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1. Introduction

The escape from a metastable state has long been a subject of theoretical atten-
tion. Such processes play an important role in physics, chemistry, engineering
sciences and bio-physics in problems such as thermoionic emmission, transport in
Josephson junctions and super-ionic conductors, modeling of chemical reaction
rates and ligand migration in proteins. Bistable systems often resemble the
model of a Brownian motion in a potential field with two or perhaps more adja-
cent wells and barriers in between which prevent the particles from jumping too
often. This is the viewpoint put forward by KRAMERS /1/ whose original work in
this field represents a milestone. In his approach, the relevant nonlinear mo-
tion is treated explicitly whereas the interaction with the residual degrees of
freedom are represented by noise and frictional forces. Kramers treated the mo-
tion in a one-dimensional potential field and described the heat bath interaction
by white Gaussian noise which satisfies an Einstein relation. Generalizations of
Kramers’ work to Brownian motion in a multi-dimensional potential field are due to
BRINKMAN /2/ , LANDAUER and SWANSON /3/ and LANGER /4/.

Often, the influence of a finite correlation time t of the thermal noise £(t)
plays a minor role on the dynamics such that a Markovian approximation for the
heat bath interaction is well justified. On the other hand, there exist situations
for which a non-Markovian heat bath interaction becomes essential. A well-known
example is given by the motional narrowing in magnetic resonance /5/ or also the
refined treatment of Brownian motion in water /6/. Our focus will be on the ex-
tension of Kramers's approach to a more general heat bath interaction described
by colored thermal noise (non-Markovian Brownian motion) and memory - damping
in overdamped regimes /7,8,9,10,11/ and energy-diffusion controlled underdamped
regimes /12,13,14/. The memory effect on the thermal activation rates has recently
been observed experimentally in the relaxation dynamics of migration of ligands in
heme proteins /9,15/ and in chemical isomerization reactions /16,17/.

The problem of escape can also be broadened to a dynamics in driven systems,
which in general do not obey the condition of manifest detailed balance /18/ and
which in general have a drift field which cannot be derived from a potential field.
Nevertheless, such systems can exhibit competing states of local stability. Early
discussions of driven nonlinear bistable systems include those by STRATONOVICH /19/
and LANDAUER /20/ . Over the last years, the interest in nonlinear driven systems
has been growing steadily in the context of describing non-equilibrium relaxation,
non-equilibrium instabilities and turbulent (chaotic) behavior, etc. There are
recent, clear , and detailed reviews of this field /21,22,23,24/. As a proto-
type for this kind of system we consider here the non-Markovian dynamics in a
bistable symmetric double well which is driven by a stationary colored Gaussian
noise , or by a telegraphic noise ( a two-state Markov process ) of variable cor-
relation time t .
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2. Thermal Activation Rates in Systems with Memory

A. Overdamped Motion

Inherent in Kramers's treatment is the assumption of a clear-cut separation bet-
ween the time scales of particle and heat-bath motion. GROTE and HYNES /7/ and
HANGGI and MOJTABAI /8,9/ treated the non-Markovian escape problem associated with
the barrier dynamics; i.e.,for moderate and heavy damping the rate determining
step is controlled by the diffusion at the top of the potential barrier. The
thermal equilibrium motion for a Brownian particle of unit mass can then be Tinea-
rized around the barrier top. For the one-dimensional motion in a petential field
U(x), one obtains with an expansion of U(x) around the barrier top Xy = 0.

2

U(x) = u(0) -gm;x - TR s wpy >0, (1)

and the linearized (uniform) memory damping ¢(t) of the thergal non-Markovian
dynamics near x = Xy = 0, the 1linear generalized Langevin equation

5 t
X = owx - étp(t-s) is)ds - + & (8). (2)

£ (t) is the stationary, non-white Gaussian thermal noise source of vanishing
mean which obeys the fluctuation-dissipation theorem

<g(t) g(s)> = k3 T o(t-s). (3)
The relations (2) and (3) consistently /25c/ describe the non-Markovian Gaussian
thermal equilibrium process near x = x, . Its conditional probability pt(x,i|xo,xo)
prepared initially at time t_ =0 sat?sfies the time-convolutionless “(but pot
memory-less) non-Markovian m3ster equation /8/

’

. . 9 . 3 — B .
pt=[-x—-é~; -m(t)xa;( 1py "'Y(t);;_("—(XPt)
_ 32 kBT i ) 32
+ kBT Y (t)(;;;; Ry * wﬁ [ w(t) - wp ] ;;;g‘ Pt (4a)
Y() =-a(t) alt) 5 & (t)=b(t)/ a(t) (4b)
t
a(t)=p(t) [1 + o} [ (s)ds ] - wf o2(t) (4c)
o 0
b (t) = wi [ o(t) o(t) - p%(t) 1. (4d)

The correlation p(t) is given by the inverse Laplace transform ( L'l), Lf(t)= f(z)

p ()= UL/ (2202 +24(2)) ] , p(tg=0) =0.  (de)

There are of course arbitrary many different coupling schemes modeling the heat
bath interaction, which result within the linearized dynamics in a uniform memory
function ¢(t) obeying (3). In this context, it should be noted that keeping the
full nonlinearity for the conservative drift motion while keeping the memory
damping uniform is in general inconsistent with an initial thermal equilibrium
preparation of the total system / 22,25/. In other words, writing with a memory
damping ¢(t) and a noise £(t) obeying (3)

- t .
x= - 3aUfax - £ o(t-s) x (s) ds + E(t) (5)
the initial canonical probabilty Po
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Py = P = ra exp - (3 ;2 + U(x) ) / kBT (6)

does in general not stay invariant under time evolution; i.e.,p, #%p , t >t .
As an example of a consistent Markovian mode]in? of the heat bakh interaction” we
consider a coupling to a set of bath variables z],....,zn) which is of the form

126/
X = p
p= -293U/x + Z,
I A A TS 11
)5 =tz otz +g(t)
T T %1 T M % * En(t) (7a)
where Y > 0 c; > 0 s 15 15...50 s Y, >0, (7b)
and < gi(t)e(s) >=2 Gi’jkBTyi(mEIcm)é(t-—s). (7¢)

The corresponding multi-dimensional Fokker-Planck equation is readily seen to have
the thermal equilibrium probability

exp - [ U(x) + 1 p2 + 1 zf /c1 + ...+ 1 zi /(c1c2"'cn)]/kBT

(8)
with no correlations among the variables. On contracting the dynamics in (7) onto
the relevant variables (x,X) one recovers for an initial preparation scheme/25/
consistent with (8) the generalized nonlinear Langevin equation (GLE) in (5). The
uniform memory damping is given by its Laplace transform as /26/

p=1"

(o] c C
- 1 2
¢ lz) = et i ceiass " . (9)
z + -Y_I+ z + Y2+' z+y

Due to (7b), all the continued fraction coefficients in (9) are positive (inclu-
ding zero). In particular, note that the example of a two-term exponentially de-
caying memory ¢(t)

o(-t) = ¢(t) =exp-t + exp- 2t . Tl (10)
which has the Laplace transform (written as a continued fraction)
& = |
#(z) = : . c, <0, (1)

z+ 3% Z+3,

is not a possible memory function for the above special heat bath coupling (7).
However, within the linearized non-Markovian dynamics near the barrier Xp= 0,
(1-3), the memory damping in (10) is permitted fully.

Next,let us generate a non-equilibrium current J by injecting particles at the
Tocally stable well, say x_, and removing them at the adjacent well, say x'. For
moderate and heavy damping? the particle density n_ around x_is given by the
thermal equilibrium probability inside the well ar8und x_ /7210/. Then, the ther-
mal activation rate r equals at low noise (without this 3ssumption the problem
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of escape is not well defined anyhow) the ratio
r= J/ ny - (12)

Evaluating the constant non-equilibrium current J via the non-Markovian dynamics
in (4) /8,9,10/ one obtains for the escape rate in the moderate and heavy damping
regime /7-11/
o wo a
r=—— exp - Eb/kBT = rTST . (13)
2n wy wp

Hereby, E, denotes the barrier height ?gq wg = U"(x_ ) 1is the angular frequency
in the boEtom of the potential well. r indicates the familiar transition state
theory result /27,28/. The effective frequency o /8,9,10/

2 2

a=Tim [ (3Y () + a(t))F -37(t) ] (14)

T

is determined solely by wy and the memory damping ¢(t), see (4b - 4e). Assuming

that p(t) ( or ¢(t) ) admits a representation in form of a meromorphic function
(including a slight generalization thereof /9/) it has been shown first in Ref./9/,
and later in /10,11/, that a equals the largest, real and positive pole, z = «a
of p(z) in (4e). Clearly,this is equivalent with a being the fLargest positive
solution of
wf
! a4 & —m . (15)
at ¢ (a)

(15) s known as the Grote - Hynes relation /7/. However, those authors did not
originally specify o as being the largest positive solution among possibly se-
veral positive solutions of (15). Also note that a continued fraction representa-
tion of §(z) of the type in (9),with Y; and c; rnot necessarily all positive,

is equivalent to a meromorphic function representation in the form of a [n-1/n]
Padé approximant /29/.

For the memory damping

o(-t) = o(t) = [ A/ (c+t'™) Jexp - (uPt/yy) , 0 g kgl , t0, (16)

which occurs in the modeling of overdamped CO or 0, migration in myoglobin/9,15/,
the behavior of the effective frequency o versus = solvent damping y_ is
sketched in Fig.1. The explicit fits to experimental data can be found ifi Ref. 15.

The form of the memory damping in (16) is due to DOSTER /15/. In his pac-man
ﬁode1 of dynamic friction, the memory damping ¢(t) is modeled by a correlation
of local defect fluctuations (e t ~ 1) and a statistically independent coupling
‘to global protein-solvent fluctuations ( « exp - w?t/ : )

loga |- =

Fig. 1 Schematic sketch of the effective
frequency o versus solvent damp-
ing ; for the memory damping in

(16)
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The arguments given above for a non-Markovian motion in a one-dimensional po-
tential field U(x) can be extended to a multi-dimensional potential field U(x) in
which the transport occurs over sequential saddle points.The influence of the
multi-dimensional potential field reduces then essentially to a pure phase-space
factor. This factor equals the product of the frequencies in the locally stable
potential well over the the product of stable frequencies at the saddle point.

The multi-dimensional generalization of (13), valid for moderate and heavy damping,
thus reads/9/

o
rJ'ST

: : (17)

“b
where r;ST denotes the N-dimensional generalization of the transition state rate.

B. Underdamped Motion

The term "underdamped motion" refers to a situation for which the rate determining
step is controlled by a slow particle diffusion up along the energy or action co-
ordinate. At Tow damping, the motion is close to the conservative motion and es-
cape up in energy becomes very difficult. Now, the population in the initial well
can no longer be assumed to be in thermal equilibrium. If the memory damping is weak
the appropriate physically relevant process is the energy diffusion. This was al-
ready realized by KRAMERS /1/, who obtained in the Markovian limit an escape rate
proportional to the frequency-independent damping. In presence of memory damping,
the energy diffusion can be modeled by an effective Fokker-Planck equation/12,13/
for the action variable J or energy variable E. Originally, this effective Fokker
Planck equation had been derived for an anharmonic oscillator by ZWANZIG /30/.

For extremely weak underdamping, the rate 'r can be identified with the inverse
of the mean first passage time t ?E ) to reach the absorbing top of the barrier
/11,12,13/. This of course amounts Eo setting the nonequilibrium population densi-
ty n_(E) at the barrier top equal to zero, n (E,) = 0. A recent refinement of
Krame?s‘origina] approach for the underdampedoreBime /31/ treats the uphill diffu-
sion in energy just as Kramers did; but in addition allows in the range above the
barrier for a simultaneous flow out of the well, across the barrier - thus imply-
ing no(Eb) > 0. The same idea can be generalized to the case of memory damping
/14/."In" the 1imit of a deep well one obtains for the thermal activation rate,
valid in the underdamped regime /14/,

(1 + 4/ (g, )82)? - 1

r‘:
(1+4/ D(Eb)BZ)i +1

182 0(E) rT 5= (k1) . (18)

In the Markovian 1limit we have ve D(E,) = J(E,) y k. T,and the result of (18)
coincides with Ref. /31/. Moreover, on e andinglihe bPacket i? (18) in function
of D(EB) » the prefactor vanishes =« D(Eb) (1- const.(D(Eb)) ) /32/ which in the

Markovian Timit equals the behavior of the lowest non-zero eigenvalue /32,33/.
Also, note that in the underdamped regime the rate in (18) incorporates via D(Eb),
or the action J(E, ), information of the global shape of the potential well. For

a smooth barrier “region, D(EB) is approximately given by

D (Ey) = kT J () ¢ (2=0) , (19)

whereas for a cus4ped-shaped barrier (e.g.,a truncated harmonic oscillator potenti
al) one has approximately

D (E,) = kT 9 () [ 6(t) cosluot /2n) dt. (20)
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3. Non-Equilibrium Bistable Flow Driven by Colored Noise

As a prototype of a bistable flow driven by colored noise, which does not obey the
fluctuation-dissipation theorem (3), we consider the set of Langevin equations

X = ax - px3 + y , a>0 , b>0 (21)
y=-01/ 1) y+ n(t). (22)

n(t) is a stationary Gaussian white noise of zero mean and correlation
< n(t) n(s) > =(20/1*) ¢ (t-s). (23)

Upon integrating (22) from an initial time t = 0, y(0) = Y, » one obtains by
virtue of

<y,>=0 , <y‘2)> = D/t (24)

a nonlinear Langevin equation driven by stationary colored noise y(t)
X = ax - x>+ y(t) (25a)
<y(t) >=0 , <y(t) y(s) > =(D/t ) exp - |t-s| / = . {25b)

Note that y(t) is a Gaussian only if y has been prepared initially with a Gaus-
sian condistent with (24). Moreover, ~given at time t = 0 the initial prepara-
tion po(x,y) , the variable x(0) and the noise y(0) “are generally correlated

’ <x(0) y(0)>% 0. (26)

In the following we assume that the processes x  and y, are initially sta-
tistically independent (correlation-free initial prEparation /25/). We also res-
trict the further discussion to the case of stationary Gaussian noise y(t) obey-
ing (25b). For a symmetric telegraphic noise y(t) obeying (25b), the exact acti-
vation rates of bistable flows have been evaluated by HANGGI and RISEBOROUGH in
Ref./34/. Those rates have been shown to exhibit an exponential enhancement with
decreasing correlation time 1 at fixed noise intensity D /34/. The exact dy-
namics and the rates of asymmetric telegraphic noise /35,36/y(t) obeying (25b),
which contains as limits both a particular type of white shot noise and white
Gaussian noise, has been the subject of another recent study /35/.

The joint process of (21) and (22) constitutes a two-dimensional Fokker-Planck
process. However, it does not satisfy detailed balance /18,22/ and thus its stati-
onary probability is not readily determined. For weak noise, one usually sets for
the stationary probability p (x,y)

P (x,y) = alx,y) exp - ( v, (x,y)/D +0 (D) ). (27)

Then, o @const) obeys the first-order differential equation /37,38/

(ax =-b 3 + y ) 3o /ox - 1']y o/ dy + 1-2(3¢n/3y)2 = 0 (28)
and a(x,y) too,obeys a corresponding first-order differential equation /38/. With
Py = o/ 93X py = dyo/dy , it is convenient to interpret yo as the action of a
reversible system with a Hamiltonian

PR -1 .3
H Py /t -1 y Py + (ax - bx” + y) Py - (29)

Then (28) coincides with the Hamilton - Jacobi equation of a system with the Hamil-

tonian (29), moving on the hypersurface H = 0 /39/. Therefore, the characteristic
system of (28) is given by the canonical equations of (29). Now, the rigorous
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existence of y, independent of D is intimately connected with the integrability of
the Hamiltonian H /40/. Integrability of a Hamiltonian is well known to be a non-
generic special property. In particular, apart from the integration constant in
(28), i.e.,H = 0, the author has not yet found a second constant of integration
for (29). An explicit example, showing that y, does not exist independent of D,is
given by the stationary probability of a flow driven by telegraphic noise (see re-
Tation (7) in Ref. /34/ or (2.11) in Ref./35/ ). This same stationary probability
has also been used in the description of phase diagrams of telegraphic noise-indu-
ced transitions /41/. Although H is in general not integrable, the ansatz in (27)
can still present a useful approximation away from repellers or saddle points of
the deterministic motion /40/. With H non-integrable, (27) is however of limited
use in an explicit_evaluation of activation rates in multi-dimensional systems
/39,42,43/, i.e., p must be found a priori by other methods /22,34,35,42/ or one
uses numerical methods.

In view of such difficulties, one might as well directly focus on the one-di-
mensional, but non-arkovian dynamics x, in (25). The rate of change of the pro-
bability pt(x) obeys the exact relation /44/

3
)

Py = = ax - b ) p +
T
£ (/)2 [ exp - (t-s) <[ ex(t)/ay(s) 1 s(x(t) - x)> ds  (30)
X2 o T

where &x(t)/sy(s) is the functional derivative. This functional derivative obeys
an integral equation /44/ which for (25) reads

t
éx(t)/sy(s) = o(t-s) [ 1+ [( a - 3bx2(r)) sx(r)/ey(s) dr ]. (31)

S
On expanding (§x(t)/sy(s)) around s~ = t, and iterating the relation in (31), we
observe that p, obeys a master equation which is of thﬁ Kﬁamers-Moyal type.
Moreover, infin?te]ynmnyserieswithterms of the order D" ', n >1 , m gn , con -
tribute both to higher order Kramers-Moyal moments K_, n > 2, and to the drift
and diffusion moments K a'ndnl(2 /45/. In what follow?, we neglect transients and
sum up the terms of ordlr Dt only. This results ip an approximative Fokker-
Planck structure /46/. Keeping the terms of order Dt only is not systematic /44,
45,47/; in particular, this Fokker-Planck approximation /46/ is not identical with
the truncated (at second order) Kramers-Moyal expansion /45/. Nevertheless, due
to its simplicity, we shall use thig approximation for (25), which results in

d

. ]

B 3
Py = - —Ei-(ax - bx7) p. +D —;;;~ G (x,7) Pt (32)

where with f(x) = ax - bx> /45,46/

B g
G(x,t)= f(x) (1 + xf(x) —)
X f(x)

G (x, I) is not necessarily positive for all x. Therefore, we use for the diffu-
sion: G (x,t) = G (x,7) o(G(x,1)).

Because of the neglect of transients in (32) ( in this context, it cannot be
over-emphasized that the ( t+ » ) - 1imiting master operator for p,(x) is in gene-
ral different for different initial preparation schemes;the statioﬁary probability,
however, is of course independent of initial preparation), we look upon (32) as
a small relaxation time approximation to the long time behavior of (25). With (32)
we can readily express the rate as the inverse mean first passage time of_the ap-
5roximative Fokker-Planck equation (32). This procedure gives a rate r =r =r

45/

. (33)

r = (a/-/?"n)[(1-2ar)/(l+ar}]é exp-(4 /D) . (34a)
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The Arrhenius factor Ay, which is determined solely by the values of the stationa-
ry probability at the extrema, reads explicitly

Ay = (a2/4b) (1-a+) + 0 fx?] (34b)

Note that with the approximation (32), Ay does not exhibit a correlation time de-
pendence in first order in t. In view of this fact, we performed a numerical si-
mulation /45/. In contrast to our forecasting in (34b), Ay is actually Ancreasing
proporiional to t (see Fig.2) /45/. This clearly is bad news; it simply shows
that the wings of the stationary probability p (x) are in leading order in ¢ not
recovered from a short relaxation time Fokker-Planck approximation scheme,

) NG
0.30

0.25 -

| |
0.05 0.1

Fig. 2 Simulation results for the Arrhenius factor A y versus noise
correlation time t (after Ref. /45/).The parameter values are
a=b=1,0D=0.1(e) and D = 0.05 (+). The maximum error bar
of the numerical calculation is estimated to be about 10 %. The
arrow denotes the white noise limit, A y (r=0) = (a%/4b) = 0.25
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