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I. INTRODUCTION

In the year 1905 Albert Einstein published four pap
that raised him to a giant in the history of science. Th
works encompass the photo-electric effectsfor which he ob
tained the Nobel prize in 1921d, his first two papers onsspe-
ciald relativity theory, and his first paper on Brownian m
tion, entitled “Über die von der molekularkinetisch
Theorie der Wärme geforderte Bewegung von in ruhen
Flüssigkeiten suspendierten Teilchen”ssubmitted on 11 Ma
1905d.1 Thanks to Einstein’s intuition, the phenomenon
served by the Scottish botanist Robert Brown2 in 1827—a
little more than a naturalist’s curiosity—becomes the k
stone of a fully probabilistic formulation of statistical m
chanics and a well-established subject of physical inves
tion which we celebrate in this Focus Issue entitled—for
reason—“100 Years of Brownian Motion.”

Although written in a dated language, Einstein’s first
per on Brownian motion already contains the cornerston
the modern theory of stochastic processes. The author
out using arguments of thermodynamics and the conce
osmotic pressure of suspended particles to evaluate a p
diffusion constant by balancing a diffusion current wit
drift currentsthrough Stokes’ lawd. In doing so, he obtains
relation between two transport coefficients: the particle
fusion constant and the fluid viscosity, or friction. This re
tion, known as the Einstein relation,3 was later generalized
terms of the famous fluctuation-dissipation theorem
Callen and Welton4 and by the linear response theory
Kubo.5 A much clearer discussion of Einstein’s argume
can be found in his thesis work, accepted by the Unive
of Zurich in July 1905, which he submitted for publicatio6

on 19 August 1905.
The second part of his 1905 paper contains a heu

derivation of the soverdampedd diffusion equation, from
which he deduces his famous prediction that the root m
square displacement of suspended particles is proportio
the square root of time. Moreover, the trajectories o
Brownian particle can be regarded asmemory-lessand
nondifferentiable,7 so that its motion isnot ballistic sa bold
statement that troubled mathematicians for half a centud.
The latter also explained why earlier attempts to measur
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velocity of Brownian particles yielded puzzling results
indeed were doomed to fail.

A crucial consequence of Einstein’s theory is that fro
measurement of the diffusion constant, i.e., by measurin
distancetraveled rather than the velocity, it would be p
sible to extract an independent estimate of the important
much debated Avogadro–Loschmidt number,N. Notably, the
earliest determination of this number dates back to 186s!d
when Johann Josef Loschmidt tried first to measure the
of molecules:8 his data for mercury were compatible with
“best” value of 4.431023 molecules per mole. Inspired
Einstein’s work, an ingenious “reality check” on the role
fluctuations was performed through a series of experim9

by Perrin and his students in 1908–1911; Einstein’s pre
tions could be beautifully verified by setting the Avogad
Loschmidt number in the ranges6.4–6.9d31023/ fmolg; by
1914 the first three digits of the actual figure
6.022 141 531023/ fmolg with a standard uncertainty
0.000 001 031023/ fmolg, were finally accepted.10

The publication of Einstein’s papers provided furt
strong evidence for the atomistic hypothesis of matter.
immediate validation of his theory finally vindicated the
guments of the “discontinuists;” the remaining “continuis
such as Wilhelm Ostwald, and in particular Ernst Machfthe
latter being famous for his cynical remark to all “disc
tinuists:” “haben wir’s denn gesehen?”sdie Atome/
Moleküled, meaning “have we actually seen it?”sthe atoms
moleculesdg had thus no choice left but to concede.

We will not belabor any further the history of Browni
motion and the pioneering developments of its theory
Einstein’s contemporaries like Marian von Smoluchows11

swho worked on the molecular kinetic approach to Brown
motion since 1900, but did not publish until 1906d, Pau
Langevin,12 and Norbert Wiener.13 Beautiful accounts hav
been given in the literature by several authors. We me
here in particular the intriguing and most insightful introd
tory chapter by Mazo,14 the short histories by Haw15 and
Powles,16 or the notes presented by Nelson.17

II. THE IMPACT OF BROWNIAN MOTION THEORY UP
TO PRESENT

Without any doubt, the problem of Brownian motion
played a central role in the development of both the fou
tions of thermodynamics and the dynamical interpretatio

statistical physics. A theory of Brownian motion based on the
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molecular-kinetic theory of heat, as that proposed by
stein in 1905, does provide the link between an elemen
underlying microscopic dynamics and macroscopic obs
able phenomena, such as the ubiquitous fluctuations o
tended systems in natural and social sciences.

The early theories of Brownian motion inspired ma
prominent developments in various areas of physics,
subject of active research. In the following we briefly m
tion some of those addressed in the present Focus Issu

Among the first to dwell on the ramifications of t
fluctuation-dissipation relation were, as mentioned alre
Callen and Welton:4 These authors generalized the relati
by Einstein, and subsequently by Nyquist and Johnso
the voltage fluctuations, to include quantum effects. In t
fundamental work, they established a generally valid con
tion between the response function and the associated
librium quantum fluctuations, i.e., the quantum fluctuat
dissipation theorem.

Another key development must be credited to Lars
sager: via hisregression hypothesis, he linked the relaxatio
of an observable in the presence of weak external pert
tions to the decay of correlations between associated m
scopic variables.18 This all culminated in the relations com
monly known as the Green–Kubo relations.5,19,20This notion
of “Linear Response” which in turn is related to the fluct
tion properties of the corresponding variablessresponse
fluctuation theoremsd can as well be extended to arbitra
sdynamical and nondynamicald systems that operate far fro
equilibrium:21 The corresponding fluctuation-theorem re
tions swhere the imaginary part of response function ge
ally is no longer related to the mechanism of phys
energy-dissipation21d provide most valuable information o
the role ofnonequilibriumfluctuations.

These “fluctuation theorems,” which describe the lin
response to external perturbations in arbitrary statistical
tems far away from thermal equilibrium, should not be c
fused with the recent beautifulnonequilibrium work rela
tions, often also termedfluctuation theorems. This latter
branch of fluctuation research was initiated by Evanset al.22

and then formalized in thechaotic hypothesisof Galavotti
and Cohen.22 Independently, Jarzynski23 proposed an inte
estingequality, being valid for both closed and openclassi-
cal statistical systems: It relates—a priori surprisingly—the
difference of twoequilibrium free energies to the expectat
of a particularly designed, stylizednonequilibrium work
functional.

There is also an ongoing debate on the true origi
irregularity that causes the stochastic, random charact
Brownian trajectories. In particular, is a chaotic microsco
dynamics sufficient, or is it more the role played by the
treme high dimensionality of the phase space that, on re
tion, causes the jittery motion of the individual Brown
particles? The present Focus Issue contains an elucid
contribution by Vulpiani and collaborators,24 who addres
precisely this and related issues. Answering this basic q
tion becomes even more difficult when we attempt to inc
quantum mechanics. The description of Brownian motion
general quantum systems still presents true challenge

25
the discussion herein by Hänggi and Ingoldand Ankerhold
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et al.26 For example, little is known for the modeling fro
first principles of quantum fluctuations in stationary none
librium systems, or on the connection between the com
ity obtained upon phase-space reduction and the micros
quantum chaos.

The theory of Brownian motion also had a substa
impact on the theory of quantum mechanics itself. The
mulation of quantum mechanics as a sum over paths27,28 has
its roots in the diffusive nature of the trajectories of a Bro
ian walker in continuous time: The Feynman–Kac prop
tor is nothing but a Schrödinger equation in imaginary ti
In diffusion theory this idea had been utilized as early a
1953 by Onsager and Machlup29 for Gauss–Markov pro
cesses with linear coefficients. Its nontrivial extensions to
case with nonlinear drifts and nonlinear diffus
coefficients30 and to colored noise driven nonline
dynamics31 have been mastered only 15–30 years ago.

The debate on Brownian motion also inspired mathe
ticians like Cauchy, Khintchine, Lévy, Mandelbrot, a
many physicists and engineers to go beyond Einstein’s
mulation. Nondifferentiable Brownian trajectories in mod
language are called “fractal” and statistically self-similar
all scales. These extensions carry names such as f
Brownian motion, Lévy noise, Lévy flights, Lévy walk
continuous time random walks, fractal diffusion, etc.32,33

This topic is presently of wide interest and is being use
describe a variety of complex physical phenomena exh
ing, e.g., the anomalous diffusive behaviors reviewed he
Sokolov and Klafter,34 or the diffusion limited growth an
aggregation mechanisms discussed by Sander and Som35

The quest for a mathematical description of the Bro
ian trajectories led to a new class of differential equati
namely the so-called stochastic differential equations.
equations can be regarded as generalizations—pionee
Paul Langevin—of Newtonian mechanical equations tha
driven by independent, stochastic increments obeying e
a Gaussianswhite Gaussian noised or a Poissonswhite Pois
son noised statistics. This yields a formulation of the Fokk
Planck equationssmaster equationsd in terms of a nonlinea
Langevin equations generally driven by multiplicative, w
GaussiansPoissond noisessd. As the aforementioned indepe
dent increments correspond to unbounded trajectory v
tions, the integration of such differential equations mus
given a more general meaning: This led to the stoch
integration calculus of either the Ito type, the Stratono
type, or generalizations thereof.21,36,37 In recent years, th
method of modeling the statistical mechanics of gene
nonlinear systems driven by random forces has been d
oped further to account for physically more realistic n
sources possessing a finite or even infinite noise-corre
time scolored noised, i.e., noise sources that a
non-Markovian.38 In this Focus Issue Luczka39 provides a
timely overview of this recent progress together with
newest findings.

A powerful scheme to describe and characterize a s
tical nonlinear dynamics from microscopic first principle
given by the methodology of non-Markovian, generali
Langevin equations or the associated generalized m

equations. This strategy is by now well developed and un-
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derstood only forthermal equilibrium systems. The projecto
operator approach,40,41 which is used to eliminate the irre
evant sphase spaced degrees of freedom, yields a clear-
method to obtain the formal equations for either the rat
change of the probability or the reduced density oper
i.e., the generalizedsquantumd master equation or the no
linear generalizedsquantumd Langevin equation.42 The latter
approach proved very useful to characterize the comple
laxation dynamics in glasses and related systems.43

There exists an abundance of processes in phy
chemistry schemical kineticsd, biology and engineerin
where the dynamics involves activated barrier cross
and/or quantum tunneling-assisted processes through
ers. In all these processes the time scale for escape ev
governed by fluctuations that typically are of Brownian m
tion origin. The first attempts to characterize escape dyn
ics date back to the early 1930s with contributions by Far
Wigner, Eyring, Kramers, to name a few prominent o
This topic was extended in the late 1970s early 1980
account also forsnon-Markoviand memory effects, solven
effects, quantum tunneling, nonequilibrium fluctuations,
related noisessi.e., colored noisesd,38 nonlinear bath degre
of freedom and time-dependent forcing. The intere
reader is directed to a comprehensive review44 and is furthe
referred to the up-to-date accounts given by Pollak
Talkner45 and Hänggi and Ingold25 in this issue.

The combined action of external driving and noise
given rise to new phenomena, where the constructive ro
Brownian motion provides a rich scenario of far-from eq
librium effects. The most popular such novel feature is
phenomenon ofstochastic resonance:46 It refers to the fac
that an optimal level of applied or intrinsic noise can d
matically boost the responsesor, more generally the tran
portd to typically weak, time-dependent input signals in n
linear stochastic systems. This theme naturally play
crucial role in biology with its variety of threshold-like sy
tems that are subjected to noise influences.47

A more recent but increasingly popular example of
constructive role of fluctuationssintrinsic and external, aliked
is the noise-assisted transport in periodic systems, na
the so-calledBrownian motors.48

Researchers are still very much active in these two
ics: This Focus Issue contains both an experimental a
theoretical contribution to stochastic resonance by Bech
et al.49 and Casado-Pascualet al.50 The theme of noise
assisted transport is multifaceted and very rich; this is
roborated with several appealing contributions by Linket
al.,51 Borromeo and Marchesoni,52 Savel’ev and Nori,53 and
Eichhornet al.54

III. RESUME

This Focus Issue on “100 Years of Brownian Motion
not only timely but also confirms that research in this are
very much alive and still harbors plenty of surprises that
wait to be unravelled by future researchers. The orig
ideas that Einstein put forward in 1905 are very modern
still find their way to applications in such diverse area
soft matter physics,55 including the granular systems inves

56
gated here by Brilliantov and Pöscheland the soliton dif-
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fusion in linear defects,52,57 solid state physics, chemic
physics, computational physics, and beyond. In recent y
ideas and tools developed within the context of the Brow
motion theory are gaining increasing impact in life scien
sthe contribution by Zakset al.58 provides a timely exampled
and even in human studies, where econophysics is beco
a lively crossroad of interdisciplinary research, as sh
with the study by Bouchaud59 in this issue.

We Guest Editors share the confident belief that the
tributions in this Focus Issue by leading practitioners fro
diverse range of backgrounds will together provide a fair
accurate snapshot of the current state of this rich and
disciplinary research field. Last but not least, we hope
this collection of articles will stimulate readers into pursu
future research of their own.
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