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Abstract. A minimal stochastic field equation aimed at modeling the amorphous
surface growth generated by physical vapor deposition is derived, analyzed, and
related to the underlying microscopic mechanisms.

1 Introduction and Basics

Since the formation and growth of interfaces are ubiquitous in nature and in
a variety of technological applications, the theoretical understanding of their
kinetics on a microscopic as well as on a mesoscopic level constitutes one of
the major challenges in physics and material science [1-3]. In particular, the
growth of solid amorphous films generated by physical vapor deposition that
is important e.g. in the context of coating and the manufacturing of thin
glassy ZrAlCu films has recently attracted interest [4-8] in material science.
The focus of this contribution is to develop and to analyze a minimal model
in form of a stochastic field equation that is appropriate to describe the
spatio-temporal evolution of amorphous surface growth processes.

In its most elementary version, the generic setup of such a surface growth
process, cf. also Fig. 1, consists of an initially almost flat substrate and a
vapor particle beam being determined by the deposition flux and directed
perpendicular to the substrate. In vapor deposition [4-6], the deposition flux
is (i) typically low-energetic implying that no kick-off of surface particles
occurs and (ii) basically constant in space and time with some weak super-
imposed spatio-temporal fluctuations originating from the particle source.
The particles from the beam are deposited at the surface and undergo vari-
ous surface diffusion processes until they arrive at their final position. With
time, this creates a growing layer build up by the deposited particles. The
surface of the layer is characterized by its height or morphology H(x,t) at
time ¢ and at the substrate location * = (z,y). Microscopically speaking,
the evolution of the surface morphology results from the only partly explored
interaction of particles to be deposited at the surface and the already con-
densed particles. As experiments reveal [4-6], however, the spatio-temporal
evolution of the surface morphology on a mesoscopic scale can be interpreted
as the interplay of three different mechanisms: roughening, smoothening and
pattern formation.
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Fig. 1. Sketch of a vapor deposition experiment for amorphous thin film growth

Modern experimental investigation tools such as scanning tunneling mi-
croscopy combined with image processing allow for a detailed resolution of
the surface morphology and its spatio-temporal evolution [4-6]. The obtained
data set, however, is too immense and the data also contain some degree of
stochasticity due to the small deposition noise resulting from the particle
source. Therefore, an appropriate quantitative statistical measure of the in-
formation on height variations and lateral correlations is given by the height-
height-correlation function

C(r,t) = (([H(w +7,8) = (H),] [H(=,1) - (H),]), ) (1)

Here, (...), denotes an average over different samples (ensemble average),

,|r|=r ’

(e = L2 foL d?z... the spatial average over a sample area of size L?, and
(H)e = (H)(t) = (H(z,t))s the spatially averaged surface profile at time ¢.
From C(r,t) the two most important global quantities that characterize the
surface morphology can be determined: (i) The correlation length R.(t) that
is given by the first maximum of C(r,t) for non-zero r, i.e.

R.(t) = min{r >0 8,C(r,t) =0, 82C(r,t) < 0}, (2)

and, therefore, determines the typical length scale over which height fluc-
tuations are correlated, and (ii) the surface roughness or root mean square
deviation of the relative height fluctuations w(t) that is determined by the
r = 0 limit of C(r, ),

w?(t) = C(0,¢). 3)
Any successful modeling attempt of the spatio-temporal evolution of H(z,t)
requires at least the validation of the temporal evolution of R.(t) and w(t)
in comparison to the experimental data.

2 Functional Form of the Growth Equation

As a first step towards a theoretical modeling, we use the machinery of
stochastic field equations as a tool for the understanding and interpreta-
tion of the growth dynamics. The basic philosophy péﬁind this approach is
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to disregard the microscopic details of the particle interaction and to consider
the growth process on a slighty larger length scale where the surface mor-
phology can be treated in form of a continuum variable. Primary focus is the
functional form of an appropriate evolution equation for H(x,t). Therefore,
the general starting point is given by an ansatz of the form

8H = GH,VH, z,t] + I(z,t) (4)

where I(x,t) represents the deposition flux and the functional G[H, VH, z, t]
comprises all physical mechanisms leading to growth and relaxational pro-
cesses on the surface. Such an approach, however, is implicitly limited by the
fact that the surface morphology H{(x,t) is uniquely defined (single-valued in
x), i.e. that overhangs in the surface morphology do not appear. In vapor de-
position experiments [4-6], the deposition flux is basically constant with some
small superimposed stochasticity resulting from the particle source. There-
fore, the deposition flux can be split into a spatio-temporally constant mean
deposition flux F' and a fluctuating part

I(z,t) = F + n(x,1). (5)
Here n(z,t) represents spatio-temporal Gaussian white noise determined by

(n(z,t))n =0 (6)
(n(z,t)n(z’, "))y =2Ddé(z —a’)é(t - t') (7)

where (...), denotes the ensemble average. Further simplification of (4) can be
obtained by invoking standard symmetry requirements [2]: (i) invariance un-
der translation in time, t — t+ 7, since the form of (4) should be independent
of the choice of the origin of time and (ii) invariance under translation in the
direction perpendicular to the growth direction, * — x + 1, to exclude depen-
dences on the choice of the origin of the coordinate system at the substrate.
These two invariances exclude the appearance of an explicit dependence on
the time ¢ and the spatial position x in G, respectively.

Moreover, invariance under translation in growth direction, H — H + z,
must also be considered since (4) should be independent on the choice of
the origin of the H-axis. This symmetry directly excludes the appearance of
H(z,t) in G. Therefore, only gradients and higher order spatial derivatives of
H(z,t) can enter in the functional G. By the way, the presence of the latter
symmetry also distinguishes surface growth equations from other pattern
forming equations such as the Ginzburg-Landau equation in the context of
convection.

Since the mean deposition flux F is constant it proofs useful to introduce
the height profile h(z,t) = H(z,t) — Ft in the frame comoving with the
velocity F. Then, (4) simplifies to

O:h = G[VA] + n(a, t). (8)
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Due to the isotropy of the amorphous phase, invariance under rotation and
reflection in the plane perpendicular to the growth direction must also be
regarded. This rules out any odd derivatives of h in G and implies that
V-operators entering the various contributions in G must be multiplied in
couples by scalar multiplication.

Assuming that all surface relaxation processes are local, we finally ex-
pand the functional G in a power series in all possible spatial derivatives of
h and keep only the terms that are linear or quadratic in h and only possess
a maximum of four V-operators. As a result of the afore-mentioned symme-
tries, the deterministic part of (8) can only consist of the terms V2h, (Vh)Z2,
V4h, V2(Vh)?%, (V2h)?, and V - [(Vh)(V2h)]. The last term can be slightly
rearranged in the form

V- [(VA)(V?R)] = %v?(vn)2 +oM ©)
with
_ 92h 8,0.h
M-det(azayh 82h ) (10)

so that effectively only the functionally different terms V2h, (Vh)?, V*h,
V2%(Vh)?, (V?h)?, and M appear in G. Consequently, the functional form of
the growth equation for amorphous films is given explicitly by

Oth = ay Vih+ a3 VAh + a3 V2 (Vh)2 4 ag(Vh)? + as(V2h)2 + agM +17. (11)

The approach of determining the leading order functional form of the growth
equation does not reveal the sign of the coefficients a;, ¢ = 1,..,6, and the
physical significance of the corresponding terms in (11). Focussing on the
physics of amorphous growth, the coefficients a; will be connected to the
underlying microscopic processes in the next section.

Several remarks are in order.

(i) Equation (11) constitutes a systematic expansion of (4) derived by
use of the afore-mentioned symmetry arguments and by taking into account
all possible combinations up to O(V*) and O(h?). It consists of two linear
terms and four nonlinear terms in h. The term being proportional to ag
becomes zero in the one-dimensional limit. This shows the principal problem
that one-dimensionally motivated surface growth equations cannot be carried
over to the two-dimensional case by simply replacing 8, — V. Moreover, it is
interesting to note that Lai and Das Sarma [9] have also attempted to derive
the leading order functional form of a growth equation using isotropy and the
fact that the functional G in (8) is a scalar. Their result, however, significantly
differs from (11) since the terms a5(V2h)? and agM are missing. Therefore,
we conclude that Lai and Das Sarma’s growth equation [9] represents an
inconsistent systematic expansion since the terms (82h)(82h) — (8,9yh)? and
(82h)? + (82h)? + 2(82h)(02h) are not properly taken into account.
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(if) The growth equation (11) contains several known limiting cases. The
limit a; =0 for 7 = 1,..,6, 8;h = 7, is considered as an appropriate model for
random deposition [2]. Setting a; = 0 for i = 2,..,6, 8;h = a; V2h + 7, yields
the Edwards-Wilkinson (EW) equation originally motivated in the context
of granular systems [10]. The limit a; = 0 for ¢ = 2,3,5,6, determines the
Kardar-Parisi-Zhang (KPZ) equation, 8;h = a; V2h+ a4(Vh)? + 10, being the
paradigm for a stochastic roughening process [11]. Finally, the limit a; = 0
for i = 3,5,6, O;h = a1 V2h + a2 V*h + a4(Vh)? + 1, leads to the stochastic
version of the Kuramoto-Sivashinsky equation.

(iii) Besides the invariances already invoked for its derivation, the growth
equation (11) possesses an interesting additional symmetry: It remains in-
variant under the combined transformation

{haa3;a4>a5;a6} - {—'h> ‘0«3,—(14,'*0,5,—(16}- (12)

As a consequence, one has to expect that a simultaneous change of the sign
of the coefficients a3, a4, as, ag only leads to an inversion of the surface pro-
file h(x,t) about h = 0. Note, however, that (11) does not possess mirror
symmetry about h = 0, i.e. it does not fulfil the up/down invariance h — —h
(without inversion of the signs of the nonlinear coefficients). This already
implies some degree of asymmetry of the resulting surface profile h(z,t).

(iv) In the context of the related molecular beam epitaxy, a frequently
invoked further requirement on surface growth equations [2, 3] is that the
functional G should be represented by the divergence of a surface current,
G = =V - j¢(Vh) since no desorption of particles occurs. Such an assump-
tion directly rules out the appearance of a KPZ term (Vh)? and the term
(V2h)? in G. It also implies that the spatial and ensemble averaged height
is related to the deposition flux by ((H(z,t)),)= = Ft or, equivalently, that
((h(z,t)}y)= = 0 holds. The afore-mentioned assumption, however, also im-
plicitly implies that no coarse-grained density variations can occur. In the
presence of local density variations, a discussion starting from the condition
that no incoming particles are lost (cf. the following section) can lead to a
KPZ term (Vh)? and a term (V2h)? and, therefore, also to a nonzero ez-
cess velocity v = ((Bth)y)e = ((as(Vh)? +a5(V2h)?),)s of the surface profile
h(z,t).

3 Physical Interpretation of the Growth Equation

In this section, we relate the various terms appearing in the growth equa-
tion (11) to the underlying microscopic mechanisms that dominate physical
vapor deposition. This also leads to insights into the signs and the order of
magnitude of the appearing coefficents in (11).

The two terms in (11) that are proportional to a; and ag can be inter-
preted as follows. The arriving particles from the beam experience close to
the growing surface a deflection due to the interatomic attractive interaction



478 S.J. Linz, M. Raible, and P. Hanggi

LTI
N

Fig. 2. Microscopic effects of amorphous surface growth. Left part: Inflection of
particles due to interatomic interaction. Middle part: Surface diffusion of deposited
particles due to surface relaxation. Right part: Equilibration of the inhomogeneous
particle concentration due to the geometry of the surface

with the already condensed surface particles. Therefore, the particles do not
arrive perpendicular to the substrate orientation, but perpendicular to the
surface. This directly implies that more particles arrive at positions at the
surface with negative curvature, V2h < 0, than at positions with positive
curvature V2h > 0. We refer to Ref. [12] for experimental indications of the
relevance of this effect. To model this scenario in a dynamical way, we use
the idealization that (i) the particles experience a change of direction only if
they reach a critical distance b (the effective range of the interaction) from
the surface and (ii) are then attracted such that they arrive perpendicular
to the surface, cf. left part of Fig. 2. A detailed mathematical derivation [8]
using a reparametrization in the coordinates of the imaginary surface where
the interaction becomes effective (cf. dotted line in the left part of Fig. 2)
and a small gradient expansion in A in fact shows that this scenario gives
simultaneously rise to the two contributions a; V2h and agM in (11). More-
over, the coefficients a; and ag can be related to the mean deposition flux
F and the effective range b of the interatomic interaction yielding a; = —Fb
and ag = Fb? [8]. Although b cannot be directly measured its magnitude
will be typically of the order of one atomic diameter and, therefore, much
smaller than the radius of the surface curvature. This implies that the term
proportional to ag is of minor relevance in comparison to the a;-term and
can be neglected. Moreover, the sign of a; is negative.

The term proportional to az can be related to the surface relaxation orig-
inally suggested by Mullins [13,14]. The basic idea behind this effect (cf.
also the middle part of Fig. 2) is that the deposited particles favor places
at the surface with positive curvature V2h > 0 since there, the already con-
densed surface particles create a local environment with higher binding en-
ergy. Therefore, one expects a diffusion current j,, o V(V?2h) leading to the
term —V - §,, = a2V*4h in (11) with a, being necessarily negative. This term
can be interpreted as the result of a surface tension that attempts to minimize
the area of the surface and, therefore, to smooth the surface morphology.
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The nonlinear term proportional to a3 arises as a consequence of the ef-
fect of equilibration of the non-homogeneous concentration ¢ of the deposited
particles just after arriving at the surface. This effect has originally been sug-
gested by Villain [15,16] (cf. also [17]). The deposition flux is basically homo-
geneous implying that more particles per surface area arrive at places with
a small or zero modulus of slope VA than at places being strongly inclined
with respect to the particle beam, cf. also the right part of Fig. 2. Therefore,
the concentration is weighted by the slope, ¢ « 1/4/1+ (Vh)? leading to
¢ o< 1— 2(Vh)? in a small gradient expansion. The tendency to equilibrate
the concentration gives rise to a diffusion current j. o« —Vc o< V(Vh)?, or
equivalently, to the term —V - j. = a3V2(Vh)? appearing in (11). It also di-
rectly follows that the coefficent ag is necessarily negative. The following sim-
ple dimensional argument leads to an estimate for a3. Equation (11) implies
that the coefficient a3 has the dimension of length3 /time. The magnitude of
as necessarily depends on the deposition flux F' that possesses the dimension
of length/time and the mean diffusion length | under concentration equili-
bration which is the only relevant length scale determining this process. The
simplest combination of F' and ! leading to the correct dimension of az is FI2.
Therefore, one expects az o —FI?. A detailed discussion of the concentra-
tion equilibration [8] supports this argument and yields the explicit relation
az = —%Flz. Moreover, the typical magnitude of [ is of the order of several
atomic diameters.

As already mentioned in section 2, the physical origin of the nonlinear
terms proportional to a4 and as is determined by the potential variations
of the coarse-grained density [7,8]. These terms cannot result from particle
desorption since the substrate is held at room temperature and the parti-
cle energy in the vapor beam is rather low (typically of the order 0.1eV).
Therefore, all arriving particles finally contribute to the surface growth. As
a consequence, any term that cannot be recast in form of the divergence of a
current in (11) arises from changes of the coarse-grained density. Assuming
for the moment that the deposition noise is zero (n = 0), particle conserva-
tion implies that the rate of change of the number of particles per substrate
area at a given substrate location, C, is determined by a continuity equation
0:C = =V - jo + poF. Here the divergence of the current j¢ is given by
the combination of all surface relaxation processes (cf. the afore-mentioned
arguments), i.e. by =V - jo = po[a1V2H + aaVAH + a3V*(VH)? + asM].
Allowing for density variations at the growing surface, the rate of change of
C is related to the rate of change of the height H by 8,C = p(VH)0,H. Here
p(VH) denotes the density at the surface. Without the incorporation of den-
sity changes (p = po = const.), there is a direct proportionality 8;C = pod; H.
If small density variations are taken into account, p(VH) can be expanded
in the derivatives of H yielding p(VH) = po[l +q1(VH)? + ¢ V2 H] in lowest
order approximation. Therefore, 8; H = py *[1 —q,(VH)? — ¢, V> H);C holds.
Inserting this in the continuity equation from above, explains the presence
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of the two terms —q; F(VH)? = a4(Vh)? and —qqa:(V2H)? = a5(V2h)? ap-
pearing in (11). From the physical point of view, however, density changes
are primarily connected to the gradients of the surface profile reflecting the
local arrangement of the particles at the surface and not so much to the sur-
face curvature. Therefore, it is pausible to disregard the term as(V2h)? in
a minimal description of the growth evolution. Since the density variations
result from a widening of the mean inter-particle distances at the surface one
has to expect that they locally decrease the density implying that a4 > 0
holds.

Taking into account the afore-mentioned physical arguments, the terms
as(V?h)? and agM can be neglected and we finally end up with two minimal
model equations for amorphous film growth, namely

Oth = a;V2h + agV*h + a3V2(Vh)? + 9 (13)

(a; < 0 for i = 1,2,3) that applies to growth processes with a basically
homogeneous coarse-grained density and its more general version [7, 8]

Oth = a;VZh + a2 Vih 4+ a3VZ(Vh)? + ag(Vh)? + 1 (14)

(ag > 0) for the case that significant density variations occur during the
growth process. Equations (13) and (14) constitute minimal models for amor-
phous surface growth in the following sense: They are based on the systematic
minimal nonlinear functional form (11) of the growth equation, further re-
duced by taking into account the physical relevance of the various terms in
(11) and contain the leading order nonlinearities that prevent the surface
morphology from an exponentially rapid growth in time.

As a phenomenological ansatz, a growth equation similar to (14) has also
been discussed in the context of molecular beam epitactic growth of crys-
talline structures (cf. [2]), albeit with different signs of the coefficients. Most
significantly, the sign of the coefficient a; (being attributed to desorption
effects) is then assumed to be positive. This in turn leads to a significantly
different spatio-temporal evolution of the surface morphology since, in com-
parison to amorphous surface growth, a growth instability [8] is missing.

Whether (13) or (14) is the most appropriate minimal growth equation
for specific amorphous films can also depend on the type of materials used.
We note, however, that a recent study [7] considering the case of amorphous
ZrgsAl; 5Cugr s films indicates the necessity of incorporating density varia-
tions — at least for that material.

4 Some Properties of the Growth Equation

In the remainder of this contribution, we address one specific point of the
spatio-temporal evolution of the surface morphology, namely the differences
of the temporal evolution of the correlation length R, and the surface rough-
ness w in (13) and (14). Using stochastic numerical simulations of the surface
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Fig. 3. Correlation length R, and surface roughness w calculated from the nonlinear
growth equation (14) using the parameters a; = —0.0826nm?/s, a2 = —0.319nm* /s,
a3 = —0.10nm®/s, D = 0.0174nm*/s and various values of a4: a4 = Onm/s (solid
lines), a4 = 0.016nm/s (dotted lines), as = 0.040nm/s (dashed lines), and a4 =
0.055nm/s (dash-dotted lines).

growth equations starting from a flat substrate, we investigate the evolution
of R, and w as a function of the experimentally measurable layer thickness
H. This quantity is determined by H = ((H(z,t))p)e = Ft + ((h(z,t))n)=
and, is, in general, implicitly connected to the time ¢ via the solution of (14).
For the special case (13), however, H is directly given by the product of the
mean deposition flux and the time, i.e. F¢, since there is no excess velocity.

For the specific example of the growth of ZrgsAl7 5Cugz.5 films [4-7], a
parameter estimation procedure discussed in detail in [7] yields for the coeffi-
cients in (14) a; = —0.0826nm?/s, a; = —0.319nm*/s, a3 = —0.10nm?/s,
and a4 = 0.055nm/s and for the strength of the deposition noise D =
0.0174nm*/s. For these values, a basically perfect agreement between exper-
imental and simulation results has been obtained [7]. The dash-dotted lines
in Fig. 3 correspond to this choice of the coefficents. Lowering the coefficient
a4 that determines the strength of the density variations during the growth
process to zero reveals the following:

(i) Setting a4 equals zero (solid line), the correlation length R, initially in-
creases proportional to a t1/4 power law. This reflects the growth behavior in
the time range where the linear terms in (13) are dominant and the nonlinear
term is not yet excited due to the smallness of k. In contrast to the linearized
form of (13) that leads to a constant value R, o< \/2az/a; for large times, the
nonlinear term in (13) significantly contributes to the spatio-temporal evolu-
tion of h(x,t) and yields a further increase of R, with the time ¢. For nonzero
a4 in (14), the dependence of R, on the layer thickness agrees with the case
as = 0 up to H = 120nm. Beyond this layer thickness, the correlation length
R, first increases slightly stronger than in the case a4 = 0. For even larger
layer thicknesses, a maximum of R, is reached with a subsequent decrease of
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R,.. This behavior can already be observed for as = 0.040nm/s (dashed line)
and is even more pronounced for a4 = 0.055nm/s (dash-dotted line). As an
aside, we note that R, levels off again for layer thicknesses much larger than
500nm. As a consequence, the inclusion of density variations in the growth
equation (14) significantly changes the typical length scale over which height
fluctuations are correlated. Including density variations, the correlation length
R, varies non-monotonically with layer thickness.

(ii) Setting again a4 equals zero (solid line), the surface roughness w ini-
tially increases exponentially. This again reflects the growth behavior in the
time range where the linear terms in (13) are dominant and is therefore basi-
cally determined by the most unstable wave number of the linearized growth
equation. For larger times, when the nonlinear term in (13) has a significant
influence on the spatio-temporal evolution of h(z, t), this increase crosses over
to a power law, w o ¢ [8]. For nonzero a4 in (14), the dependence of w on the
layer thickness agrees with the case ay = 0 up to H = 300nm. Beyond this
layer thickness, the surface roughness w increases significantly weaker than in
the case with a4 = 0. More importantly, also the curvature of w changes with
the layer thickness. This behavior can be clearly observed for as = 0.040nm/s
(dashed line) and is even more pronounced for a4 = 0.055nm/s (dash-dotted
line). As a consequence, the inclusion of density variations in the growth
equation (14) primarily changes the curvature of the evolution of the surface
roughness which leads to a strongly delayed increase, or even to a saturation
of w.

(iii) Comparing the results for R, and w, one infers that the impact of
density variations shows evidence in the correlation length R, at much earlier
stages of the growth process than in the surface roughness w.

5 Conclusion

In this contribution, we have systematically derived the minimal functional
form of a growth equation appropriate for the understanding of amorphous
thin film growth, cf. equation (11). We have also related the terms occuring in
the functional form (11) to underlying microscopic surface relaxation mecha-
nisms and presented some results on the temporal evolution of the correlation
length and the surface roughness of the corresponding surface morphology.
Finally we showed that the incorporation of density variations of the growing
material significantly reduces the surface roughness.
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