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We propose an ac-driven quantum motor consisting of two different, interacting ultracold atoms placed

into a ring-shaped optical lattice and submerged in a pulsating magnetic field. While the first atom carries

a current, the second one serves as a quantum starter. For fixed zero-momentum initial conditions the

asymptotic carrier velocity converges to a unique nonzero value. We also demonstrate that this quantum

motor performs work against a constant load.

DOI: 10.1103/PhysRevLett.102.230601 PACS numbers: 05.60.�k, 37.10.Jk, 84.50.+d

Linear or rotational motion presents the basic working
principle powering all sorts of machines. For nearly two
centuries, since the invention of the first electrical motor
[1], the ever continuing miniaturization of devices has had
profound consequences for several branches of science,
industry, and everyday life. This process has already
passed the scale of micrometers [2] and has entered the
realm of the world of nanoscale [3]. Bioinspired devices
such as chemical or light driven synthetic molecular mo-
tors identify just one of those recent successes [4]. While
the operational description of such molecular motors
mainly rests on classical concepts, much less is known
for operational schemes that are fully quantum mechanical
in nature. An ideal resource for the latter possibility is the
dynamics of cold atoms that are positioned in optical
potentials [5].

With this work, we put forward a setup for a quantum
motor which consists of two species of interacting, distin-
guishable quantum particles that are loaded into a ring-
shaped optical potential. The blueprint for such an under-
lying ring-shaped one-dimensional optical lattice has been
proposed recently [6] and a first experimental realization
has been reported in [7]. Here, we employ this setup to
devise an engine which works as a genuine ac-driven
quantum motor.

ac-quantum motor.—Figure 1 outlines our device. The
ring-shaped optical potential, which results either from the
interference of a Laguerre-Gauss (LG) laser beam with a
plane wave [6] or, alternatively, of two collinear LG beams
with different frequencies [7], is capable of trapping two
interacting atoms. One of the atoms, termed ‘‘carrier,’’ c, is
driven by an external field, while the other atom, termed
‘‘starter,’’ s, interacts locally via elastic s-wave collisions
with the carrier but remains unaffected by the driving field
[8]. Two possible setups that come to mind are (i) a neutral
starter and an ionized carrier, a suitable driving field can be
implemented in a way typically done for electrons placed
in a conducting ring, i.e., by a time-dependent magnetic
flux threading the lattice [9], and (ii) a spinless starter and a
carrier atom with a nonzero spin which is driven by a time-

dependent cone-shaped magnetic field of an Ioffe-
Pritchard trap [6,10].
We next assume that both atoms are loaded into the

lowest energy band of a deep, ring-shaped optical potential
with L lattice sites and the lattice constant d. The time-

dependent homogeneous vector potential ~AðtÞ does not
induce any appreciable transitions between the ground
band and the excited band(s).
The ac-driven, total Hamiltonian Htot of the motor,

Htot ¼ HcðtÞ þHs þHint; (1)

is composed of the time-dependent Hamiltonian HcðtÞ for
the carrier

HcðtÞ ¼ � Jc
2

�XL
lc¼1

ei
~AðtÞjlc þ 1ihlcj þ H:c:

�
� 1s; (2)

and for the starter Hs, respectively, i.e.,

Hs ¼ � Js
2

�XL
ls¼1

jls þ 1ihlsj þ H:c:

�
� 1c: (3)

Here, Jc and Js are the corresponding hopping strengths
which are functions of the atom masses and the optical
potential depth [11]. The salient carrier-starter (on-site)
interaction reads

Hint ¼ W
XL

lc;ls¼1

�lc;ls jlcihlcj � jlsihlsj; (4)

FIG. 1 (color online). Atomic quantum motor: Two different
ultracold atoms are loaded into a ring-shaped optical lattice.
Both atoms interact locally with each other, while only one
carrier (the one with an arrow) is magnetically powered.
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where W denotes the interaction strength. Throughout the
remaining we use periodic boundary conditions; i.e.,
jLþ 1i ¼ j1i. The full system Hilbert space is spanned
by the direct products of single particle Wannier states
jlci � jlsi, with the dimension being N ¼ L2. The scale
of the motor current will be measured in units of the
maximal group velocity �0 ¼ Jcd=@.

The driving of the ac-atomic quantum motor is switched
on at the time instant t0, so that the vector potential
assumes the form

~AðtÞ ¼ �ðt� t0ÞAðtÞ; (5)

where �ðt� t0Þ is the step function and AðtÞ is defined on
the entire time axis, t 2 ð�1;þ1Þ.

dc-quantum current.—The mean carrier current is given
as the speed of the motor by using the velocity operator:
�̂cðtÞ ¼ i=@½HtotðtÞ; x̂c�. With x̂c ¼

P
llcjlcihlcj, one finds

�̂cðtÞ ¼ �ið�0=2Þð
P

L
lc¼1 e

iAðtÞjlc þ 1ihlcj � H:c:Þ � 1s. In

the quasimomentum representation with j�i ¼P
L
n¼1 expði�nÞjni, its quantum expectation �cðt; t0Þ ¼

hc ðtÞj�̂cðtÞjc ðtÞi reads

�cðt; t0Þ ¼ �0

XL
lc¼1

��lc
ðt; t0Þ sin½�lc þ ~AðtÞ�; (6)

wherein �lc ¼ 2�lc=L is the single particle quasimomen-

tum and where we indicated its parametric dependence
on the start time t0. Further, ��lc

ðt; t0Þ ¼
P

ls
jhc ðtÞj�lsi �

j�lcij2, with �ls ¼ 2�ls=L, is the quasimomentum distri-

bution for the carrier.
The steady state regime of the motor can be character-

ized by the dc component of the averaged velocity

�cðt0Þ :¼ lim
t!1

1

t

Z t

0
�cðt0; t0Þdt0: (7)

In the absence of the interaction between the particles,
i.e., W ¼ 0, and an initial preparation with localized car-
riers that start out with zero velocity the motor setup cannot
even support a transient directed current. In fact, this result
holds for any shape of the vector potential AðtÞ [12]. This
situation thus mimics a single-phase ac motor: a periodi-
cally pulsating magnetic field would fail to put a rotor from
rest into rotation, unless one applies an initial ‘‘push’’ via a
starter mechanism [13]. In our setup, the role of the quan-
tum starter is taken over by the nonvanishing interactionW
with the second particle.

Nonetheless, even with nonvanishing interaction,
jWj> 0, there exists no evident procedure for setting the
motor into rotation. A seemingly obvious solution—appli-
cation of a constant carrier bias—cannot resolve the task.
This is true because the corresponding vector potential,
ABðtÞ ¼ !Bt, induces Bloch oscillations only [14]. In dis-
tinct contrast, we shall employ an unbiased time-dependent
vector potential possessing a zero dc component,
Aðtþ TÞ ¼ AðtÞ, i.e., RT

0 Að�Þd� ¼ 0.

For zero-momentum initial conditions, the unbiased
monochromatic ac force, AðtÞ ¼ A sinð!tÞ, would
launch—with equal probabilities—the system either into
a clockwise (rightward) or a counterclockwise rotation
(leftward motion) [15]. Thus, the modus operandi as a
motor requires a symmetry-breaking driving field, realized
here with the harmonic mixing signal,

AðtÞ ¼ A1 sinð!tÞ þ A2 sinð2!tþ�Þ; (8)

where � denotes the crucial symmetry-breaking phase
shift. The input (8) knowingly may induce a nonvanishing
nonlinear response, the so-called ratchet effect [15–17].
Quantum current in terms of Floquet states.—The dy-

namics at times t > t0 of the time-periodic Hamiltonian (1)
can be analyzed by using the Floquet formalism [18].
The solution of the eigenproblem, Uðt; t0Þj�nðt; t0; kÞi ¼
expð� i

@
	ntÞj�nðt; t0; kÞi, with the propagator Uðt; t0Þ ¼

T exp½� i
@

R
t
t0
Htotð�Þ�d� (T denotes the time order-

ing), provides the set of Floquet states, being time
periodic, i.e., with T ¼ 2�=! being the driving
period, j�nðtþ T; t0; kÞi ¼ j�nðt; t0; kÞi. Here, k ¼P

l;mh�lj�lis � j�mic is the total quasimomentum of the

Floquet state. Because of the discrete translation invariance
of the system, the total quasimomentum is conserved dur-
ing the time evolution, thus serving as a quantum number.
Since Htot is a function of the time difference t� t0 only,
the quasienergies 	n are independent of t0, and the Floquet
states for different start times t0 are related by
j�nðt; t0; kÞi ¼ j�nðt� t0; 0; kÞi.
Using this relation we next decompose c ðt0Þ in the

complete basis of Floquet states: jc ðt0Þi ¼PN
n¼1 cnj�nð0; t0; kÞi ¼

PN
n¼1 cnj�nðT � t0; 0; kÞi. In the

absence of the driving, AðtÞ � 0, the motor setup (1)–(3)
possesses the continuous translational symmetry in time.
Thus, the expansion coefficients of the initial wave func-
tion c ðt0Þ in the system eigenbasis knowingly do not
depend on time. On the contrary, eigenstates of a peri-
odically driven system—the Floquet states—evolve in
time, being locked by the external ac field. The expan-
sion of an initial wave function over the Floquet eigen-
basis depends on the start time t0 (5), which determines
the phase of the driving ac field [15]: cn ¼ cnðt0Þ ¼
h�nðT � t0; 0; kÞjc ðt0Þi. Substitution of the above decom-
position into (7) yields the result

�cðt0Þ ¼
XN
n¼1

��njcnðt0Þj2; ��n ¼ 1

T

Z T

0
�nð�Þd�: (9)

Here, ��n denotes the quantum average velocity of the nth
Floquet state (6). Because the Floquet states are periodic
functions of the time difference � ¼ t� t0 only, the veloc-
ities ��n do not depend on t0, and the dependence of the
generated dc current on the t0 solely stems from the
coefficients cnðt0Þ. Since the system evolution is fully
quantum coherent, i.e., there is no memory erasing induced
by an environment, the asymptotic current maintains the
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memory of the initial condition as encoded in the coeffi-
cients cnðt0Þ [15].

Input-output characteristics.—The question is now, how
can we control the motor? To answer this question, we used
the symmetry analysis [15] which allows us to predict an
appearance of a certain dc current. Combining time-
reversal operation and the complex conjugation applied to
(6) with AðtÞ in the form of (8), one can prove the (anti)
symmetric dependence of ��n on � for the Floquet states
with k ¼ 0: ��nð���Þ ¼ ��nð�Þ, ��nð��Þ ¼ � ��nð�Þ.
Thus, the Floquet states with k ¼ 0 possess zero mean
velocities at � ¼ 0; �. Furthermore, using a similar rea-
soning, one finds that the set of Floquet states with nonzero
k can be ordered by the parity relation, which links eigen-
states with opposite quasimomenta, �nðt; t0;�k;�Þ ¼
�mðT � t; t0; k;��Þ, yielding ��n ¼ � ��m. This implies
that, for a symmetric (in k) initial state and � ¼ 0; �, the
contributions to the dc current of Floquet states with op-
posite quasimomenta eliminate each other. The same holds
true for a monochromatic driving (8), with A2 ¼ 0 [15].
Shifting� away from 0;�� causes the decisive symmetry
breaking and leads to the desymmetrization of the Floquet
states with k ¼ 0 and consequently will violate the parity
between states with opposite signs of k.

The motor speed depends on the initial conditions,
which define the contributions of different Floquet states
to the carrier velocity (9). We restrict our analysis to the

initial state c ðt0Þ ¼ L�1=2jlci �
P

ls
jlsi, lc ¼ 1; . . . ; L, in

the form of the localized carrier (at lc) and the uniformly
‘‘smeared,’’ delocalized starter. Both particles have zero
velocities at t ¼ t0. The asymptotic velocity typically ex-
hibits a strong dependence on t0 [15]. We first discuss the
results obtained after averaging over t0, thus assigning a
unique motor velocity value,

�c ¼ h�cðt0Þit0 ¼ 1=T
Z Tþt0

t0

�cðt0Þdt0; (10)

for fixed system parameters.
Figure 2 depicts the dependence of the average motor

velocity on �. The results obtained by direct time propa-
gation of the initial state and averaged over t0 (dashed line)
are superimposed by those calculated via the Floquet for-
malism (9) (solid line). The agreement between the two
curves is satisfactory but not perfect: This is true because
of the sharp peaks on the asymptotic current (9).

These peaks can be associated with avoided crossings
between two quasienergy levels [15]. These avoided cross-
ings cause a strong current enhancement if one of the
interacting and transporting eigenstate overlaps signifi-
cantly with an initial, nontransporting state of the motor.
Note also that a very narrow avoided crossing requires a
very large evolution time to become resolved, i.e., tobs �
@=j	
 � 	�j [15]. Our chosen evolution time t ¼ 200T is

not large enough to clearly resolve the distinct resonances
depicted in Fig. 2.

We further detect that the dependence of the motor
velocity vcðt0Þ in (7) on t0 increasingly disappears upon

increasing the size L (not shown). To provide a quantitative
estimate, we evaluated the dispersion of the current (9)
with respect to t0, i.e.,

�� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�cðt0Þ2 � h�cðt0Þi2t0i

q
t0
: (11)

As shown in Fig. 3 this dispersion decays with increasing
size L, being rather faint for L * 16. For sizes L * 16 the
carrier assumes an asymptotic velocity that essentially is
independent of the initial start time t0. This effect is caused
by the presence of the starter: The carrier velocity is
obtained as the trace over the part of the total system
Hilbert space, associated with the starter. The starter dy-
namics mimics a dissipative, finite heat bath for the carrier
dynamics whose effectiveness increases with both the
(i) the dimension of the starter subspace, i.e., the size L,
and (ii) the strength of the interaction W.
Load characteristics.—The analysis based on Eqs. (1)–

(3) and (8) has been for a free rotator. In order to qualify for
a genuine motor device, the engine must be able to operate
under an applied load. The load is introduced as the bias

!Bt, being added to the vector potential ~AðtÞ. All the
information about transport properties can be extracted
by using again the Floquet formalism, provided that the
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FIG. 2 (color online). Averaged motor velocity in (10) (in units
of the maximal group velocity �0 ¼ Jcd=@) as a function of the
phase shift � in (8) for L ¼ 16. The (t0)-averaged velocity (7)
obtained by the direct time propagation of the initial state up to
200T (dashed line) is compared to the asymptotic dependence
given by the Floquet approach (9) (red solid line). The parame-
ters are @! ¼ 0:1Jc, A1 ¼ 0:5, A2 ¼ 0:25, W ¼ 0:2Jc, Js ¼
Jc ¼ J.
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FIG. 3. Dispersion of the motor velocity (11) versus the num-
ber of lattice sites L. Here � ¼ �=2, and the other parameters
are the same as in Fig. 2.
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ac-driving and the Bloch frequencies are mutually in reso-
nance [19], i.e., q! ¼ r!B, where r and q are coprime
integers. Figure 4 shows the dependence of the asymptotic
motor speed for different bias values. There are two re-
markable features. First, the spectrum of velocities is sym-
metric around!B ¼ 0. This follows because of the specific
choice of the phase shift at � ¼ �=2. Second, while some
regimes provide a transport velocity along the bias, others
correspond to the uphill motion, against the bias.
Therefore, a stationary transport in either direction is fea-
sible. The load characteristic exhibits a discontinuous,
fractal structure and, in distinct contrast to the classical
case [20], it cannot be approximated by a smooth curve.
This is a direct consequence of the above mentioned reso-
nance condition.

Experimental realizations.—For an experimental real-
ization of this quantum atom motor the following features
should be respected: (i) In the case of the setup ‘‘carrier
with a spin or spinless starter,’’ the carrier should assume a
magnetic number mF � 2 [6], to efficiently induce the ac-
field amplitudes A1;2. (ii) Because in the tight-binding

approximation the maximal amplitude of the tunneling is
limited from above, Jc & Jmax ¼ 0:13E0, for

6Li atom, the
lattice spacing d� 10 �m [7], and @! ¼ 0:1Jc (used in
the calculations), the driving frequency ! should be less
than 2 Hz. Then, the time required to launch the motor (i.e.,
to approach the asymptotic velocity value) is around a
minute. Further focusing of the laser beam can decrease
the lattice constant d, thereby decreasing the launch time
to experimentally accessible coherence times around
10 sec [21].

Conclusions.—We studied a quantum ac motor made of
the two species of ultracold interacting atoms, i.e., a carrier
and a starter, moving in a ring-shaped trapping potential.
For zero-momentum initial conditions the asymptotic car-
rier velocity loses its dependence on the switch-on time t0
of the ac drive upon increasing the lattice size L. A natural
question that arises is, What about the averaged starter
velocity vs? We find that the latter sensitively depends
on the system parameters: It can either be very small
compared to the carrier velocity or also larger than vc. In
short, the starter can move codirectionally or contradirec-

tionally to the carrier motion. Finally, an extension of our
motor setup to several interacting bosons (i.e., a finite
bosonic ‘‘heat bath’’) presents an intriguing perspective.
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