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1. Introduction

About one decade ago Jarzynski proved a quite remarkable equality that relates free
energy differences to average exponentiated work done on a thermally insulated system
that is acted upon by external time dependent forces varying according to a specified
protocol. This equation, now commonly referred to as the Jarzynski equality, reads [1]

〈e−βw〉 = e−βΔF , (1)

with w the work, ΔF the free energy difference between a reference equilibrium state
of the system at the initial temperature β with the force values reached at the end
of the force protocol and the truly thermal initial state. Note that the Jarzynski
equality holds irrespectively of whether the system ever reaches this reference equilibrium
state.

Crooks [2] later showed that equation (1) results from the following work fluctuation
theorem:

ptf ,t0(w)

pt0,tf (−w)
= e−β(ΔF−w) (2)

that relates the probability density function (pdf) of work ptf ,t0(w) in the real forward
process proceeding from the time t0 until tf to the pdf of negative work pt0,tf (−w) of the
mirror image process where the time ideally runs backward.

An important question that naturally arises is that of whether equations (1) and (2)
keep holding in the more realistic situation where the system remains in thermal contact
with its environment while the forcing protocol is in action. In regard to equation (1) a
positive answer to this question was already given in [1] on the basis of classical arguments.

Moreover, quantum extensions of equations (1) and (2) were developed, too: first
the quantum version of the Jarzynski equality for cyclic processes [3], and shortly after
the Crooks theorem were demonstrated to hold also for closed quantum systems [4]. A
specification of the full statistics in terms of the characteristic function, i.e. the Fourier
transform of the probability density function (pdf) of the work, was obtained in [5],
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and a proof of the Crooks relation on the basis of this characteristic function was given
in [6]. A generalization to arbitrary initial states such as the microcanonical state was
obtained in [7]. In the latter case a microcanonical Crooks theorem was proved by means
of which the change of the thermodynamic entropy can be inferred from the statistics of
the work [7, 8]. Illustrative examples for differently driven quantum harmonic oscillators
were discussed in [9, 10]. An experimental test was proposed in [11].

Quantum generalizations of the Jarzynski equality and the Crooks theorem for open
quantum systems have almost exclusively been studied for systems with Markovian
dynamics [12]–[15]. Therefore, so far, only systems with weak coupling to their
environments have been considered, as weak coupling is implicit in the Markovian
assumption [16]–[19]1.

In the present paper we too restrict ourselves to the case of weak interaction between
the system and its environment. We do so because to the best of our knowledge currently
an unambiguous definition of work and heat of a small open quantum system is only
known in this very case of weak coupling [24, 25]. However, neither the dynamics of the
system nor that of the bath is restricted otherwise. In this way we allow for general non-
Markovian dynamics imposed by the bath and arbitrary force protocols which are neither
constrained to be fast nor constrained to be slow.

Here we employ the characteristic function approach of [5, 7] to address the question
regarding the validity of the equations (1) and (2) for quantum systems in weak contact
with their environment. Hence the focus of this study is on the characteristic function of
the joint statistics of simultaneous measurements of system and environmental energies,
which are commuting observables. Under the assumption of weak coupling the changes
of these two energies imposed by the action of an external force can immediately be
related to the changes of internal energy and the heat exchanged with the environment,
or, equivalently, to the work and heat. Our central result is the derivation of a fluctuation
theorem of the Tasaki–Crooks type, for the joint pdfs of either internal energy and heat,
or heat and work (see equation (32) below). As a corollary of this theorem, we recover
the Jarzynski equation (1) and the Crooks theorem (2) for the marginal pdf of work. This
formally proves that the validity of these relations keeps holding for quantum systems
weakly interacting with an environment.

We are though aware of the difficulties that the experimental realization of the two
energy difference measurements may pose. In particular, the change of the environmental
energy may be rather small compared to the actual energy content of the environment
and therefore be prone to a large error. A related problem afflicts the determination of
the specific heat of an open quantum system [26].

Previous investigations of the Jarzynski equality for open Markovian quantum
systems [13, 15] are based on the limit of infinitely many repeated measurements of the
environment’s energy. In contrast, the present approach relies on energy measurements of
the system and the environment at the beginning and the end of the protocol. We note
that other fluctuation theorems are known in the literature for the heat exchange between
two systems which couple either directly to each other [27], or through an intermediate
system giving rise to a heat flow [28]. In contrast, here we consider systems which initially

1 In the strong coupling limit the dynamics of a particle’s position is described by a classical Smoluchowski
equation [20]–[23] but this equation does not provide information about the dynamics of the momentum.
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are in thermal equilibrium with their environment and are then driven out of equilibrium
by a classical external force.

The paper is organized as follows. In section 2 we define and obtain the general
expression for the joint pdf of the internal energy and heat. In section 3 the joint pdf
is further evaluated for the initial canonical state of the total system and a fluctuation
theorem for work and heat is obtained. Conclusions are drawn in section 4.

2. Characteristic functions of work, heat and internal energy

We consider a system S that is in weak contact with its environment B. Accordingly,
the Hamiltonian H(t) of the total system consists of a system and an environmental part
HS(t) and HB, respectively, and the interaction Hamiltonian HSB, i.e.

H(t) = HS(t) + HSB + HB, (3)

where the interaction is small compared to both the system and the environmental
Hamiltonians. We assume that the gauge is fixed in such a way that the Hamiltonian
HS(t) coincides with the system energy despite its time dependence [29]. This time
dependence is caused by an external change of system parameters according to a prescribed
protocol. Since the system and the environmental Hamiltonians commute with each
other, the energies of the system and of the bath can be measured simultaneously
with possible results eS

i (t) and eB
α which are the eigenvalues of the operators HS(t) and

HB, respectively. The corresponding projection operators onto the common eigenspaces
of these operators are denoted by Pi,α(t). Hence, the eigenvalues and eigenprojection
operators are determined by the following equations:

HS(t)Pi,α(t) = eS
i (t)Pi,α(t), HBPi,α(t) = eB

α Pi,α(t). (4)

The projection operators onto the common eigenspaces of two commuting Hermitian
operators are Hermitian:

P †
i,α(t) = Pi,α(t), (5)

idempotent and mutually orthogonal:

Pi,α(t)Pi′,α′(t) = δi,i′δα,α′Pi,α(t), (6)

and complete:
∑

i,α

Pi,α(t) = 1I, (7)

where 1I denotes the unit operator on the total Hilbert space of system and environment.
The first measurement is performed at the time t0 at which the protocol starts to act. At
this very time the state of the total system is assumed to be given by the density matrix
ρ(t0) which we will specify later. The joint probability for measuring the respective system
and environmental energies eS

i (t0) and eB
α in this state is given by

pi,α = Tr Pi,α(t0)ρ(t0), (8)

where Tr denotes the trace over the total Hilbert space of the system and the environment.
After a measurement with the outcome eS

i (t0), e
B
α the system is found in the initial state
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projected onto the corresponding subspace. This state is given by

ρi,α = p−1
i,αPi,α(t0)ρ(t0)Pi,α(t0). (9)

The second measurement of the system and the environmental energies is performed at
the end of the protocol at time tf . By then the density matrix of the total system has
undergone a unitary time evolution in the total Hilbert space to a new state reading

ρi,α(tf) = Utf ,t0ρi,αU †
tf ,t0

. (10)

The result of the second measurement is characterized by the conditional pdf of finding
energies eS

i′(tf) and eB
α′ given that the results of the first measurement were eS

i (tf) and eB
α .

This pdf is given by

ptf ,t0(i
′, α′|i, α) = Tr Pi′,α′(tf)ρi,α(tf). (11)

Consequently, the joint pdf ptf ,t0(ΔeS , ΔeB) for measuring changes of the system and the
environmental energies ΔeS and ΔeB, respectively, becomes

ptf ,t0(ΔeS, ΔeB) =
∑

i,i′,α,α′

δ
(
ΔeS − (eS

i′(tf) − eS
i (t0))

)

× δ
(
ΔeB − (eB

α′ − eB
α )

)
ptf ,t0(i

′, α′|i, α)pi,α. (12)

At weak coupling between the system and the environment the random quantity ΔeS

determines the change of the internal energy of the system. Then the change of the
environmental energy equals the amount of energy which is exchanged as heat Q = −ΔeB

with the system. The small contribution of energy that is possibly released from or stored
in the interaction Hamiltonian is negligibly small for a system weakly coupled to its
environment. Hence, the joint pdf of internal energy change E = ΔeS and heat exchange
Q becomes

ptf ,t0(E, Q) =
∑

i,i′,α,α′

δ
(
E − (eS

i′(tf) − eS
i (t0))

)
δ
(
Q + (eB

α′ − eB
α )

)
ptf ,t0(i

′, α′|i, α)pi,α. (13)

The characteristic function GE,Q
tf ,t0

(u, v) provides an equivalent description of the
statistics of these energy changes. It is given by the Fourier transform of this pdf, which,
due to the presence of the delta functions, can readily be performed to yield

GE,Q
tf ,t0

(u, v) =

∫
dE

∫
dQ ei(uE+vQ)ptf ,t0(E, Q)

=
∑

i,i′,α,α′

ei(u(eS
i′ (tf )−eS

i (t0))) e−i(v(eB
α′−eB

α ))p(i′, α′|i, α)pi,α. (14)

This expression can be further simplified by means of the equations (8), (12) and the
completeness relation (7) into the form of a correlation function, reading

GE,Q
tf ,t0

(u, v) = Tr ei(uHS
H(tf )−vHB

H (tf )) e−i(uHS(t0)−vHB)ρ̄(t0), (15)

where the index H denotes the Heisenberg picture of the corresponding operators, i.e.

HS
H(tf) = U †

tf ,t0
HS(tf)Utf ,t0 , HB

H (tf) = U †
tf ,t0

HBUtf ,t0 . (16)
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The density matrix ρ̄(t0) describes the system immediately after the first measurement. It
is given by the projection of the initial density matrix ρ(t0) onto the common eigenspaces
of the measured operators. It hence assumes the form

ρ̄(t0) =
∑

i,α

Pi,α(t0)ρ(t0)Pi,α(t0). (17)

In analogy to the case of the measurement of the total energy of an isolated system
the characteristic function for a joint measurement of two energies is determined by
a correlation function of the exponential operator (exp[i(uHS(tf) − vHB)])H(tf) in the
Heisenberg picture at the time of the second measurement tf and a second exponential
operator exp[−i(uHS(t0)−vHB)] taken at the initial time. The average is performed with
respect to the initial density matrix projected onto the eigenspaces of the two operators
of the first measurement.

In passing, we note that analogously to the internal energy and the exchanged heat
being represented by the Hamiltonians of the system and environment, respectively, the
characteristic function of the changes xi of any mutually commuting set of N observables
X i(t) can be represented as a correlation function:

G
{xi}
tf ,t0

(u1, u2, . . . , uN) = Tr ei
∑N

i=1 uiXi
H(tf ) e−i

∑N
i=1 uiXi(t0)ρ̄0, (18)

where ui denotes the Fourier variable conjugate to xi, X i
H(tf) denotes the observable X i(t)

in the Heisenberg picture and the density matrix ρ̄0 is given by the projection of the initial
density matrix ρ0 onto the common eigenspaces of the observables Xi(t0), i = 1, . . . , N ,
as in equation (17). We close this short digression by noting that both the central result
of this paper, equation (14), and its generalization, (18), are valid independently of the
dimensionality of the common eigenspaces of the sets of commuting observables HS(t),
HB in the first and {Xi(t)} in the second case. In other words there is no restriction
regarding a possible degeneracy of the energy eigenvalues of the uncoupled system and
environment, or of the observables Xi(t).

Once the statistical properties of internal energy changes and the exchange of heat are
known, the marginal distributions of these quantities can equivalently be characterized in
terms of their respective characteristic functions GE

tf ,t0
(u) and GQ

tf ,t0
(v); i.e.,

GE
tf ,t0

(u) = GE,Q
tf ,t0

(u, 0),

GQ
tf ,t0

(v) = GE,Q
tf ,t0

(0, v).
(19)

Moreover, the internal energy change and the heat exchange determine the work

w = E − Q (20)

performed on the system according to the First Law. Correspondingly, the joint
characteristic function of heat and work, GQ,w

tf ,t0
(x, y), is related to that of internal energy

and heat by

GQ,w
tf ,t0

(x, y) = GE,Q
tf ,t0

(y, x− y). (21)

Then, the marginal characteristic function of work performed on the system becomes

Gw
tf ,t0

(z) = GE,Q
tf ,t0

(z,−z). (22)

So far we have not yet specified the initial density matrix ρ(t0). In section 3 we
consider the particularly relevant case of a canonical state of the total system at a given
temperature.
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3. The fluctuation theorem for work and heat

We now assume that the total system consisting of the system considered and its
environment is initially, i.e. at t = t0, in a thermodynamical equilibrium at inverse
temperature β and is consequently described by the Gibbs state

ρβ(t0) = Z−1(t0) e−β(HS(t0)+HB+HSB), (23)

where

Z(t0) = Tr e−β(HS (t0)+HB+HSB) (24)

denotes the partition function. In the particular case of weak coupling between the system
and its environment a perturbation expansion of the density matrix with respect to the
interaction Hamiltonian yields up to first order

ρβ(t0) ≈ ρ0(t0) − Z−1
S (t0)Z

−1
B

∫ β

0

dβ ′ e−(β−β′)(HS(t0)+HB)δHSB e−β′(HS(t0)+HB), (25)

where

ZS(t0) = TrS e−βHS(t0), (26)

ZB = TrB e−βHS

. (27)

Here TrS and TrB denote the traces over the system and the environmental Hilbert spaces,
respectively. The operator δHSB = HSB−〈HSB〉0 specifies the deviation of the interaction
from its expectation value with respect to the factorizing state

ρ0(t0) = Z−1
S (t0)Z

−1
B e−β(HS (t0)+HB). (28)

In order to determine the density matrix ρ̄(t0), equation (17), ρβ(t0) has to be projected
onto the common eigenspaces of HS(t0) and HB. This projection leaves the unperturbed
part ρ0(t0) of the initial density matrix (25) unchanged. The first-order correction on
the right-hand side of equation (25) vanishes in all cases when the interaction between
system and environment contains only off-diagonal terms with respect to the unperturbed
energy basis as is the case e.g. for the spin-boson model [30], or the Caldeira–Leggett
model [31]2. In all of these cases the corrections to the factorizing density matrix ρ0(t0)
are at least of second order in the system–environment interaction. Therefore they can
safely be neglected in the limit of weak coupling such that the diagonal projection of
ρβ(t0) leads to the factorizing state ρ0(t), i.e.

ρ̄β(t0) = ρ0(t0) ≡ Z−1
S (t0)Z

−1
B e−β(HS(t0)+HB). (29)

We emphasize that this holds under the conditions of weak interaction between the system
and its environment.

2 If the interaction contains diagonal terms, these can safely be added to the system Hamiltonian, which then
would be redefined accordingly. This actually leads to a redefinition of the system which will introduce only a
minor change in the case of weak coupling. For strong coupling we refer to the comment at the end of section 4.
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With this initial state the characteristic function for the statistics of internal energy
and heat becomes

GE,Q
tf ,t0

(u, v) = Z−1
S (t0)Z

−1
B Tr ei(uHS

H(tf )−vHB
H (tf )) e−i(uHS(t0)−vHB) e−β(HS(t0)+HB). (30)

Analogously to the characteristic function of work performed on a closed system initially
in a canonical state [6], this expression can be continued to an analytic function of the
variables u and v in the interior of the stripes Su = {u = u′ +iu′′|u′ ∈ R, 0 ≤ u′′ ≤ β} and
Sv = {v = v′ + iv′′|v′ ∈ R,−β ≤ v′′ ≤ 0} of the complex plane. At the boundaries the
characteristic function is a continuous function of u and v. The proof is based on the fact
that the operator under the trace on the right-hand side of equation (30) is an element of
the trace class [32] for all u ∈ Su and v ∈ Sv and that this operator is an analytic function
in the interior and a continuous function at the boundaries of these stripes [33]. Setting
u = ū + iβ and v = v̄ + iβ one finds

ZS(t0)G
E,Q
tf ,t0

(u, v) = ZS(tf)G
E,Q
t0,tf

(−ū,−v̄)

= ZS(tf)G
E,Q
t0,tf

(−u + iβ,−v − iβ), (31)

where GE,Q
t0,tf

(u, v) is the characteristic function of the internal energy change and heat
transfer for a fictitious process that runs under the action of the time reversed process
backward in time. The proof is analogous to that for the case of a closed system initially
in a canonical state [6]. Applying the inverse Fourier transform with respect to both
variables u and v one obtains a Tasaki–Crooks type of expression [2, 4]. It establishes
a connection between the joint pdf of internal energy change and exchanged heat for
the original process and the corresponding quantity for the time reversed process. This
fluctuation theorem reads accordingly

ptf ,t0(E, Q)

pt0,tf (−E,−Q)
=

ZS(tf)

ZS(t0)
eβ(E−Q) = e−β(ΔF−E+Q), (32)

where ΔF = −β−1 ln[ZS(tf)/Z
S(t0)] denotes the free energy difference between the system

in the canonical state with the parameter values at tf and in the initial state at t0.

3.1. Non-equilibrium free energy/work relations

Replacing the internal energy by the work performed on the system we obtain

ZS(t0)G
Q,w
tf ,t0

(x, y) = ZS(tf)G
Q,w
t0,tf

(−x − y,−y + iβ), (33)

or equivalently

pQ,w
tf ,t0

(Q, w)

pQ,w
t0,tf

(−Q,−w)
= e−β(ΔF−w). (34)

Here pQ,w
tf ,t0

(Q, w) = ptf ,t0(Q + w, Q) denotes the joint pdf of heat and work corresponding

to the characteristic function GQ,w
tf ,t0

(x, y) defined in equation (21). Integrating over all
possible values of the exchanged heat one obtains the Tasaki–Crooks theorem for an open
system which couples weakly to its environment. It reads

pw
tf ,t0

(w)

pw
t0,tf

(−w)
= e−β(ΔF−w), (35)
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where pw
tf ,t0

(w) =
∫

dQ pQ,w
tf ,t0

(Q, w) denotes the marginal pdf of work. From the Tasaki–
Crooks theorem Jarzynski’s work theorem follows immediately, saying that the mean value
of the exponentiated negative work performed on an open system in weak contact with
its environment coincides with the exponentiated negative free energy difference [1], i.e.,

〈 e−βw〉 = e−βΔF . (36)

3.2. Non-equilibrium relations for conditional and marginal probabilities

From equation (32) one can obtain non-equilibrium relations for the marginal distribution
of heat

pQ
tf ,t0

(Q) =

∫
dw pQ,w

tf ,t0
(Q, w), (37)

for the pdf of work w under the condition that the heat Q is measured, i.e.,

ptf ,t0(w|Q) =
pQ,w

tf ,t0
(Q, w)

pQ
tf ,t0

(Q)
, (38)

and for the pdf of heat Q under the condition that the work w is measured, i.e.,

ptf ,t0(Q|w) =
pQ,w

tf ,t0
(Q, w)

pw
tf ,t0

(w)
. (39)

A straightforward calculation yields

pQ
t0,tf

(−Q)

pQ
tf ,t0

(Q)
= eβΔF 〈 e−βw|Q〉, (40)

where the symbol 〈·|Q〉 denotes the average over ptf ,t0(w|Q).

On the other hand one finds the following relation:

ptf ,t0(Q|w)

pt0,tf (−Q| − w)
= 1, (41)

for the conditional pdfs of heat Q given the work w, in the forward and backward processes.
For the forward and backward conditional pdfs of work given the heat, one obtains the
less symmetric relation

ptf ,t0(w|Q)

pt0,tf (−w| − Q)
= eβw〈 e−βw|Q〉. (42)

The relations (40)–(42) continue to hold true also in the classical limit. To the best of our
knowledge, they have been unknown both in the classical and in the quantum context.
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3.3. Non-equilibrium equalities for exponentiated internal energy and heat

By noting that

〈 eβQ〉Q =

∫
dQ pQ

tf ,t0
(Q) eβQ = GQ

tf ,t0
(−iβ) (43)

and

〈 e−βE〉E =

∫
dE pE

tf ,t0
(E) e−βE = GE

tf ,t0
(iβ), (44)

and using equations (19) and (30) one finds two non-equilibrium equalities for heat and
internal energy:

〈 eβQ〉Q =
Tr e−βHS(t0) e−βHB

H (tf )

ZS(t0)ZB
, (45)

〈 e−βE〉E =
Tr e−βHS

H(tf ) e−βHB

ZS(t0)ZB
. (46)

In clear contrast to the Jarzynski equality, the average of the exponentiated heat as well
as that of the exponentiated negative energy do depend on the details of the protocol,
i.e. these relations do not depend only on equilibrium properties of the system.

4. Conclusions

We proved that the Tasaki–Crooks fluctuation theorem and the Jarzynski equality
hold in open quantum systems that are weakly coupled to their environments. This
was accomplished by introducing the characteristic function for the probability of joint
measurements of system and environmental energies, which are commuting observables.
This characteristic function was further evaluated for canonical initial states. Our
approach rests on two basic assumptions: first, the total system made up of the system
of interest and its environment is governed by Hamiltonian dynamics; and second, the
coupling between the system and its environment is assumed to be weak. The first
assumption leads to a unitary time evolution of the total system. The second assumption
has two important consequences. First, it allows one to determine the internal energy from
the Hamiltonian of the system and the heat from the Hamiltonian of the environment. The
work performed on the system then follows by means of the First Law. The contribution
of the interaction Hamiltonian is neglected in the definitions of these three energies. The
second consequence of the weak coupling assumption is the factorization of the state of
the total system immediately after the first measurements of energies into a product of the
Gibbs states of the system and the environment as if they were uncoupled up to second-
order corrections in the system environment interaction. In order for these corrections to
be small for weak but non-zero coupling, the temperature of the initial state must not be
too low. In contrast, we formally allowed for the exact time evolution such that fast as
well as slow protocols can be described adequately.

By an inverse Fourier transformation the joint statistics of internal energy and heat
(defined as the energy ceded to the environment) was shown to obey a Tasaki–Crooks type
of fluctuation theorem. From this we derived the Tasaki–Crooks fluctuation theorem and
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the Jarzynski equality, for a quantum system that weakly couples to its environment [6].
Further non-equilibrium relations for the marginal and conditional pdfs of work given the
heat and heat given the work were derived.

In the present paper we restricted ourselves to the case where the external forces
directly influence the system Hamiltonian but leave the interaction and the environment
Hamiltonians unchanged. Our approach can be generalized to more complex situations
where the forces immediately influence the system plus the environment. In this general
case the Tasaki–Crooks theorem, equation (34), continues to hold in a slightly modified
form: also the change of the free energy of the environment has to be taken into account,
i.e. ΔF has to be replaced by ΔF +ΔFB, where ΔFB denotes the change in free energy of
the environment due to the parameter change of the environmental Hamiltonian. In those
special cases where only the system and the interaction Hamiltonians are influenced by the
external forcing, the form of the Tasaki–Crooks theorem as given by equation (34) stays
unchanged. As a consequence the Jarzynski equality remains valid for forces changing
the system and its interaction with the environment but leaves the Hamiltonian of the
environment unchanged.

For a system that strongly couples to its environment it frequently is possible to ‘dress’
the system with excitations of its environment such that the dressed system interacts only
weakly with its properly redefined environment. Quasi-particles in solid state physics are
typical examples of such systems. An external force acting on the original system will also
be felt by the dressed system. For the work exerted on the dressed system and the heat
exchanged with the properly redefined environment all conditions for the presented theory
apply and therefore the Tasaki–Crooks theorem and consequently the Jarzynski equality
remain valid for such dressed systems. More general systems that strongly interact with
the environment will be considered elsewhere.
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