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ABSTRACT A detailed introduction to directed transport in
Brownian motors occurring in spatially periodic systems far
from equilibrium is presented. We elucidate the prominent
physical concepts and novel phenomena with a representative
dissipative Brownian motor dynamics. Its main ingredient is
a thermal noise with time-dependent temperature modulations
that drive the system out of thermal equilibrium in a spatially
asymmetric (ratchet-) potential. Yet, this asymmetric setup does
not exhibit a concomitant obvious bias into one or the other di-
rection of motion. Symmetry conditions for the appearance (or
not) of directed current, its reversal upon variation of certain
parameters, and various other generic features and applications
are discussed. In addition, we provide a systematic classifica-
tion scheme for Brownian motor models and review historical
landmark contributions to the field.

PACS 5.40.-a; 5.60.-k

1 Introduction

Can useful work be extracted out of unbiased ran-
dom fluctuations if all acting forces and temperature gradients
average out to zero? As far as macroscopic fluctuations are
concerned, the task can indeed be accomplished by various
kinds of mechanical or electrical rectifiers, such as a wind-
mill or a self-winding wristwatch. On the other hand, in the
case of microscopic fluctuations, i.e. Brownian “noise”, this
question has provoked debates ever since the early days of
Brownian motion theory [1–4]: Prima facie speaking, there
seems indeed no obvious reason why a periodically work-
ing device with a broken inversion symmetry (ratchet device)
should not preferentially loop in either one or the other di-
rection under the action of unbiased random perturbations.
In the absence of any such prohibitive a priori reason, and in
view of the fact that, after all, the symmetry of the system
is broken, the manifestation of such a preferential direction
of motion appears indeed to be an almost unavoidable edu-
cated guess, though a rigorous proof can hardly be given. This
very postulate that if a certain phenomenon is not ruled out by
symmetries then it will generically occur, is known as Curie’s
principle [5].

✉ Fax: +49-821/5983-222, E-mail: reimann@physik.uni-augsburg.de

Yet, as already argued by Smoluchowski in 1912 [2] and
popularized later by Feynman [4, 6], in spite of the broken
symmetry, no preferential direction of motion is possible if
only equilibrium fluctuations are at work. Otherwise, such
a device would constitute a Maxwell-demon type perpetuum
mobile of the second kind [1, 7], which is in contradiction
to the second law of thermodynamics. Note that this con-
clusion does not undermine Curie’s principle: A necessary
condition for a system to be at thermal equilibrium can also be
expressed in the form of a symmetry condition, namely the so-
called detailed balance symmetry [8, 9]. However, in contrast
to what we have called above an obvious prohibitive reason
for a preferential direction of motion, detailed balance sym-
metry is a rather subtle probabilistic concept which in certain
situations is at odds with one’s own intuition. Nevertheless,
its main physical content is rather simple, expressing in a for-
mal manner the reversibility (time-inversion symmetry) of
a stationary equilibrium process, which in turn immediately
leads us back to the impossibility of a preferential direction of
motion. We finally note that reversibility is not sufficient for
a system to be at equilibrium, as can be exemplified by station-
ary non-equilibrium systems which satisfy detailed balance
symmetry.

2 Basics

In order to quantify and develop further these con-
siderations, we focus on a Brownian particle in one dimension
with coordinate x(t) and mass m, which is governed by a New-
tonian equation of motion of the form

mẍ(t)+ V ′(x(t)
) = −ηẋ(t)+ ξ(t) , (1)

where V(x) is a periodic potential with period L,

V(x + L) = V(x) , (2)

which exhibits broken spatial symmetry (a so-termed ratchet
potential). A typical example reads

V(x) = V0 [sin(2πx/L)+0.25 sin(4πx/L)] , (3)

which is depicted in Fig. 1.
The left-hand side in (1) represents the deterministic, con-

servative part of the particle dynamics, while the right-hand
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FIGURE 1 Typical example of a ratchet potential V(x): It is periodic in
space with period L and possesses a broken spatial symmetry. Plotted is the
example from (3) in dimensionless units

side accounts for the effects of the thermal environment.
These are energy dissipation, modeled in (1) as viscous fric-
tion with a friction coefficient η, and randomly fluctuating
forces in the form of the thermal noise ξ(t). These two terms
are not independent of each other, because they both have the
same origin, namely the interaction of the particle x(t) with
a huge number of microscopic degrees of freedom of the en-
vironment. In fact, our assumption that the environment is an
equilibrium heat bath at temperature T , whose effect on the
system can be modeled in the form of the phenomenologi-
cal ansatz appearing on the right-hand side of (1), completely
fixes all statistical properties of the fluctuations ξ(t) without
the need to refer to any microscopic details of the environ-
ment [10]. Namely, in order not to allow for a perpetuum
mobile of the second kind, the fluctuations ξ(t) are bound to be
a Gaussian white noise of zero mean,

〈ξ(t)〉 = 0 , (4)

satisfying the fluctuation–dissipation relation [11–13]

〈ξ(t)ξ(s)〉 = 2ηkBTδ(t − s) , (5)

where kB is Boltzmann’s constant, i.e. the noise ξ(t) is uncor-
related in time.

The state variable x(t) in (1) will usually be referred to
as a “Brownian particle” and in many relevant instances in-
deed describes the position of a true physical particle. More
generally, it may also represent some quite different type of
collective degree of freedom or other relevant (slow) state
variable of the system under investigation. Examples appear-
ing in other contributions to the present special issue include
a chemical reaction coordinate, geometric configuration co-
ordinates, or some internal degrees of freedom of cellular
transport enzymes as they occur in the modeling of molecular
motors and pumps, the Josephson phase in a superconducting
quantum interference device, and alike. In these typically very
small systems the fluctuation dynamics is often to a good ap-
proximation governed by an overdamped Langevin dynamics,
that is, the inertia term mẍ(t) then becomes negligible [9, 14].
We thus arrive at the following minimal equilibrium ratchet

model:

ηẋ(t) = −V ′ (x(t))+ ξ(t) . (6)

The quantity of foremost interest in the context of trans-
port in periodic systems is the average particle current in the
long-time limit (after initial transients have died out), i.e.

〈ẋ〉 : =
〈

lim
t→∞

x(t)− x(0)

t

〉
. (7)

It is intuitively plausible, and it can also be readily confirmed
by a more rigorous formal calculation, that – as far as the vel-
ocity ẋ(t) is concerned – the infinitely extended state space in
(6) can be substituted by a circle, i.e. we can identify x + L
with x. Accordingly, the probability density P(x, t) associated
with a statistical ensemble of independently sampled random
processes (6) inherits the spatial periodicity L and is normal-
ized on the unit cell [0, L]. Moreover, one can infer that the
average particle current (7) can be rewritten in the form

〈ẋ〉 = − lim
t→∞

1

t

t∫
0

dt ′
L∫

0

dx
V ′(x)

η
P(x, t ′) . (8)

The time evolution of P(x, t) is quantitatively described by
a so-called Fokker–Planck equation [9, 14]. For our present,
archetype dynamics in (6), this equation yields in the long-
time limit – as one would have expected – a Boltzmann-type,
steady-state solution Pst(x) of the form

Pst(x) = exp [−V(x)/kBT ]∫ L
0 dy exp [−V(y)/kBT ]

. (9)

With (8) this implies for the particle current the result

〈ẋ〉 = 0 . (10)

In other words, we find once again that at thermal equilibrium,
in a spatially periodic potential there arises – in spite of the
system intrinsic asymmetry – no preferential direction of the
random Brownian motion.

Finally, we complement our minimal ratchet model (6) by
an additional homogeneous, static force F:

ηẋ(t) = −V ′(x(t)
)+ F + ξ(t) . (11)

It is instructive to incorporate the ratchet potential V(x) and
the force F into a single effective potential Veff(x) := V(x)−
xF, which the Brownian particle (11) experiences. For ex-
ample, for a negative force, F < 0, pulling the particles to the
left, the effective potential will be like in Fig. 1, but now tilted
to the left. In view of the result (10) for F = 0, it is suggested
that in such a tilted potential the particles will move on aver-
age “downhill”, i.e. 〈ẋ〉 < 0 for F < 0, and similarly 〈ẋ〉 > 0
for F> 0. This conclusion can also be confirmed with detailed
quantitative calculations along similar lines to the above dis-
cussed case for F = 0. Here, we content ourselves with the
remark that detailed balance symmetry is broken when F �= 0,
suggesting according to Curie’s principle the emergence of
a non-zero current. Such a current can then only point in the
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same direction as F, in order not to yield a perpetuum mobile
of the second kind.

The appearance of a non-vanishing current 〈ẋ〉 further-
more signals that the ratchet system is driven away from
thermal equilibrium by the static force F in (11) with the con-
comitant possibility for a motor action.

2.1 Proof-of-principle device: Brownian motor driven
by temperature oscillations

Next we turn to the central issue of this section,
namely the phenomenon of noise-induced, directed transport
in a spatially periodic, asymmetric system away from thermal
equilibrium. This so-called “ratchet effect” is very often illus-
trated by the example of an on–off ratchet model, as originally
devised by Bug and Berne [15] and independently by Ajdari
and Prost [16] (see also Sect. 4 below). Here, we will eluci-
date the prominent physics with a different example, namely
the so-called temperature ratchet model [17]. This Brownian
motor model, however, actually turns out to be closely related
to the on–off ratchet model. We emphasize that the choice of
this example is not primarily based on its historical signifi-
cance but rather on the authors’ personal taste and research
activities. Moreover, this example is particularly suitable for
the purpose of illustrating – besides the ratchet effect per se –
also several other basic physical concepts, upon which we will
elaborate in more detail in the following subsections.

In order to illuminate the mechanism of a Brownian motor,
we consider as an extension of the model in (11), the situation
where the noise strength, as represented by the temperature T
of the Gaussian white noise ξ(t) in (5), is subjected to periodic,
temporal modulations with period T [17], i.e.

〈ξ(t)ξ(s)〉 = 2ηkBT(t)δ(t − s) , (12)

T(t) = T(t +T ) . (13)

Two typical examples which we will adopt for our numerical
investigations below are

T(t) = T {1 + A sign [sin (2πt/T )]} , (14)

T(t) = T [1 + A sin (2πt/T )]2 , (15)

where sign(x) denotes the signum function and |A| < 1. With
the first realization in (14) the temperature thus jumps be-
tween T(t) = T [1 + A] and T(t) = T [1 − A] at every half
period, T /2. Due to these permanent changes of the tempera-
ture, T(t), the system approaches a periodic long-time asymp-
totics, which in general can only be handled numerically.

We next come to the pivotal feature of the temperature
ratchet model (11)–(13): In the case of the statically tilted
model with a time-independent temperature T we have seen
above that for a given force, say F < 0, the particle will move
“downhill” on average, i.e. 〈ẋ〉 < 0. This fact holds true for
any fixed (non-zero) value of T . Returning to the tempera-
ture ratchet with T being now subjected to periodic tempo-
ral variations, one therefore should expect that the particles
still move “downhill” on average. The numerically calculated
“load curve” depicted in Fig. 2 demonstrates [17] that the op-
posite is true within an entire interval of negative F values.
Surprisingly indeed, the particles are climbing “uphill” on

- 0 , 0 2

0

0,02

0,04

- 0 , 0 4 - 0 , 0 2 0 0,02

<
x

>

F

.

FIGURE 2 Numerically determined time- and ensemble-averaged particle
current 〈ẋ〉 in the long-time limit versus the force F for the temperature
ratchet model (3), (11), (12) and (14). Using dimensionless units, the param-
eter values are η = L = T = kB = 1, V0 = 1/2π, T = 0.5 and A = 0.8

average, thereby performing work against the load force, F.
This upward directed motion is apparently triggered by no
other source than the white thermal noise ξ(t).

A conversion (or rectification) of random fluctuations into
useful work as exemplified above is termed the “ratchet ef-
fect”. For a setup of this type, the names thermal ratchet [18],
Brownian motor [19], Brownian rectifier [20] (mechanical
diode [21]), stochastic ratchet [22], or simply ratchet are in
use.1 Because the average particle current 〈ẋ〉 usually depends
continuously on the load force F it is for a qualitative analy-
sis sufficient to consider the case F = 0: the occurrence of the
ratchet effect is then tantamount to a finite current,

〈ẋ〉 �= 0 for F = 0 , (16)

i.e. the unbiased Brownian motor implements a “particle
pump”.

In order to understand the basic physical mechanism be-
hind the ratchet effect at F = 0, we focus on strong, i.e.
|A|� 1, dichotomous periodic temperature modulations from
(14). During an initial time interval, say t ∈ [T /2,T ], the
thermal energy kBT(t) is kept at a constant value, kBT [1 − A],
much smaller than the potential barrier ∆V between two
neighboring local minima of V(x). Thus, all of the particles
will have accumulated in the close vicinity of the potential
minima at the end of this time interval, as sketched in the lower
panel of Fig. 3. Then, the thermal energy jumps to a value
kBT [1 + A] much larger than ∆V and remains there during
another half period, say t ∈ [T , 3T /2]. Because the particles
then hardly feel the potential any more in comparison to the
violent thermal noise, they spread out in a manner which is
typical for the case of free thermal diffusion (upper panel in
Fig. 3). Finally, T(t) jumps back to its original low value of
T [1 − A], and the particles slide downhill towards the respec-
tive closest local minima of V(x). Due to the asymmetry of

1 The notion “molecular motor” should be reserved for models focus-
ing specifically on intracellular transport processes. Similarly, the notion
“Brownian ratchet” has been introduced in a rather different context,
namely as a possible operating principle for the translocation of proteins
across membranes [23].
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FIGURE 3 The basic working mechanism of the Brownian motor
model (11), (12) and (14). The figure illustrates how Brownian particles, ini-
tially concentrated at x0 (lower panel), spread out when the temperature is
switched to a very high value (upper panel). When the temperature jumps
back to its initial low value, most particles are captured again in the basin
of attraction of x0, but also substantially in that of x0 + L (hatched area).
A net current of particles to the right, i.e. 〈ẋ〉 > 0 results. Practically the same
mechanism is at work when the temperature is kept fixed and instead the po-
tential is turned “on” and “off” (on–off ratchet) [15, 16]. Especially, in both
cases a finite amount of thermal noise is indispensable for a non-zero particle
current

V(x), the original population of one given minimum is re-
distributed asymmetrically, yielding a net average displace-
ment after one temporal period T .

In the case where V(x) has exactly one minimum and max-
imum per period, L (as in Fig. 3), it is quite obvious that if
the local minimum is closer to its adjacent maximum to the
right (Fig. 3) a positive particle current, 〈ẋ〉 > 0, will arise. Put
differently, upon inspection of the lower part of Fig. 3, it is
intuitively clear that during the cool-down cycle the particles
must diffuse a long distance to the left and only a short dis-
tance to the right, yielding a net transport against the steep hill
towards the right. All these predictions rely on our assump-
tions that T [1 − A] and T [1 + A] are much smaller and larger
than ∆V , respectively, and that the time period T is suffi-
ciently large. For more general temperature modulations, the
direction of the current becomes much less obvious to predict,
as will be demonstrated in Sect. 2.4 below.

2.2 Modifications and applications

In contrast to the explanation of the direction of
the current in Fig. 3, the ratchet effect (16) itself obviously
persists for very general temperature modulations T(t) due
to Curie’s principle. For the same reason, the ratchet effect
is also robust with respect to modifications of the potential
shape [17] and is recovered even for random instead of de-
terministic modulations of T(t) [24–26], a modified dynamics
with a discretized state space [27], and in the presence of a fi-
nite inertia [28].

In all these cases, the particle current is bound to approach
zero in the adiabatic limit (i.e. asymptotically slow tempera-
ture modulations) according to the finding in (10). A similar
conclusion can be reached for asymptotically fast temperature
modulations. Interestingly enough, a more detailed perturba-
tive analysis of the periodic case (13) reveals that the current
actually approaches zero in both asymptotic regimes remark-

ably fast, namely as T −2 and T 2, respectively [17]. Thus, the
temperature ratchet turns out to be in some sense rather reluc-
tant to obey Curie’s principle in the asymptotic regimes.

In practice, the required magnitudes and time scales of the
temperature variations may be difficult to realize experimen-
tally by directly adding and extracting heat; it may, however,
become feasible indirectly, e.g. by pressure variations. A pos-
sible exception to this general rule is a situation involving
point contact devices with a defect tunneling incoherently be-
tween two states [24]. Furthermore, it has been suggested
in [29] that microorganisms living in convective hot springs
may be able to extract energy out of the permanent tem-
perature variations they experience; the temperature ratchet is
a particularly simple mechanism which could accomplish the
task. Moreover, a temperature-ratchet-type modification of
the experimental work put forward in [30] has been proposed
in [31]. Finally, it is known that certain enzymes (molecu-
lar motors) in living cells are able to travel along polymer
filaments by hydrolyzing ATP (adenosine triphosphate) [32].
The interaction (chemical “affinity”) between molecular mo-
tor and filament is spatially periodic and asymmetric, and
thermal fluctuations play a significant role on these small
scales. Roughly speaking, the ATP hydrolyzation energy is
quickly converted into a very irregular vibrational motion of
the numerous fast (irrelevant) internal degrees of freedom of
the enzyme, giving rise to a locally increased apparent tem-
perature. As this excess heat spreads out (diffuses away), the
temperature decreases again. In other words, hydrolyzing an
ATP molecule may be viewed as converting a certain amount
of chemical energy into heat. Overall, we thus recover all the
necessary ingredients of a temperature ratchet. The idea that
local temperature variations may assist intracellular transport
has been hinted at in terms of Feynman-type ratchet devices
as early as in 1990 [18]. Admittedly, modeling the molecu-
lar motor as a Brownian particle without any relevant internal
degree of freedom (apart from T(t)) and the ATP hydroly-
sis as mere production of heat is a gross oversimplification
from the biochemical point of view, but may still be accept-
able as a primitive sketch of the basic physics. Especially,
quantitative estimates in [33, 34] indicate that the real tem-
perature variations are probably not sufficient to account for
the observed traveling speed of molecular motors. For a more
detailed discussion of the modeling of molecular motors, we
also refer to the article by Astumian in the present special
issue.

A cute game theoretic re-interpretation of the ratchet
effect has been devised by Parrondo [35, 36] (see also
http://seneca.fis.ucm. es/parr/). Namely, for each of the two
possible temperatures in (14), the random dynamics (6) may
be considered as a game of chance, and by construction each
of these two games in itself is fair (unbiased). The astonishing
phenomenon of the ratchet effect then translates itself into the
surprising observation that by randomly switching between
two fair games one ends up with a game which is no longer
fair.

2.3 What characterizes a Brownian motor?

We begin by emphasizing once more that the
ratchet effect as exemplified for the temperature ratchet model
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of Fig. 2 is not in contradiction to the second law of thermo-
dynamics, because we may consider the temperature changes
in (14) as being caused by two heat baths at two different
temperatures. From this viewpoint, our Brownian motor is
nothing else than an extremely primitive and small heat en-
gine. The fact that such a device can produce work is therefore
not a miracle – but is still amazing.

However, there is also one distinct difference between the
conventional types of heat engines and a Brownian motor as
exemplified by the temperature ratchet. To this end we first
note that the two “relevant state variables” of our present
system are x(t) and T(t). In the case of an ordinary heat en-
gine, these state variables would always cycle through one and
the same periodic sequence of events (“working strokes”). In
other words, the evolutions of the state variables x(t) and T(t)
would be tightly coupled (interlocked and synchronized). As
a consequence, a single suitably defined effective state vari-
able (e.g. the continuation of an index, labelling the above-
mentioned periodic sequence of events) would actually be
sufficient to describe the system. In contrast to this standard
scenario, the relevant state variables of a genuine Brownian
motor are loosely coupled. Of course, some degree of inter-
action is indispensable for the functioning of the Brownian
motor, but while T(t) completes one temperature cycle, x(t)
may evolve in several very different ways (x(t) is not “slaved”
by T(t)).

The loose coupling between state variables is a salient
point which makes the Brownian motor concept more than
just a fancy new look at certain very small and primitive,
but otherwise quite conventional, thermo-mechanical or even
purely mechanical engines. Accordingly, the presence of
some amount of (not necessarily thermal) random fluctua-
tions is an indispensable ingredient of a genuine Brownian
motor (exceptionally, deterministic chaos may be a substi-
tute for noise). Especially, we note that, obviously, symmetry
breaking and some time-dependent forcing are necessary re-
quirements for any type of directed transport, supplemented
by a certain periodicity if a cyclically operating device is
involved. Yet, it is not justified to sell every such little “en-
gine” under the new fashionable label “ratchet” or “Brownian
motor”, especially if the governing (deterministic) transport
principle is completely trivial, as, for example, for a purely
mechanical ratchet in the original sense (such as a lifting
jack), for interlocked mechanical gears, or for Archime-
dian and other “screw-like” pumping and propulsion devices.
Rather, one distinguishing feature of a Brownian motor is
that (random or deterministic) noise plays a non-negligible
or even the dominating role, with the consequence that, in
general, not even the direction of transport is obvious (see
also Sect. 2.4 below). A second essential requirement is that
all acting forces are unbiased, i.e. after averaging over time,
space, and ensemble, no systematic component remains.

The issue of whether the coupling between relevant state
variables is loose or tight has been widely discussed in the
context of molecular motors [37–39] under the name of
mechanochemical coupling. The general fact that such cou-
plings of non-equilibrium enzymatic reactions to mechani-
cal currents play a crucial role for numerous cellular trans-
port processes has long been known [40, 41]. The possibil-
ity of a loose mechanochemical coupling is one of the main

conceptually new aspect of the “ratchet paradigm” as com-
pared to “traditional” biological models for molecular motors.
Whether or not this coupling is indeed to some extent loose is
still under debate, but only if the answer turns out to be posi-
tive can we expect a significant impact of the Brownian motor
approach to the modeling and understanding of the physics
that reigns a molecular motor dynamics.

A further closely related question in this context concerns
the efficiency of a Brownian motor. This issue has recently de-
veloped into an entire subfield of its own right and is treated
in more detail in the contribution by Parrondo and Jiménez de
Cisneros to the present special issue.

2.4 Tailoring current reversals: a new paradigm for
particle separation

In this section we show that under more general
conditions than those depicted in Fig. 2 the sign of the current
〈ẋ〉 may be already very difficult to understand on simple intu-
itive grounds, not to mention its quantitative value. This leads
us to another basic phenomenon in Brownian motor systems,
namely the inversion of the current direction upon variation
of a system parameter. Early observations of this effect have
been reported in [42–47]; here we illustrate it once more for
our standard example of the temperature ratchet [17].

Our starting point is the observation that in the absence of
a static tilt, i.e. F = 0, the current 〈ẋ〉 of the temperature Brow-
nian motor in (11) and (12) is inverted if one goes over from
the potential V(x) to its mirror image V(−x). It follows [48]
that by continuously deforming V(x) into V(−x) in such a way
that spatial periodicity and asymmetry is always maintained,
there must exist some intermediate step where 〈ẋ〉 = 0. From
the viewpoint of Curie’s principle this is called a non-generic
situation: since no “systematic” symmetry reason for the ab-
sence of current can be figured out, we may speak of an
accidental symmetry in this case. In other words, Curie’s prin-
ciple thus postulates the absence of accidental symmetries in
the generic case. That is, an accidental symmetry may still
occur as an exceptional coincidence, or by a fine-tuning of
parameters; typically, however, it will not occur. Accidental
symmetries are structurally unstable – an arbitrarily small per-
turbation destroys them – while a broken symmetry is a struc-
turally stable situation. Consequently, upon slightly changing
any parameter of the model, the immediate re-appearance of
a finite current can be expected, implying the existence of a so-
called “current reversal” of 〈ẋ〉 as a function of that specific
model parameter. An example of a potential V(x) exhibiting
such a current reversal is plotted in Fig. 4, and the resulting
current is depicted as a function of the specific model param-
eter η in Fig. 5. When compared to the example from Fig. 1,
the modification of the ratchet potential in Fig. 4 looks rather
harmless. In particular, compared with Fig. 3, the explanation
of a positive current, 〈ẋ〉 > 0, for a large temporal period T
still applies. However, for the rather small T value used in
Fig. 5, this innocent-looking modification of the potential has
obviously a very drastic effect on the value and the sign of the
resulting current.

According to Fig. 5, Brownian particles with different
friction coefficients η move in opposite directions when ex-
posed to the same thermal environment and the same ratchet
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FIGURE 4 The ratchet potential V(x) = V0{sin(2πx/L) + 0.2 sin[4π(x/
L −0.45)]+0.1 sin[6π(x/L −0.45)]} plotted in dimensionless units
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FIGURE 5 Numerically determined time- and ensemble-averaged particle
current 〈ẋ〉 in the long-time limit versus the friction coefficient η for the
Brownian motor model (11), (12) and (15) with the ratchet potential V(x)
from Fig. 4. Using dimensionless units, the parameter values are F = 0,
L = kB = 1, V0 = 1/2π, T = 0.1, A = 0.7 and T = 0.17

potential. This is, for example, the case for spherical particles
of different diameters in a liquid with the corresponding fric-
tion coefficients given by Stokes law. Had we not neglected
the inertial effects mẍ(t) in (1), such a particle separation
mechanism also would occur with respect to the mass pa-
rameter, m. This can be inferred along the very same line of
reasoning as above; it similarly holds true for any other dy-
namically relevant particle property!

Promising applications of such current reversal effects for
particle separation methods that are based on the ratchet ef-
fect involve the modes of pumping, separating and shuttling
of particles of differing size, mass, charge, etc. Moreover, the
separation mechanism is acting continuously in time without
the need to stop and start again a separation device in order to
add or extract the corresponding particle yields. Another inter-
esting aspect of current inversions arises from the observation
that structurally very similar molecular motors may travel in
opposite directions on the same intracellular filament. If we
accept the temperature ratchet as a crude qualitative model
in this context (see Sect. 2.2), then also the latter feature can
be reproduced: If two types of molecular motors are known
to differ in their ATP consumption rate 1/T , or in their fric-
tion coefficient η, or in any other parameter appearing in our

temperature-ratchet model, then one can tailor a ratchet po-
tential V(x) in the above-described manner such that they will
indeed move in opposite directions.

Multiple current reversals have been exemplified in [49–
58]. In this case, particles with parameter values within a char-
acteristic “window” may be separated from all the others.
The first systematic investigation of such multiple inversions
from [58] suggests that it may even be possible to tailor an
arbitrary number of current reversals at prescribed parameter
values.

2.5 Generalized reversibility and supersymmetry

While, in accordance with Curie’s principle, cur-
rent inversions, i.e. 〈ẋ〉 = 0, are interesting exceptional situ-
ations, they are atypical in the sense that they require fine-
tuning of parameters. From this viewpoint, the absence rather
than the presence of directed transport in spite of a broken
spatial symmetry is the truly astonishing situation away from
thermal equilibrium. In this section, an entire class of such in-
triguing exceptional cases is identified which, in particular, do
not require fine-tuning of model parameters.

As usual, we exemplify the general principle at work by
way of our temperature-ratchet model (11), (12) and (13) in
the unbiased case where F = 0. Our first observation is that
when we replace the potential V(x) by V(−x) the average cur-
rent 〈ẋ〉 changes its sign. As a consequence, if there exists
a ∆x such that V(−x) = V(x +∆x), i.e. the potential is sym-
metric, we can conclude that 〈ẋ〉 = 0. In the same way, one can
infer that the average current 〈ẋ〉 also changes its sign if one
considers x(−t) in place of x(t) and at the same time replaces
V(x) and T(t) by −V(x) and T(−t), respectively. As a con-
sequence, we can again conclude that 〈ẋ〉 = 0 if there exist
quantities ∆x, ∆V , and ∆t such that

− V(x) = V(x +∆x)+∆V , (17)

T(−t) = T(t +∆t) . (18)

In fact, under these symmetry conditions, the Brownian mo-
tor model (11)–(13) exhibits reversibility in the sense that
x(−t) is again a solution of the model dynamics (up to irrele-
vant shifts of the time and space origins). In other words, it is
impossible to decide whether a movie of the process runs for-
ward or backward in time, with the immediate consequence
that 〈ẋ〉 = 0. In this respect, we are dealing here with a natu-
ral extension of the concepts of time-inversion symmetry and
detailed balance symmetry as discussed at the end of Sect. 1.

As far as the detailed formal proof of the above conclu-
sions is concerned, we refer to [48, 59]. Related considera-
tions for the case with inertia can be found in [60]. We also
mention that a potential with the property (17) is tradition-
ally called supersymmetric [59]. Here, we borrow this pre-
viously established notion of supersymmetry without further
discussing its connection with quantum-mechanical concepts.
For an example of a supersymmetric potential see Fig. 6.
A corresponding example for time-inversion symmetry (18) is
provided by (14) or (15).

In other words, the quite surprising result of our above
considerations is that if both the potential V(x) and the tem-
perature T(t) satisfy their respective symmetry conditions,



REIMANN et al. Introduction to the physics of Brownian motors 175

- 2

- 1

0

1

2

- 1 - 0 , 5 0 0,5 1

  
V

(x
)

x / L
FIGURE 6 Example of a supersymmetric potential V(x) (in arbitrary units)
of the type (17) with ∆x = L/2 and ∆V = 0

(17) and (18), then, in spite of the broken spatial symmetry,
the temperature-ratchet model (11)–(13) with F = 0 exhibits
zero current for any choice of the friction η, the period L, and
the characteristic amplitude and time scale of the temperature
modulations, for example, in (14) and (15). In contrast to usual
current inversions, no fine-tuning of those parameters is thus
required in order that 〈ẋ〉 = 0.

Note that this conclusion is no contradiction to Curie’s
principle, since a generic variation within the entire class of
admitted ratchet models also involves a change of V(x) and
T(t) such that the symmetry conditions (17) and (18) are no
longer strictly satisfied. In fact, as we have seen above, the
very same situation also arises for a symmetric instead of a su-
persymmetric V(x) in combination with an arbitrary T(t). In
other words, we find that for both “systematic” and “acciden-
tal” symmetries the result 〈ẋ〉 = 0 is unstable with regard to
completely general, generic variations of the model, while the
property 〈ẋ〉 �= 0 is robust with regard to such variations, i.e.
“a finite current is the rule”.

3 Typology

The essential ingredient of the ratchet effect from
Sect. 2.1 has been a modification of the equilibrium ratchet
model (6) so as to permanently keep the system away from
thermal equilibrium (detailed balance). We have exempli-
fied this procedure by a periodic variation of the temperature
(13), but there clearly exists a great variety of other types
of non-equilibrium perturbations. The general considerations
throughout the preceding Sect. 2 lead to the following guid-
ing principles which should also be observed in the design of
a more general Brownian motor:

• Use of spatial (or cyclic) periodicity.
• All acting forces and gradients have to vanish after averag-

ing over space, time, and statistical ensembles.
• Random forces (of thermal, non-thermal, or even determin-

istic (chaotic) origin) should play a prominent role.
• Breaking of detailed balance symmetry (thermal equilib-

rium).
• Symmetry breaking.

Regarding the last requirement, there are essentially three
different ways in which it can be accomplished: First, the spa-
tial inversion symmetry of the periodic system itself may be
broken intrinsically, that is, already in the absence of the non-
equilibrium perturbations. This is the most common situation

and typically involves some kind of periodic and asymmetric,
so-termed ratchet potential. A second option consists in the
use of asymmetric non-equilibrium perturbations f(t): On the
one hand, these may be stochastic fluctuations f(t), possess-
ing non-vanishing, higher-order odd multi-time moments –
notwithstanding the requirement that they must be unbiased,
i.e. the first moment vanishes. On the other hand, such an
asymmetry can also be created by unbiased (deterministic)
periodic non-equilibrium perturbations f(t). Both variants in
turn induce a spatial asymmetry of the dynamics. Yet a third
possibility arises via a collective effect in coupled, perfectly
symmetric non-equilibrium systems, namely in the form of
spontaneous symmetry breaking [61, 62]. Note that in the lat-
ter two cases we speak of a Brownian motor dynamics even
though a ratchet potential is not necessarily involved.

The first main class of Brownian motors are so-called tilt-
ing ratchets [63] of the general form

ηẋ(t) = −V ′(x(t)
)+ f(t)+ ξ(t) . (19)

In other words, the minimal equilibrium ratchet model (6) is
perturbed by an additive, unbiased non-equilibrium force f(t)
and the homogeneous, static load force F from (11) has been
omitted, see (16). Furthermore, one mostly focuses on pertur-
bations f(t) which are either a stationary stochastic process
or a periodic function of time. When V(x) is a ratchet po-
tential, these two options are referred to as fluctuating force
ratchet or rocking ratchet [47], respectively. Note that the
latter represents a particularly natural situation in many ex-
perimental systems. Coming to symmetric potentials V(x), we
have already mentioned above that the (periodic or stochas-
tic) non-equilibrium process f(t) now has to carry the spa-
tial asymmetry of the dynamics without introducing an obvi-
ous a priori bias, suggesting the name asymmetrically tilting
ratchet [48, 64].

A second main class – called fluctuating potential ratch-
ets – are of the form

ηẋ(t) = −V ′(x(t)
)[1 + f(t)]+ ξ(t) . (20)

The summand 1 is a matter of convention, reflecting a kind
of “unperturbed” contribution to the total potential. The class
of fluctuating potential ratchets contains as a special case the
on–off ratchets, for which f(t) can take on only two possible
values, one of them being −1 (potential “off”). In this case,
it turns out [48] that an asymmetric ratchet potential, together
with finite thermal noise ξ(t) is indispensable for directed
transport, independent of any further details of the periodic or
stochastic driving f(t), see also Fig. 3.

More general time-dependent variations of the potential
shape, without affecting its spatial periodicity, which are in-
duced by the non-equilibrium perturbation f(t) may be re-
ferred to as pulsating ratchets. A specific subclass thereof,
called travelling potential ratchets [48, 65–67], have poten-
tials of the form V

(
x − f(t)

)
. The most natural choice, already

suggested by the name “travelling potential”, are functions
f(t) with a systematic long time drift, e.g. f(t) = ut with
a constant “travelling speed” u. A modification are functions
f(t) which proceed in discrete jumps so that the relevant po-
tential V

(
x − f(t)

)
switches between several spatially shifted
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but otherwise identical static potentials. The operating prin-
ciple of a great variety of important (largely mechanical) en-
gines is based on a travelling potential ratchet mechanism.
Yet, many of them are close or even beyond the borderline
between the realm of genuine Brownian motors and that of
conventional engines and pumps as discussed in Sect. 2.3.

A further important class of ratchets is given by models of
the form (5), but, in contrast to the temperature ratchet (12),
with a space-dependent temperature profile T(x) of the same
periodicity L as the potential V(x). The close similarity of
such a model to the Seebeck effect suggests the name Seebeck
ratchet [48].

Much like for the illustrative example of the temperature
ratchet – discussed in Sects. 2.1 and 2.4 – and also for many of
the above more general ratchet models, predicting by simple
arguments the actual direction of the transport is already far
from obvious, not to mention its quantitative value. In particu-
lar, while the occurrence of a ratchet effect is the rule accord-
ing to Curie’s principle, exceptions with zero current are still
possible. For instance, such a non-generic situation may be
created by fine-tuning of some parameter. Usually, the direc-
tion of transport then exhibits a change of sign upon variation
of this parameter, i.e. a current reversal. As in Sect. 2.4, these
current inversions can often be imposed in a well-controlled
manner by tailoring the shape of the potential and/or the prop-
erties of the non-equilibrium driving f(t). By generalizing the
line of reasoning from Sect. 2.5, another type of exception can
be traced back to symmetry reasons with the characteristic
signature of zero current without fine-tuning parameters.

Clearly, there are many further possible combinations
and generalizations of the above compiled very simple ba-
sic ratchet models. Extensions that come to mind, to name
but a few [48], include: a simultaneously pulsating and tilt-
ing scheme; taking into account finite inertia effects mẍ(t) (cf.
(1)); two instead of one spatial dimensions; time- or space-
dependent friction; deviations from spatial periodicity in the
form of some quenched spatial disorder; the superposition of
several periodic contributions with incommensurate periods;
models with spatially discretized state variables; quantum-
mechanical effects, i.e. the class of “quantum Brownian mo-
tors” [68, 69]; and collective effects for many interacting
Brownian motors [35, 61, 62, 70–74]. In particular, the most
promising avenues for future new research on Brownian mo-
tors are situations that involve a coupling among many Brow-
nian motors and the shuttling or control of directed transport
of quantum objects such as electrons or spin degrees of free-
dom in quantum dot arrays, stylized nanoscale devices and
molecular wires (molecular electronics).

An enormous amount of work has been devoted in recent
years to the detailed theoretical exploration of all these numer-
ous interesting specific models. Moreover, a quite appreciable
and rapidly growing number of experimental studies and bio-
logical as well as technological applications have been estab-
lished. A basically complete list of relevant publications up to
1994 is contained in the following section. Since then, the lit-
erature has grown by several hundred items. A systematic re-
view even of the most important among them goes far beyond
the scope of our present pedagogical introduction. A selection
of short review articles includes [20, 39, 63, 73, 75], feature
articles on an elementary level are [76–78], and a special issue

devoted to the subject is [79]. A comprehensive recent review,
on which also the present article is largely based, is the work
in [48].

4 Genealogy

Progress in the field of Brownian motors has
evolved via contributions from various physical directions
including also repeated re-discoveries of the same basic prin-
ciples in different contexts. For this reasons, a brief historical
tour d’horizon seems appropriate here. At the same time, this
provides a flavor of the wide variety of applications of Brow-
nian motor concepts.

Though certain aspects of the ratchet effect are contained
implicitly already in the works of Archimedes, Seebeck,
Maxwell, Curie, and others, Smoluchowski’s Gedankenex-
periment from 1912 [2], regarding the prima facie quite aston-
ishing absence of directed transport in spatially asymmetric
systems in contact with a single heat bath, may be consid-
ered as the first sizable major contribution. The next important
step forward was Feynman’s famous recapitulation and ex-
tension [4] to the case of two thermal heat baths at different
temperatures.

Brillouin’s paradox [3] from 1950 may be viewed as
a variation of Smoluchowski’s counterintuitive observation.
This paradox refers to the non-trivial objective of a consistent
modeling of the non-linear thermal fluctuations in the pres-
ence of a non-linear relaxation dynamics. Such a situation
occurs, for example, in a thermal system with non-linear con-
ductance. For a more detailed elucidation of such a subtle
fluctuation analysis in an electric circuit containing a linear
capacitance and a non-linear resistance being in contact with
a thermal heat bath, we refer the reader to Sect. 6.2 in [9]; in
particular, the non-linear thermal fluctuations are then not ca-
pable of providing an average finite voltage. Likewise, Feyn-
man’s prediction that in the presence of a second heat bath
a ratchet effect will manifest itself has its Brillouin-type cor-
respondence in the Seebeck effect, discovered by Seebeck in
1822 without having in mind, of course, any idea about the
underlying microscopic ratchet effect.

Another root of Brownian motor theory leads us into the
realm of intracellular transport research, specifically the bio-
chemistry of molecular motors and molecular pumps. In the
case of molecular motors, the concepts which we have in
mind here have been unraveled in several steps, starting with
A. Huxley’s ground-breaking 1957 work on muscle contrac-
tion [80] and continued in the late 1980s by Braxton and
Yount [81] and in the 1990s by Vale and Oosawa [18], Leibler
and Huse [33, 82], Cordova, Ermentrout, and Oster [83], Mag-
nasco [21, 37], Prost, Ajdari, and collaborators [73, 84], Astu-
mian and Bier [39, 85], Peskin, Ermentrout, and Oster [86, 87]
and many others (see [32] for a review). In the case of mo-
lecular pumps, the breakthrough came with the theoretical
interpretation of previously known experimental findings [88]
as a ratchet effect in 1986 by Tsong, Astumian and cowork-
ers [89]. While the general importance of asymmetry-induced
rectification, thermal fluctuations, and the coupling of non-
equilibrium enzymatic reactions to mechanical currents for
numerous cellular transport processes is well known [40, 41],
the above works introduced for the first time a quantita-



REIMANN et al. Introduction to the physics of Brownian motors 177

tive microscopic modeling beyond the linear response regime
close to thermal equilibrium. Especially, in the biophysical
literature [40, 41] the notion of Curie’s principle has previ-
ously been mostly used for its implications in the special case
of linear response theory (transport close to equilibrium) in
isotropic systems, stating that a force can couple only to cur-
rents of the same tensorial order.

On the physical side, a ratchet effect in the form of volt-
age rectification by a dc-SQUID in the presence of a magnetic
field and an unbiased, slow ac current (i.e. an adiabatic tilting
ratchet scheme) was experimentally observed and theoret-
ically interpreted as early as 1967 by De Waele, Kraan, de
Bruyn Ouboter, and Taconis [90]. Further, directed transport
induced by unbiased, temporally periodic driving forces in
spatially periodic structures with broken symmetry has been
the subject of several hundred experimental and theoretical
papers since the mid-1970s. In this context the 1974 paper by
Glass, von der Linde, and Negran [91] on the so-called pho-
tovoltaic and photorefractive effects in non-centrosymmetric
materials, presents a ground-breaking experimental contribu-
tion. The general theoretical framework was elaborated a few
years later by Belinicher, Sturman and coworkers, and re-
viewed – together with the above-mentioned numerous ex-
periments – in their capital works [92, 93]. Especially, they
identified as the two main ingredients for the occurrence of the
ratchet effect in periodic systems the breaking of the thermal
equilibrium (detailed balance symmetry) and of the spatial
symmetry.

The possibility of producing a dc output by use of two su-
perimposed sinusoidal ac inputs at frequencies ω and 2ω (i.e.
a harmonic mixing mechanism) in a spatially periodic, sym-
metric system, exemplifying an asymmetrically tilting ratchet
mechanism, was observed experimentally 1978 by Seeger and
Maurer [94]. Theoretical analysis of the experimental results
was put forward as early as 1979 by Wonneberger [95], with-
out realizing at that time, however, its potential function as
a Brownian motor. The occurrence of a ratchet effect was the-
oretically predicted in 1987 by Bug and Berne [15] for the
simplest variant of a pulsating ratchet scheme, termed an on–
off ratchet (see Sect. 3). A ratchet model with a symmetric
periodic potential and a state-dependent temperature (multi-
plicative noise) with the same periodicity but out of phase,
i.e. a simplified microscopic model for the Seebeck effect, has
been analyzed by Büttiker [96] and Van Kampen [97].

The independent re-inventions of the on–off ratchet
scheme in 1992 by Ajdari and Prost [16] and of the tilting
ratchet scheme in 1993 by Magnasco [21] together with the
seminal 1994 works [37, 44–47, 84–86, 98–101] provided
the inspiration for a whole new wave of ample theoretical
and experimental activity. Moreover, the topic of Brown-
ian motors has ignited progress within the statistical physics
community, as documented in more detail in the other contri-
butions to the present special issue and reviewed, for example,
in [20, 39, 48, 63, 73, 75–79]. While initially the modeling
of molecular motors has served as one of the main motiva-
tions, the scope of Brownian motor studies has subsequently
been extended to an ever-increasing number of physical and
technological applications, along with the re-discovery of the
numerous pertinent works before 1992. As a result, a much
broader and profound unified conceptual basis has been

achieved; new theoretical tools have been developed which
have led to the discovery of many novel interesting and quite
astonishing phenomena together with a large variety of excit-
ing new experimental realizations.

Within the realm of noise-induced or -assisted non-
equilibrium phenomena, an entire family of well-established
major fields are known under the labels of stochastic reson-
ance [102], noise-induced transitions [103] and phase transi-
tions [104, 105], reaction rate theory [106–108], and driven
diffusive systems [109], to name but a few examples. The
present special issue clearly documents the fact that the im-
portant recent contributions of many workers to the theory
and application of Brownian motors has given rise to another
full-fledged member to this family.
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