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1. Introduction

Effective control of transport in artificial micro- and nanostruc-
tures requires a deep understanding of the diffusive mecha-
nisms involving small objects and, in this regard, an operative
measure to gauge the role of fluctuations. Such situations are
typically encountered when studying the transport of particles
in biological cells[1] and in zeolites,[2] catalytic reactions occur-
ring on templates or in porous media,[3] chromatography or,
more generally, separation techniques of size-dispersed parti-
cles on micro- or even nanoscales.[4] In many respects studying
these transport phenomena is equivalent to studying geomet-
rically constrained Brownian dynamics.[5–7] The fact that the dif-
fusion equation is closely related to the time evolution of the
probability density P ~x; tð Þ to find a jittering particle at a loca-
tion ~x at time t dates back to Einstein’s pioneering work on
the molecular–kinetic description of suspended particles.[8]

Herein we focus on the problem of the diffusion of small
particles in confined geometries. Restricting the volume of the
phase space available to the diffusing particles by means of
confining boundaries or obstacles causes remarkable entropic
effects.[9] The driven transport of charged particles across bot-
tlenecks, such as ion transport through artificial nanopores or
artificial ion pumps[10–15] or in biological channels[16–20] repre-
sents an ubiquitous situation, where diffusion is determined by
entropic barriers. Similarly, the operation of artificial Brownian
motors,[21–23] molecular motors[24] and molecular machines[25]

also results from the interplay of diffusion and binding action
by energetic or, more relevant in the present context, entropic
barriers.[26] The efficiency of such nanodevices crucially de-
pends on the fluctuation characteristics of the relevant degrees
of freedom.[27] In addition, the interplay of diffusion over en-
tropic barriers and unbiased time-periodic drives is responsible

for certain perplexing transport effects, like the recent observa-
tion of entropic diffusion-controlled absolute negative mobili-
ty.[28]

Although we restricted ourselves to small particles, we
remind the reader that entropic forces surely affect the dynam-
ics of extended chains diffusing in a periodic two- (2D) or
three-dimensional (3D) medium. A well-established example is
represented by the phonon damping of propagating soli-
tons.[29] Another example of great interest for its potential ap-
plications in nanotechnology is the translocation of a long po-
lymer molecule through a pore with opening size comparable
to the polymer gyration radius. In this case, entropic effects
were first predicted to describe theoretically the conformation-
al changes the chain undergoes to move past a conduit con-
striction[30] and, then, experimentally observed both in biologi-
cal[31] and artificial channels.[32]

Another instance of constrained Brownian dynamics that
rests, indeed, within the scope of our Minireview, is known as
single-file diffusion. The motion of an assembly of small parti-
cles in a narrow channel can be so tightly restricted in the
transverse directions that the particles arrange themselves one
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by one into a single file. The longitudinal motion of each parti-
cle is thus hindered by the presence of its neighbors, which
act as impenetrable movable obstacles. As a consequence, in-
terparticle interactions in one dimension can suppress Browni-
an diffusion and lead to the emergence of a new subdiffusive
dynamics.[33]

Herein, we discuss the geometry of the channels relevant to
our review and set up the mathematical formalism needed to
model the diffusion of a Brownian particle immersed in a con-
fined suspension fluid. We introduce some exact results for the
mobility and the diffusion coefficient of a driven Brownian par-
ticle in a 1D periodic potential and we compute explicitly the
entropic effects on particle transport in a static fluid filling a
periodically modulated channel. We also address particle trans-
port in a suspension fluid flowing along the channel subject to
stationary pumping. We review numerical and analytical results
for the diffusion of a single file along a periodically corrugated
channel both in the presence and in the absence of an exter-
nal drive.

2. Channel Models

We consider the diffusive dynamics of spherical particles in 2D
or 3D pores, or channels, which extend in the x direction and
possess a periodically varying cross section. These channels are
supposed to be symmetric with respect to a 2D reflection on
the channel axis (like those sketched in Figure 1), or to any ro-

tation about the channel axis in 3D. The channels are assumed
to be delimited by smooth, rigid walls. The half-width of the
channel is described by the well-behaved boundary function
w(x). The channel walls confine the particles inside the channel,
but do not exchange energy with them otherwise. In particu-
lar, we do not consider the possibility of adsorption of particles
on the walls. Since we disregard any rotatory motion of the
particles about their centers of mass, we need not specify par-

ticle–wall contact forces. Moreover, the radius of the particles
is supposed to be smaller than the minima of w(x) [channel
bottlenecks] , so that they are not restricted to stay within a
confined region of the channel, but rather may diffuse every-
where along the channel.

2.1. Diffusion Equations

The motion of particles that are immersed in a fluid medium is
influenced by various types of forces. Herein, we restrict our-
selves to the discussion of small-radius (almost pointlike) parti-
cles, whose presence do not significantly modify the free
motion of the fluid around them (laminar flow regime). The
systematic impact of the fluid on the motion of particles at po-
sition ~x� (x,y,z) is given in Equation (1) by the Stokes force:[34]

~FStokes ¼ �g _~x �~vð~x; tÞ
h i

ð1Þ

where ~v(~x,t) is the instantaneous velocity of the fluid in ab-
sence of the particle, _~x is the instantaneous particle velocity,
and the friction constant is given by Equation (2):

g ¼ 6phR ð2Þ

The friction constant is determined by the shear viscosity h of
the fluid, and the radius R of the particle. At the same time,
the fluid also exerts a random thermal force ~Fth on the particle.
In the following, we only deal the case of fluids at a homoge-
neous temperature T and velocity fields that are almost con-
stant on the particle scale R. As a consequence, to insure ther-
malization at temperature T it suffices to set the thermal force
in Equation (3) to:

~FthðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2gkBT

p
~xðtÞ, ð3Þ

where kB denotes the Boltzmann constant and ~xðtÞ is a stan-
dard 3D Gaussian noise with h~xðtÞi= 0 and xiðtÞxjðt0Þ

� �
=

dijdðt � t0Þfor i,j = x,y,z. Other forces acting on the particles, like
hydrodynamic interactions among different particles and be-
tween single particles and the wall, are neglected.[35, 36] This
simplification, in particular, requires a sufficiently low particle
density.

Finally, an external force �Fext may act on the particles de-
scribing for example, the gravity force, or in the case of
charged particles, an electrostatic force. We further restrict our
discussion to constant longitudinal external forces pointing in
the direction of the symmetry axis of the channel. The dynam-
ics of the center of mass ~x(t) of a single particle of mass m is
then governed by Newton’s equation of motion, Equation (4):

m €~x ¼~Fext � g _~x �~vð~x; tÞ
h i

þ
ffiffiffiffiffiffiffiffiffiffiffiffi
2gkBT

p
~xðtÞ ð4Þ

where we explicitly allow for a possible time-dependence of
the fluid velocity field. For microparticles moving with typical
velocities of the order of 1 cm s�1, the inertial term m €~x tð Þ in
Equation (4) is negligibly small compared to the environmental

Figure 1. Brownian particles in a narrow cylindrical channel directed along
the x axis and with a periodically modulated boundary w(x) [longitudinal
section] . a) Pointlike particle suspended in a static fluid and subjected to a
constant driving force F (Section 4); b) Single spherical particle dragged
along by a laminar flow (Section 5) ; c) Single-file diffusion of impenetrable
driven particles (Section 6.2).
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forces;[37] therefore, provided that the fluid velocity does not
change too fast, that is, for spectral frequencies less than a few
100 Hz, one can safely set m = 0 (overdamped limit or Smolu-
chowski approximation). Under these conditions, Equation (4)
can be simplified to Equation (5):

_~x ¼~vð~x; tÞ þ 1
g
~Fext þ

ffiffiffiffiffiffiffiffiffiffi
2kBT

g

r
~xðtÞ ð5Þ

This Langevin equation is equivalent to the Fokker–Planck
equation[38] for the probability density P ~x; tð Þ of a particle to be
found at the position~x at time t, given by Equation (6):

@Pð~x; tÞ
@t

¼ � ~r �~Jð~x; tÞ ð6Þ

Here~J ~x; tð Þ denotes the corresponding probability current den-
sity of Equation (7):

~Jð~x; tÞ ¼ � ~vð~x; tÞ þ
~Fext

g

" #
Pð~x; tÞ þ kBT

g
~rPð~x; tÞ ð7Þ

These equations have to be supplemented by appropriate
boundary conditions, discussed next.

2.2. Boundary Conditions

A channel is typically characterized by two boundary regions.
A transverse boundary naturally results from the presence of
the walls, whereas a longitudinal boundary is required to ac-
count for the channel length.

The probability flux normal to the boundary in the presence
of a rigid hard wall must vanish. Thus, to prevent pointlike par-
ticles from leaving the channel or being adsorbed at the walls,
we must impose Equation (8):

~n ~xð Þ �~Jð~x; tÞ ¼ 0 ~x 2 wall ð8Þ

where ~n ~xð Þ denotes the unit vector normal to the wall at point
~x. Note, however, that the center of mass of a spherical particle
of finite radius R may approach the wall only up to a distance
R, so that for finitely sized particles the boundary conditions of
Equation (8) applies on an appropriate inner surface parallel to
the channel walls.[39]

Various kinds of boundary conditions exist that regulate the
inward and outward probability flows at the ends of a chan-
nel.[34] If the channel connects large, well-mixed particle reser-
voirs, then constant probability densities PL,R may be assigned
at the channel ends. This leads to Dirichlet boundary condi-
tions given by Equation (9):

PðxL,y,zÞ ¼ PL, PðxR,y,zÞ ¼ PR ð9Þ

where xL and xR denote the left and right endpoints of the
channel, respectively. A more detailed description of the parti-
cle flow into and out of a channel is achieved by relating flux
and probability densities at x = xR,L, as in Equation (10):[40]

JxðxL; y; z; tÞ ¼ �kLPðxL; y; z; tÞ
JxðxR; y; z; tÞ ¼ kRPðxR; y; z; tÞ

ð10Þ

Positive (negative) constants kL;R correspond to partially ab-
sorbing (emitting) boundaries. As special cases, reflecting and
absorbing boundaries correspond to kR;L = 0 and kR;L ¼ 1, re-
spectively.

Finally, for an infinitely long channel the periodic boundary
conditions given by Equation (11):

Pðx,y,z,tÞ ¼ Pðx þ L,y,z,tÞ ð11Þ

are more appropriate.[38] In the case of velocity fields which are
constant with respect to time or vary periodically in time,
these boundary conditions allow for stationary-flux-carrying
solutions.[21–23]

3. Exact Results for 1D Systems

In order to set the stage, we first consider the ideal case where
the diffusion of a particle in a periodically corrugated channel
can be simulated by diffusion on an energetic landscape repre-
sented, for simplicity, by a 1D periodic potential V(x) with
period L, namely V(x + L) = V(x). Such a system is often em-
ployed to model, for instance, nanotube[41] and zeolite diffu-
sion.[2] Let us consider a Brownian particle with mass m, coordi-
nate x, and friction coefficient g, subject to a static external
force F and a thermal noise Fth(t). In the notation of Section 2.1,
we set Fext =�V’(x) + F and v(x,t)�0.

The corresponding stochastic dynamics is described by the
Langevin equation [Eq. (12)]:

m€x ¼ �V 0ðxÞ � g _x þ F þ
ffiffiffiffiffiffiffiffiffiffiffiffi
2gkBT

p
xðtÞ ð12Þ

where x(t) is the standard Gaussian noise also defined in Sec-
tion 2.1. Moreover, herein the potential V(x) can be taken as
symmetric under reflection, V(x) = V(�x).

In extremely small systems, particle fluctuations are often
described to a good approximation by the overdamped limit of
Equation (12), that is, by the massless Langevin equation given
by Equation (13):

g _x ¼ �V 0ðxÞ þ F þ
ffiffiffiffiffiffiffiffiffiffiffiffi
2gkBT

p
xðtÞ ð13Þ

where the inertia term mẍ has been dropped altogether (Smo-
luchowski approximation).

An overdamped particle is trapped most of the time at a
local minimum of the tilted potential as long as F � F3, F3 de-
noting the depinning threshold F3 ¼ maxfV 0ðxÞg. Drift occurs
by rare noise-induced hopping events between adjacent
minima. There are no such minima for F > F3 and the particle
runs in the F direction with average speed approaching the
constant F/g. This behavior is described quantitatively by the
mobility formula of Equation (14):
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mðFÞ �
_xh i
F

ð14Þ

where _xh i is given by Equation (15):

_xh i � lim
t!1

xðtÞh i
t
¼ L

tðL; FÞh i ð15Þ

Here and in the following, tnðL; FÞh i denotes the nth moment
of the first passage time t(L,F)[42, 43] of the particle crossing a
unit cell of the potential energy function in the F direction.

As the particle drifts subjected to the external force F, the
random hops cause a spatial dispersion of the particle around
its average position hx(t)i. The corresponding normal diffusion
coefficient, given by Equation (16):

DðFÞ � lim
t!1

xðtÞ2h i � xðtÞh i2
2t

ð16Þ

can be computed analytically by regarding the hopping events
in the overdamped regime as manifestations of a renewal pro-
cess, as in Equation (17):[44]

DðFÞ ¼ L2 t2ðL; FÞh i � tðL; FÞh i2

2 tðL; FÞh i3
ð17Þ

Simple algebraic manipulations lead to explicit expressions
for the nonlinear mobility, Equation (18):[38, 45, 46, 43]

mðFÞ ¼ D0L
F

1� e�LF=kB T

R
L

0 IþðxÞdx
ð18Þ

and for the diffusion coefficient, Equation (19):[44]

DðFÞ
D0
¼ L2

Z
L

0
I2
þ xð ÞI� xð Þdx �

Z
L

0
Iþ xð Þdx

� ��3

ð19Þ

Here, I�ðxÞ ¼
R

L
0 exp �VðxÞ � Vðx � yð Þ � yF=kBT½ �dy and

D0 ¼ kBT=g denotes Einstein’s coefficient for a freely diffusing
Brownian particle.

For F!0 Equations (18) and (19) reproduce the zero-bias
identity Dð0Þ=D0 ¼ gmð0Þ with mð0Þ ¼ L2

�
g
R

L
0 IþðxÞdx

� 	
.[38, 47]

Notably, as F approaches the depinning threshold F3 the mobi-
lity curve [Eq. (18)] jumps from zero (locked state) up to close
to 1/g (running state). Correspondingly, the diffusion coeffi-
cient [Eq. (19)] develops a diffusion excess peak, that is, with
D > D0, consistently with numerical observations in ref. [48] .
Both the mobility step and the D peak get sharper and sharper
as T is lowered.[44] The same conclusions apply in the presence
of inertia (i.e. for particles of finite mass m)[48, 49] as well, with
the difference that the relevant depinning threshold shifts to-
wards lower values (proportionally to g as g!0.[38])

Finally, we emphasize that the above formulas for the non-
linear mobility and the effective diffusion coefficient retain
their analytic structure even when generalized to anomalous
(sub)diffusion on a 1D substrate, by merely substituting the
normal diffusion constant D0 by the fractional diffusion con-

stant occurring in the corresponding fractional diffusion equa-
tion.[50]

4. Particle Diffusion in a Static Fluid

In the limiting case of pointlike particles with zero interaction
radius diffusing in constrained 2D or 3D geometries, elastic
contact particle–particle interactions can be neglected. As long
as hydrodynamically mediated interactions can also be ne-
glected,[35, 36] the confining action of the channel walls is mod-
eled by the perfectly reflecting boundary conditions of Equa-
tion (8).

In the presence of a constant external force pointing in the
channel direction, an overdamped Brownian particle suspend-
ed in a static medium is described by the Langevin equation
[Eq. (5)] , or by the corresponding Fokker–Planck equation
[Eq. (6)] , both with zero velocity field ~v ~x; tð Þ � 0. For a general
choice of the periodic boundary w(x), no exact analytical solu-
tions to the Fokker–Planck Equation (6) with the boundary
conditions of Equation (8) exist. However, approximate solu-
tions can be obtained by reducing the problem of free Browni-
an diffusion in a 2D or 3D channel to that of Brownian diffu-
sion on an effectively 1D periodic potential. Under such a
scheme, narrow channel constrictions, corresponding to geo-
metric hindrances in the fully dimensional problem, are mod-
eled as entropic 1D barriers.

In the absence of external forces, that is, for ~Fext ¼ 0, particle
dynamics in confined structures [see Figure 1 (a)] can be ap-
proximately described by the Fick–Jacobs kinetic equation
with a spatially dependent diffusion coefficient, as given by
Equation (20):[51–54]

@Pðx; tÞ
@t

¼ @

@x
DðxÞsðxÞ @

@x
P

sðxÞ

� �
ð20Þ

with s(x) denoting the dimensionless channel cross-section
2w(x)/L in 2D and pw2ðxÞ=L2 in 3D. Equation (20) is obtained[52]

from the full Fokker–Planck equation[Eq. (6)] for small-ampli-
tude boundary modulations w(x), on assuming a transversally
uniform density P ~x; tð Þ and integrating out the transverse coor-
dinates [for example, for a 2D channel
Pðx; tÞ ¼

R wðxÞ
�wðxÞ dyPðx; y; tÞ] . At variance with the original Fick–

Jacobs equation,[51] introducing an x-dependent diffusion coef-
ficient considerably improves the accuracy of the kinetic equa-
tion [Eq. (20)] , thus extending its validity to larger w(x) ampli-
tudes.[52–54] Here, Equation (21):

DðxÞ ¼ D0

1þ w0ðxÞ2½ �a ð21Þ

with a = 1/3 in 2D and a= 1/2 in 3D, is determined best to ac-
count for wall curvature effects.[53, 55]

In the presence of weak longitudinal drives F, the Fick–
Jacobs equation [Eq. (20)] can be extended further to Equa-
tion (22):[53, 55, 56]
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@P
@t
¼ @

@x
DðxÞ @P

@x
þ A0ðxÞ

kBT
P

� �
ð22Þ

where the free energy A(x) = E(x)�TS(x) is made up of an
energy, E(x) =�Fx, and an entropic term, SðxÞ ¼ kB ln sðxÞ. For
a periodic channel, A(x) assumes the form of a tilted periodic
potential. Moreover, for a straight channel, w’(x) = 0, the en-
tropic contributions vanish altogether and the particle is only
subject to the external drive. Of course, for F = 0 the free
energy is purely entropic and Equation (22) reduces to the
Fick–Jacobs equation [Eq. (20)] . An alternative reduction
scheme based on macrotransport theory has been proposed
recently in ref. [57].

Key quantifiers of the reduced 1D kinetics of Equation (22)
are the average particle current or, equivalently, the nonlinear
mobility [Eq. (14)] , and the effective diffusion coefficient
[Eq. (17)] defined in Section 3. On generalizing the derivation
of Equations (18) and (19) to account for the x-dependence of
D(x), one obtains,[56] respectively, Equations (23)

gmðf Þ ¼ 1� e�f

f
R

L
0

dx
L IðxÞ

ð23Þ

and (24)

Deff

D0
¼
Z

L

0

dx
L

Z
x

x�L

dz
L

DðzÞ
DðxÞ

eAðxÞ=kBT

eAðzÞ=kB T
IðzÞ½ �2 �

Z
L

0

dx
L

IðxÞ
� ��3

ð24Þ

where I(x) is given by Equation (25):

IðxÞ ¼ eAðxÞ=kBT

DðxÞ=D0

Z
x

x�L

dy
L

e�AðyÞ=kB T ð25Þ

and the dimensionless force f is defined as the ratio of the
work done by F to drag the particle a distance L, to the ther-
mal energy kBT, that is, Equation (26):

f ¼ FL
kBT

ð26Þ

Here, we stress an important difference to the energetic 1D
model of Section 3. For a particle moving in a 1D periodic po-
tential V(x), the barriers DV separating the potential wells pro-
vide an additional energy scale besides FL and kBT , so that the
particle dynamics is governed by at least two dimensionless
energy parameters, say, DV=kBT and FL=kBT .[38] In contrast,
Brownian transport in a periodically corrugated 2D or 3D chan-
nel is solely determined by the dimensionless force f.[56] This
can be proven by rescaling the problem units as follows. We
measure all lengths in units of the period L and time in units
of t ¼ L2=D0, that is, twice the time the particle takes to diffuse
a distance L at temperature T. In these new dimensionless vari-
ables the Langevin Equation [Eq. (5)] for a Brownian particle in
a static medium reduces to Equation (27):

_~x tð Þ ¼~f þ~x tð Þ ð27Þ

with no tunable constants.[58] As a consequence, the ensuing

Brownian dynamics is controlled only by the parameter f and,
of course, by the additional lengths that possibly enter the
boundary function w(x).

The f-dependence of the average particle current [Eq. (23)]
and the effective diffusion [Eq. (24)] were compared with the
results obtained by numerical integration of the 2D Langevin
equation [Eq. (5)] (for details see ref. [55]). For simplicity, the
channel walls were assumed to have the sinusoidal profile
given by Equation (28):

wðxÞ ¼ a½sinð2px=LÞ þ k�, ð28Þ

with a>0 and k>1. Here, a(k�1) are, respectively, the maxi-
mum and the minimum channel half-width. Moreover, a/L con-
trols the slope of the boundary function w(x), which in turn de-
termines the modulation amplitude of the diffusion coefficient
D(x) in Equation (21). The mobility m, Equation (14), and the
corresponding effective diffusion coefficient D, Equation (16),
were computed by ensemble averaging 3 � 104 simulated tra-
jectories.

The most significant results are displayed in Figures 2 and 3.
At variance with the purely energetic 1D models of Section 3,
the nonlinear mobility decreases upon increasing the strength
of thermal noise. Moreover, an enhancement of the effective
diffusion coefficient, with maximum exceeding the free diffu-
sion constant D0, was also observed.[56, 58]

At low values of the control parameter f the analytical ap-
proximations given by Equations (23) and (24) perfectly match
the corresponding numerical curves, whereas deviations occur
at high f. Most remarkably, contrary to the simulation output,
the analytical curves for Deff=D0 and gm fail to attain the correct
asymptotic limit 1 for f!1 (see insets in Figures 2 and 3).
This occurs because the assumption of transversally uniform
density distribution, introduced in the Fick–Jacobs formalism

Figure 2. Nonlinear mobility m vs driving force in dimensionless units,
f ¼ FL=kBT , for a 2D channel at different temperatures kBT ¼ 0:01 (� ), 0.1
(+ ), 0.2 (&), and 0.4 (~). After rescaling, all data sets collapse onto one curve
which at low f closely compares with the analytic approximation [Eq. (23),
c] . Other simulation parameters are L = 1, g= 1, and
w(x) = [sin(2px) + 1.02]/2p. The inset shows the deviation of the analytic ap-
proximation [Eq. (23), c] from the numerical results (g) for large f. Note
that the numerical curve approaches the correct asymptotic limit gm = 1.
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to eliminate the transverse coordinates, is no more tenable in
the presence of strong drives.

The agreement between theory and numerics improves for
smooth modulations of the channel walls, that is, for small
boundary slopes jw0ðxÞj, which can be achieved, among
others, for appropriately small a.[55, 58] A phenomenological cri-
terion to asses the validity of the stationary state solutions of
the Fick–Jacobs Equation (22) can be formulated by comparing
the different characteristic time scales of the problem, namely
the diffusion times in the transverse direction, given by Equa-
tion (29):

t
ðdÞ
? ¼ ð2a2=D0Þð1þ kÞ2 ð29Þ

and in the longitudinal direction [Eq. (30)]:

t
ðdÞ
k ¼ L2=2D0 ð30Þ

and also the drift time the applied force F takes to drag the
particle one channel unit length L across, given by Equa-
tion (31):

t
ðfÞ
k ¼ gL=F ð31Þ

Uniform probability distribution in the transverse direction
sets in only if the transverse diffusion motion of the particle is
sufficiently fast relative to both the diffusive and the drift lon-
gitudinal motions, which implies t

ðdÞ
? ! min t

ðdÞ
k ; t

ðfÞ
k

n o
. For large

drives it suffices to require that t
ðdÞ
? ! t

ðfÞ
k , which leads to Equa-

tion (32):[58]

f � fc �
1

2ð1þ kÞ2
L
a


 �2

ð32Þ

The critical force parameter fc, above which the Fick–Jacobs
description is expected to fail, depends on the remaining free
parameters of the problem. For the boundary function, Equa-
tion (28), fc is a function of a/L, alone, as illustrated in Figure 4.
For a @ L the Fick–Jacobs approximation already becomes un-

tenable for relatively small forces f, whereas for a ! L its validi-
ty extends to significantly larger drives.

5. Particle Diffusion in Moving Fluids

Let us assume now that a small, spherical particle is swept
along in the time-periodic velocity field ~v ~x; tð Þ of a moving, in-
compressible fluid (see Figure 1 b), rather than by a constant
force, ~Fext, as in Section 4. For ~Fext ¼ 0, its dynamics is then de-
scribed by the Langevin equation, in the overdamped limit of
Equation (33):

_~xðtÞ ¼ v
*
~xðtÞ; t½ � þ

ffiffiffiffiffiffiffiffiffiffi
2kBT

g

r
~xðtÞ ð33Þ

where the fluid velocity field~v ~x; tð Þ is to be determined.

To this end, we first write the Stokes equations for stationary
incompressible flow in the limit of vanishing Reynolds num-
bers (the convective acceleration terms in the Navier–Stokes
equations can safely be neglected). One obtains the “creeping
flow equation”, Equation (34):[34]

hD~v ~xð Þ ¼ ~rp ~xð Þ ð34Þ

where p ~xð Þ is the pressure field responsible for the stationary
laminar flow of the fluid and h is the shear viscosity. On intro-
ducing the scalar field Y(x,r), with (r,f) being the polar coordi-
nates in the transverse plane (y,z), ~v ~xð Þ can be rewritten as
Equation (35):[34]

~vðx; rÞ ¼ ~r	 Yðx; rÞ~e=r½ � ð35Þ

where~e is the unit f vector. On substituting Equation (35) into
the creeping flow equation [Eq. (34)] , one obtains Equa-
tion (36), a linear homogeneous fourth-order differential equa-

Figure 3. Effective diffusion coefficient Deff vs f for the same simulation pa-
rameters as in Figure 2 [kBT ¼ 0:01 (� ), 0.1 (+ ), 0.2 (&), and 0.4 (~)] . Here,
too, the rescaled data collapse onto one curve, which asymptotically ap-
proaches the correct limit Deff=D0 ¼ 1 (inset). The analytic approximation
[Eq. (24), c] fits the raising branch of the numerical data sets well.

Figure 4. Critical force fc vs boundary modulation amplitude a for the 2D
channel of Figure 2. Other simulation parameters are L = 1, g = 1, and
kBT ¼ 0:1. The numerical values of fc (*) were obtained by requiring that de-
viations of the Fick–Jacobs approximation from the simulation results
remain smaller than ~1 %. (c) is the fitting law fc ¼ c1ðL=aÞ2 þ c2 with
c1 ¼ 0:792 and c2 ¼ 3:524. The apparent discrepancy with Equation (32) re-
sults from the above-mentioned numerical accuracy criterion and is expect-
ed to vanish for higher accuracy. Inset : Same data sets on a logarithmic
scale.
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tion:[34, 59]

r
@

@r
1
r
@

@r
þ @2

@x2


 �2

Yðx; rÞ ¼ 0 ð36Þ

with boundary conditions given by Equations (37)–(40):

Y jr¼0¼ c ð37Þ

@

@r
Yjr¼0¼

@3

@r3 Yjr¼0¼ 0 ð38Þ

~rY x; r ¼ wðxÞ½ � ¼ 0 ð39Þ

Yðx þ L; rÞ ¼ Yðx; rÞ ð40Þ

where c is an arbitrary constant. Solutions to Equation (36) de-
termine the velocity field ~v ~xð Þ up to a multiplicative factor,
which, in turn, can be established by imposing an additional
condition, for example, for the pressure drop across a channel
unit, that is, Equation (41):[59]

pðx; rÞ � pðx þ L; rÞ ¼ �2

Z
L

0

@2

@r2 vx


 �

r¼0

dx ð41Þ

Once the velocity field for a particular channel geometry and
pressure profile is known, the Langevin equation [Eq. (33)] can
be solved numerically.

Particle separation across a microchannel is a process of
great technological importance.[7, 21] Any inhomogeneity in the
spatial distribution of an ensemble of non-interacting suspend-
ed particles can only be caused by the hydrodynamic interac-
tion between particles and walls.[39] The no-flux boundary con-
dition [Eq. (8)] for unbiased particles with ~Fext ¼~0 is given by
Equation (42):

~nð~xÞ � ~vð~xÞPð~x; tÞ � kBT
g

~rPð~x; tÞ
� �

¼ 0 ~x 2 wall ð42Þ

In the case of vanishing drift velocity normal to the channel
walls, ~n ~xð Þ �~v ~xð Þ ¼ 0, only uniform distributions are allowed
and no particle separation could ever be achieved.[39] However,
as anticipated in Section 2.2, for finite-size particles the no-flux
boundary condition [Eq. (42)] strictly holds on an effective
inner surface at a distance from the channel walls. Due to its
finite size, a particle cannot move steadily along a given flow
streamline as this gets too close to the walls. Upon hitting the
wall, the particle bounces into inner flow streamlines as if they
were subject to a transverse field gradient. These hydrodynam-
ic forces may, indeed, lead to accumulation and depletion
zones within the channel.

By implementing such a boundary effect, Kettner et al.[59]

predicted by numerical simulation that a micron-sized channel
with broken reflection symmetry can be used to separate parti-
cles according to their size, as illustrated in Figure 5. A time-os-
cillating pressure profile, ~p ~x; tð Þ ¼~p ~xð Þf tð Þ, where f(t) is a sinus-

oidal function with frequency n, is assumed to control the peri-
odic flow of the fluid, back and forth along an infinitely long
channel. Within the creeping flow approximation, the ensuing
time-dependent velocity field ~v ~x; tð Þ ¼~v ~xð Þf tð Þ is then ob-
tained in terms of the solution ~v ~xð Þ of the unperturbed Stokes
equation [Eq. (34)] , and the corresponding Langevin equation
[Eq. (33)] numerically integrated. Later on, this mechanism was
demonstrated experimentally by Matthias and M�ller.[60]

6. Single-File Diffusion

As the design and the operation of biology-inspired nanodevi-
ces[21] have become experimentally affordable, understanding
particle diffusion in a 1D potential has been recognized as a
key issue in transport control.[27] In this context the particle–
particle and particle–wall interactions play a central role. Pair
interaction between thermally diffusing particles does not
affect the normal character of Brownian diffusion, as long as
the particles are able to pass one another, no matter how
closely they are confined. This holds true even when, under
appropriate temperature and density conditions, attracting
particles cluster or condense in the potential wells.[61]

Things change dramatically for strictly 1D geometries. Let us
consider, for instance, an ensemble of N unit-mass particles
moving with preassigned dynamics along a segment of length
l. If the interparticle interaction is hard-core (with zero radius),
the elastic collisions between neighboring particles are non-
passing—meaning that the particles can be labeled according
to a fixed ordered sequence. The particles are thus arranged
into a file where, at variance with the situation described in
Section 2, their diffusion is suppressed by the presence of two
nonpassing neighbors, also movable in the longitudinal direc-
tion.

The diffusion of a free single file (SF), that is, in the absence
of a substrate, has been investigated in detail.[33] In the ther-

Figure 5. Theoretically evaluated average induced particle current ve vs par-
ticle diameter. The particle is immersed in a laminar flow confined to a chan-
nel with broken reflection symmetry (inset). The length of an individual pore
is 6 mm with a maximal pore width of 4 mm and a minimal pore width of
1.6 mm. The fluid, with viscosity nR � h=hwater and hwater ¼ 1:025 	 103N s m�2,
is periodically pumped back and forth with frequency n along the x axis of
the channel. For further details, see ref. [59] .
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modynamic limit (l,N!1 with constant density 1�N/l) the
mean square displacement of each file particle can be written
as Equation (43):

Dx2ðtÞh i ¼ jDxðtÞj=1 ð43Þ

with jDx(t) j denoting the absolute mean displacement of a
free particle. For a ballistic single file (bSF), clearly jDx(t) j=
h jv j it, where h…i is the ensemble average taken over the dis-
tribution of the initial velocities, and therefore Equation (44)
follows:

Dx2ðtÞh i ¼ jvjh it=1 ð44Þ

A bSF particle apparently diffuses like a Brownian particle with
a normal diffusion coefficient D0 ¼ jvjh i=ð21Þ. For a stochastic
single file (sSF) of Brownian particles with damping constant g

at temperature T, the equality jDxðtÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4D0t=p

p
yields the

anomalous diffusion law of Equation (45):

Dx2ðtÞh i ¼ 2DSF

ffiffi
t
p
=1 ð45Þ

where the mobility factor DSF ¼
ffiffiffiffiffiffiffiffiffiffiffi
D0=p

p
is related to the

single-particle diffusion constant D0 ¼ kBT=g. The onset of the
subdiffusive regime of Equation (45) occurs for
t > td; td ¼ ðD012Þ�1, td being the average time a single parti-
cle takes to diffuse against one of its neighbors.[62, 63] The diffu-
sive regimes [Eqs. (44) and (45)] have been demonstrated both
numerically[64] and experimentally.[36, 65]

Let x(t) represent the coordinate of one file particle, as-
sumed to be a continuous differentiable stochastic process
with h _x(t)i= 0. Kubo’s relation, Equation (46):[66]

1
2

d
dt

Dx2ðtÞh i ¼
Z

t

0
CðtÞdt ðt !1Þ ð46Þ

with C(t)�h _x(t) _x(0)i, best illustrates the role of the dimensional
constraint on SF diffusion. In the case of normal diffusion,
Dx2ðtÞh i ¼ 2D0t and the right-hand side of Equation (46) con-

verges to the positive value D0 ¼
R1

0 CðtÞdt. Thus, x(t) diffuses
subject to Einstein’s law. The subdiffusive dynamics [Eq. (45)] is
instead characterized by

R1
0 CðtÞdt ¼ 0, which, in view of

Equation (46), implies that C(t) develops a negative power-law
tail CðtÞ 
 �cbt�b with b ¼ 3

2 and cb ¼ DSF=41. Numerical simu-
lations support this conclusion. In Figure 6 we report a few
curves C(t) for different 1 and g. The negative tails are appar-
ent and compare well with the estimate derived from Equa-
tion (46) [Figure 6, inset] . They are a typical signature of the
collisional dynamics in a SF. As an effect of pair collisions, an
initial velocity _x(0) is likely to be compensated by a backflow
velocity of opposite sign.[63, 67]

6.1. Stochastic Single File on a Substrate

We now focus on the case of a SF diffusing on a sinusoidal
substrate with a potential given by Equation (47):[68, 69]

VðxÞ ¼ d½1�cosð2px=LÞ� ð47Þ

This variation of the SF model rises naturally in connection
with quasi-1D situations where the particles (not necessarily
suspended in a fluid) can be represented by disks moving
along a narrow spatially modulated channel with cross-section
smaller than twice the disk diameter (see Figure 1 c). The con-
fining action of the channel can be accounted for by modeling
the SF dynamics in terms of a periodic substrate potential with
an effective strength d. This is the case, for instance, of most
nanotubes and zeolite pores.[2]

In the simulations of refs. [63, 69] the ith particle was as-
signed as follows: 1) The particle was given a random initial
position, xi(0), and velocity, _xið0Þ. Upon each elastic collision it
switched velocity with either neighbor without altering the file
labeling. 2) Independent Brownian dynamics was determined
by a viscous force �g _xi and a thermal force

ffiffiffiffiffiffiffiffiffiffiffiffi
2gkBT

p
xiðtÞ, with

xiðtÞ-uncorrelated standard Gaussian noises defined as in Sec-
tion 2.1, in order to guarantee thermalization at temperature T.

Numerical evidence led to conclude that the periodic sub-
strate potential V(x) does not invalidate the sSF diffusion law
of Equation (45), although the dependence of the mobility
factor DSF on the system parameters becomes more complicat-
ed. In Figures 7 a and b DSF is characterized as a function of g

and T, respectively. The identity DSF ¼
ffiffiffiffiffiffiffiffiffiffi
D0=g

p
, reported above

for V(x)�0, applies here, too, under the condition of replacing
D0 with the modified diffusion constant D(F) of Equation (19).
In Figure 7 a the rescaled curves g1=2 Dx2ðtÞh i versus t overlap
asymptotically for any damping regime.

The temperature dependence of the mobility
DSF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðFÞ=g

p
, is more interesting. As implicit in the discus-

sion of Section 3, this prediction gets more and more accurate
for large g and increasingly high activation-to-thermal energy
ratios d=kBT . As a consequence, the rescaled mobility

ffiffiffiffiffiffiffiffi
g=d

p
DSF

turns out to be a function of d=kBT , alone, in good agreement
with the simulation results displayed in Figure 7 c.

6.2. Driven Single Files

Finally, we consider the case of a driven sSF, namely, we now
assume that all file particles are subjected to an additional con-

Figure 6. Velocity autocorrelation function C(t) in a sSF at kBT ¼ 1 and for
(1,g) = (0.1,3) [top, c] , (0.1,5) [middle, c] , and (0.05,5) [bottom, c] .
Inset : log–log plot of the negative C(t) tails ; c is the predicted tail
�DðtÞ=ðD01Þ2 ffi ðt=tdÞ�

3
2= 4

ffiffiffi
p
p
ð Þ.
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stant force F pointing, say, to the right (F�0). We know from
Section 3 that the diffusion of a single Brownian particle drift-
ing down a tilted washboard potential exhibits enhanced
normal diffusion with the diffusion constant given by Equa-
tion (19). Extensive simulations of a driven SF[69] yielded the nu-
merical data reported in Figure 8. The kinetic mobility of the
file, defined as m= h _xi/F, turns out to coincide with the mobility
of a single particle under the same dynamical conditions, irre-
spective of g (inset of Figure 8). More remarkably, the subdiffu-
sive regime [Eq. (45)] also applies in the presence of bias,

though with an F-dependent mobility factor. When plotted
versus d, DSF attains a maximum enhancement for d�FL/2p,
that is, in coincidence with the (noise-assisted) depinning of
the file from its sinusoidal substrate. Again, the identity
DSF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðFÞ=p

p
combined with Equation (19) for D0 provides

an excellent fit of the simulation data for large g. Of course,
the mobility enhancement at depinning can also be revealed
by plotting DSF versus F at constant d.

7. Conclusions and Outlook

Herein, we presented the state-of-the-art in diffusive transport
in systems characterized by confinement due either to their
finite size or to particle interactions in restricted geometries.
Confinement plays a salient role in the Brownian motion of
driven particles. Indeed, the entropic effects associated with
confinement may give rise to anomalous transport features.
Some main new phenomena are the entropy-driven decrease
of mobility with increasing temperature, the diffusion excess
above the free-diffusion limit and the resonant behavior of the
effective diffusion coefficient as a function of control parame-
ters such as temperature, external gradients, or geometry
design.

The reviewed transport features can thus be implemented in
the design of new transport control setups or protocols. In par-
ticular, Brownian transport through confined geometries is ex-
pected to find application in nanotechnology—for instance, to
operate devices for the separation of nanoparticles, to speed
up schemes for catalysis on templates, or to realize efficient,
driven through-flows of microsized agents, or reactants, in
miniaturized lab-on-a-chip devices.
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