforwardmanner.

In thermal equilibrium characterized by the temperatureT the probability for the phase space coordinates obeys with inverse
temperatureβT = 1/(kBT ) the canonical form

feq =
1

Z
e−βTH with Z =

∫

e−βTHdΓ , (4)

wheredΓ = dq1 · · · dp1 · · · . For a prepared nonequilibrium initial phase space probability the time evolution is governed by the
Liouville equation,

∂

∂t
f(t) = Lf = {H, f} , (5)

where{A,B} denotes the Poisson bracket

{A,B} =
∑

i

(

∂A

∂qi

∂B

∂pi
−

∂A

∂pi

∂B

∂qi

)

. (6)



2

Next we introduce a small perturbationH ′ of the Hamiltonian, reading:

H ′ = −
∑

n

ηnHn . (7)

Physically this means that we prepare a nonequilibrium probability, i.e., fneq(t = 0), by suddenly switching off att = 0 the
quenched HamiltonianHT = H + H ′, which is assumed to have acted since infinite past. Put differently, the initial-value
problem we solve has an initial probability prepared in sucha displaced, frozen-equilibrium ensemble probability, whose future
time evolutionfneq(t), t > 0 is governed by the unperturbed LiouvillianL. It thus reads

fneq(t = 0) =
1

Z ′
e−βT (H+H′) with Z ′ =

∫

e−βT (H+H′)dΓ . (8)

Using thatH ′ is small, we can expandZ ′ to linear order, yielding

Z ′ =

∫

e−βTH(1 − βTH
′)dΓ = Z

(

1−
1

Z

∫

e−βTHβTH
′dΓ

)

= Z(1− βT 〈H ′〉eq). (9)

As time evolves this nonequilibrium probability fort > 0 assumes the formal solution

fneq(t) = etLfneq(t = 0) =
1

Z ′
etLe−βTH′

e−βTH

≈
1

Z
(1 + βT 〈H ′〉eq)e

tL(1 − βTH
′)e−βTH ≈ etL(1 − βT∆H ′)feq

= feq − βT e
tL∆H ′feq,

(10)

where for any quantityA, we define∆A = A− 〈A〉eq. The expectation value then forHn({qi}, {pi}) reads

〈Hn(t)〉neq =

∫

Hnfneq(t)dΓ = 〈Hn〉eq − βT

∫

Hne
tL∆H ′feqdΓ. (11)

The linear response in Eq. (11) can thus be cast in terms of a stationary equilibrium correlation function of energy-energy
fluctuations, reading

δ〈Hn(t)〉neq = 〈Hn(t)〉neq − 〈Hn(t)〉eq = −βT 〈Hn(t)∆H ′(0)〉eq . (12)

Using the result in (7) we obtain

∆〈Hn(t)〉neq =
∑

i

ηi
kBT

〈∆Hn(t)∆Hi(0)〉eq . (13)

Similarly, the spatial-continuous version is analogouslygiven by the initial nonequilibrium probability density

fneq(t = 0) =
1

Z ′
e−βT

∫
[1−η(x)]h(x)dx, (14)

yielding for time evolution of the excess energy density:

δ〈h(x, t)〉neq =
1

kBT

∫

η(x′) 〈∆h(x, t)∆h(x′, 0)〉eq dx
′. (15)

Equation (13) remains valid as well for the system formally connected to to generalized Langevin heat baths, see in [3, 4]. In
such a case, the Liouville equation should be replaced by a corresponding, typically non-Markovian, generalized master equation
operator which determines the evolution of phase space density. Therefore, the derivation are the same by replacing theLiouville
operatorL with a generalized master operator; i.e.,L → LGME [5].

HEAT CAPACITY AND HEAT-FLUX AUTOCORRELATION FUNCTION

In this section, we first demonstrate the relation

lim
L→∞

∫ L/2

−L/2

Chh(x, 0)dx = kBT
2c , (16)
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wherec denotes the specific volumetric heat capacity. Consider first a continuous finite system with lengthL in thermal equilib-
rium. Then the total system energy

EL =

∫ L/2

−L/2

h(x, t)dx, (17)

fluctuates in time. From a thermal equilibrium statistics, the variance of this energy fluctuation obeys

〈∆EL∆EL〉eq = kBT
2C = kBT

2cL , (18)

whereC = cL is the total heat capacity for the system of sizeL.
For the spatial correlation of the equilibrium energy density ∆h(x, t) we find for (18) with temporal invariance and observing

the fact that this equilibrium correlation is a symmetric function of its arguments(x, x′), i.e.,Chh(x, 0;x′, 0) = Chh(x
′, 0;x, 0),

thus allowing the restriction of integration to the domainx′ > x by doubling the integral:

∫ L/2

−L/2

dx

∫ L/2

−L/2

dx′ 〈∆h(x, t)∆h(x′, t)〉eq =

∫ L/2

−L/2

dx

∫ L/2

−L/2

dx′Chh(x, 0;x
′, 0) = 2

∫ L/2

−L/2

dx

∫ L/2

x

dx′Chh(x, 0;x
′, 0).

(19)
We now introduce the difference variabley = x′ − x and use with spatial homogeneity thatChh(y, t) = Chh(−y, t), followed
by a change of order of integration, yielding

2

∫ L/2

−L/2

dx

∫ L/2

x

dx′ Chh(x, 0;x
′, 0) = 2

∫ L/2

−L/2

dx

∫ L/2−x

0

dy Chh(x, 0;x+ y, 0)

= 2

∫ L/2

−L/2

dx

∫ L/2−x

0

dy Chh(y, 0)

= 2

∫ L

0

dy Chh(y, 0)

∫ L/2−y

−L/2

dx

= 2L

∫ L

0

dy Chh(y, 0)
(

1−
y

L

)

.

(20)

For finite timet the integral
∫∞

0
Chh(y, t)dy must exist. The reasoning goes as follows. Because the spatial-temporal correlation

functionChh(x, t) results as the response to a sharp perturbation at positionx′ = 0 at t = 0, as shown with (15) by considering
formally the perturbationη(x′) = δ(x′). In physical realistic materials, it always requires finitetime to reach the cause at
positionx due to an applied initial perturbation atx = 0; i.e. there is always only a finite speedvs available for information
transfer. In our case, this finite speed for information transfer is characterized by the sound speedvs. Thus,Chh(x, t) vanishes
outside of the causal “sound cone”, given by|x| > vst. This consequently implies the convergence of

∫∞

0
Chh(y, 0)dy. It then

follows that for arbitrary finitet

lim
L→∞

∫ L

0

dy
y

L
Chh(y, t) = 0. (21)

Noting that2
∫∞

0 dy Chh(y, 0) =
∫∞

−∞
dy Chh(y, 0) and the division in (18) byL we find in this limit of large system sizeL

∫ ∞

−∞

Chh(x, 0)dx = lim
L→∞

1

L
〈∆EL∆EL〉eq = kBT

2c . (22)

This shows the validity of the relation in (16). At best it is only at critical points with diverging specific volumetric heat capacity
c that

∫∞

0
Chh(y, 0)dy may not converge.

Using the changeh(x, t) → j(x, t) (the energy current density) andEL → JL (the the total heat flux), the same way of
reasoning then yields the result that

CJJ (t) = lim
L→∞

1

L
〈JL(t)JL(0)〉eq =

∫ ∞

−∞

Cjj(x, t)dx . (23)
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RELATION BETWEEN ENERGY DENSITY CORRELATION AND HEAT FLUX DENSITY CORRELATION

Let us show that

∂2Chh(x, t)

∂t2
=

∂2Cjj(x, t)

∂x2
. (24)

Using local conservation of energy current we multiply Eq. (3) by h(x′, t′) andj(x′, t′) respectively, and take the ensemble
averages:

∂t 〈h(x, t)h(x
′, t′)〉eq + ∂x〈j(x, t)h(x

′, t′)〉eq = 0, (25)

∂t′ 〈h(x
′, t′)j(x, t)〉eq + ∂x′〈j(x′, t′)j(x, t)〉eq = 0. (26)

In the second line, we interchanged(x, t) → (x′, t′).
By performing∂t′ to Eq. (25) and∂x to Eq. (26), we obtain

∂2

∂t∂t′
〈h(x, t)h(x′, t′)〉eq =

∂2

∂x∂x′
〈j(x, t)j(x′, t′)〉eq (27)

The time-translational invariance implies that〈h(x, t)h(x′, t′)〉eq = 〈h(x, t− t′)h(x′, 0)〉eq. Therefore

∂2

∂t∂t′
〈h(x, t)h(x′, t′)〉eq = −

∂2

∂t2
〈h(x, t)h(x′, t′)〉eq . (28)

For a spatially homogeneous system, this simplifies to yield〈j(x, t)j(x′, t′)〉eq = Cjj(x − x′, t− t′) so that

∂2

∂x∂x′
〈j(x, t)j(x′, t′)〉eq = −

∂2

∂x2
〈j(x, t)j(x′, t′)〉eq . (29)

Observing (28) and (29) we find the relation in (24).

CONSERVATION OF EXCESS ENERGY AND TIME INDEPENDENCE FOR MEAN OF ENERGY DIFFUSION

In this section, we show that for a homogeneous system, the total excess energy

δE(t) =

∫

δ〈h(x, t)〉neqdx =
1

kBT

∫∫

Chh(x− x′, t)η(x′)dx′dx, (30)

remains conserved. To show this, we take the time derivativetwice, which gives with integration by parts and together with Eq.
(24)

d2δE(t)

dt2
=

1

kBT

∫∫

∂2Chh(x− x′, t)

∂t2
η(x′)dx′dx =

1

kBT

∫∫

∂2Cjj(x− x′, t)

∂x2
η(x′)dx′dx = 0 . (31)

Thus, the first time derivative is a constant. On the other hand, att = 0, we obtain

dδE(0)

dt
=

1

kBT

∫∫

∂Chh(x− x′, t)

∂t

∣

∣

∣

∣

t=0

η(x′)dx′dx. (32)

Note that for any inertial dynamicsChh(x−x′, t) is an even function oft, being continuously differentiable att = 0. Therefore,
the rhs vanishes, yieldingdδE(t)/dt identically zero, implying thatδE(t) is conserved.

Using a similar reasoning it follows that the first moment of the excess energy〈x〉E =
∫

xρE(x, t)dx remains constant.

NUMERICAL DETAILS

Using dimensionless units [6] the Hamiltonian of the Fermi-Pasta-Ulam (FPU) lattice reads:

H =
∑

i

[

1

2
p2i +

1

2
(qi+1 − qi)

2 +
1

4
(qi+1 − qi)

4

]

. (33)
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FIG. 1: (Color online) The time evolution of the nonequilibrium energy density for a manifest near equilibrium energy diffusion dynamics.

Here, the setqi denotes the relative displacement with respect to the equilibrium positionia andpi denotes the momentum for
the i-th atom, wherea is the lattice constant which can be scaled to unity, i.e.,a = 1 [6]. We further use periodic boundary
conditions; i.e.,qN+1 = q1. The lattice length isL = Na with N = 401. The local energyHi(t) is then chosen as:

Hi(t) =
1

2
p2i +

1

2

[

V (qi − qi−1) + V (qi+1 − qi)
]

; V (x) =
1

2
x2 +

1

4
x4. (34)

For convenience, the atom indexes are chosen asi = −200, · · · , 200. In the simulation, the dimensionless time step size is set
to τ = 0.05.

To evaluate both,Chh(x, t) in linear response, Eq. (13), and the heat flux autocorrelation functionCJJ (t) in thermal equi-
librium, we first apply Langevin heat baths at temperatureT = 1 to all atoms. The velocity-Verlet algorithm is used. Doing so
does prepare the canonical equilibrium state. After all transients have died out, the heat baths are removed. Then a fourth order
symplectic SABA2C algorithm [8] is used to integrate the equations of motion and the corresponding correlation functions are
calculated. The final correlation function is based on an average over2 × 109 realizations. For our illustration in Fig. 1(a),
the excess energy distribution are based on Eq. (13), using an initial excess energy profileηi, being composed of two Gaussian
peaks, one with positive and one with negative weight; i.e. we set:

ηi = 10−3
[

exp

(

−
(i− 20)2

2× 122

)

− exp

(

−
(i+ 30)2

2× 82

)

]

. (35)

To simulate a full nonequilibrium energy diffusion, we firstprepare the system in a nonequilibrium steady state near a reference
temperatureT = 1. Specifically, we apply Langevin heat baths to all atoms withdifferent temperatures:

Ti =

{

1.2 for − 10 ≤ i ≤ 10;

1.0 otherwise.
(36)

We use velocity-Verlet algorithm and run for1 × 107 steps to reach the nonequilibrium steady state. Then all theheat baths
are removed and the energy profiles are calculated up to timet = 100 using the fourth order symplectic SABA2C algorithm.
An ensemble of4× 108 realizations are used to evaluate the time evolution of the nonequilibrium energy density〈Hi(t)〉neq as
depicted in Fig. (1). The normalized energy distributionρE(x, t) is calculated using

ρE(x = i, t) =
〈Hi(t)〉neq − 〈Hi〉eq

∑

i

[

〈Hi(t)〉neq − 〈Hi〉eq

] , (37)
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where the reference energy density〈Hi〉eq is set to the average energy density at reference temperatureT = 1, which equals
0.867, see in Eq. (40) below.

Finally, the MSD is calculated using Eq. (3) in the main article and the second time derivate is calculated using the formula

d2f(t)

dt2
=

f(t+∆t)− 2f(t) + f(t−∆t)

∆t2
(38)

with ∆t = 20h = 1.
The volumetric specific heatc is calculated analytically according to its definition

c =
d 〈Hi(T )〉eq

dT
, (39)

where〈Hi(T )〉eq is the average energy per particle at temperatureT , which can be calculated as [6]

〈Hi(T )〉eq = 〈ekinetic〉eq + 〈epotential〉eq =
1

2
T +

∫

V (x)e−V (x)/Tdx
∫

e−V (x)/Tdx
. (40)

ForT = 1, we obtain〈Hi(T )〉eq = 0.867 andc = 0.828.
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