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Drift ratchet
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We consider a silicon wafer, pierced by millions of identical pores with periodically varying diameters but
without spatial inversion symmetry~ratchet profile!. When a liquid is periodically pumped back and forth
through the pores, our theory predicts a net transport of suspended micrometer-sized particles~drift ratchet!.
The direction of this particle current depends very sensitively on the size of the particles. For typical parameter
values of the experiment, two different types of particles at an initially homogeneous 1:1 mixture are spatially
separated with a purity beyond 1:1000 on a time scale of a few hours in comparably large quantities. This
result is due to the highly parallel architecture of the device. The experimental realization of the setup,
presently under construction, thus appears to be a promising new particle separation device, possibly superior
to existing methods for particles sizes on the micrometer scale.

PACS number~s!: 05.40.2a, 07.10.Cm, 87.80.2y
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I. INTRODUCTION

Is it possible, and how is it possible, to convert unbias
random fluctuations into directed motion if all acting forc
and temperature gradients average out to zero? A system
exploration of this provocative question@1# was initiated al-
most simultaneously by three independent groups@2# and has
been attracting a lot of excitement under the label of ‘‘m
lecular motor,’’ ‘‘Brownian motor,’’ or ‘‘ratchet’’ ever since
@3#. Besides the intriguing fundamental aspects of such
from equilibrium systems, e.g., with respect to the seco
law of thermodynamics and Maxwell’s demon, their pote
tial relevance with respect to intracellular transport mec
nisms@4#, transport in noncentrosymmetric materials@5#, and
technological applications as particle pumps and separa
devices@6# have been major driving forces of those inves
gations right from the beginning@2,3#. It is the latter objec-
tive which is the focus of our present paper in that the th
retical framework of a novel ratchet-type particle separat
device, presently under construction in the laboratories of
Max-Planck-Institut in Halle~Germany!, is outlined.

The practical realizability of particle transport in ma
made devices has been demonstrated experimentally for
eral variants of the ratchet concept@7#. The experimental
setup we have in mind goes one step further in that millio
of identical ratchets are operating simultaneously in para
with the perspective of pumping and separating for the fi
time relatively large quantities of micrometer-sized partic
on a reasonable time scale. In particular, in comparison
the widespread electrophoretic separation techniques@8#, our
present device works appreciably faster and can be reu
The particles are furthermore dispersed in a liquid, e.g.,
ter, in contrast to the inconvenient gel and polymer solutio
required in electrophoresis. Compared with methods ba
on the field-flow fractionation scheme@9#, which appears to
have a rather limited separating power for particles in
range of 0.5–1mm, our present theory predicts a fairly hig
resolution in this range of particle sizes, indicating that
real device may indeed become a separation method of b
practical interest.
PRE 611063-651X/2000/61~1!/312~12!/$15.00
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The outline of our paper is as follows: In Sec. II, th
experimental setup is described and in Sec. III a theoret
model for the particle dynamics in a single infinitely lon
ratchet-shaped pore is introduced. In Sec. IV, numerical
lutions of this model dynamics—the so-called drift ratchet
are presented and discussed. The complication that the
pores are of finite length and connected at both ends w
finite reservoirs is taken into account in Sec. V. For this ca
a coarse-grained description of the drift ratchet dynamic
put forward and solved by numerical and analytical mea
A summary and outlook is presented in Sec. VI.

II. SETUP

The experimental situation which we wish to theoretica
describe in this paper is depicted in Figs. 1–3. The m
component of the setup is a piece of silicon—a so-cal
silicon wafer—pierced by a huge number of practically ide
tical and parallel pores, each of a few micrometers in dia
eter~Fig. 1!. ~For convenience, we will take the pore axis
the z axis of our coordinate frame.! The art of fabricating
such a macroporous silicon wafer is described in detai
@10#. Especially, by means of very sophisticated technique
is possible to periodically vary the diameter of the por
along their axis in a controlled manner@10#. Having in mind
a ratchetlike pumping device for microparticles, the perio
variations of the pore profile are furthermore chosen asy
metric under spatial inversion~Fig. 2!. In order to practically
eliminate gravitational effects and the tendency of the p
ticles to stick to the pore walls and to each other, the p
ticles are suspended in a liquid~e.g., water!. @Moreover, due
to its compressibility, the dynamics of a gas instead o
liquid inside the pores would be theoretically much mo
difficult to solve; see Sec. III C.# Finally, the silicon wafer is
connected at both ends to basins of the liquid-plus-part
suspension~Fig. 3!.

To establish contact with previously studied ratchet mo
els @2,3#, the first idea that comes to mind is to bring in
play some time-dependent electrical fields. However, si
silicon already has a noticeable conductivity at room te
312 ©2000 The American Physical Society
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PRE 61 313DRIFT RATCHET
perature, all electrical fields will be almost complete
shielded inside the silicon wafer. Moreover, the electri
charge of the microparticles is strongly dependent on
fluid in which they are suspended and may vary too much
allow for a satisfactory separation. For these reasons,
have abandoned the use of electrical fields and instead
ated the far-from-equilibrium situation—necessary for t
functioning of any ratchet mechanism@3#—by periodically
pumping the liquid back and forth through the pores. Ratc
models in the presence of a time-periodic external force h
been studied in@11#, while a ratcheting mechanism based
the hydrodynamic effect of the so-called Stokes drift~par-
ticles are ‘‘surfing’’ on traveling waves! has been addresse
in @12#. Though these models share some aspects with

FIG. 1. Scanning-electron-microscope picture of silicon, pierc
by a huge number of practically identical pores with pore distan
of 1.5 mm and pore diameters of 1mm.

FIG. 2. Scanning-electron-microscope picture of a single p
with a ratchet-shaped~periodic but asymmetric! variation of the
diameter along the pore axis (z axis!.
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present system, they are of no direct use for the follow
reasons:~i! Unlike in almost all previous models@2,3#, no
‘‘ratchet potential’’ is involved in our case.~ii ! The dynam-
ics within a single pore is still a complicated thre
dimensional problem that cannot be reduceda priori to an
effective one-dimensional description.

III. INFINITE PORE MODEL

In this section we introduce a theoretical description
the particle motion in a single infinitely long pore under t
idealizing assumptions that the suspension is sufficiently
luted such that particle interaction effects are negligible a
that the interaction with the pore walls can be captured
perfectly reflecting boundary conditions. We furthermore
sume strict periodicity of the pore profile, a perfectly rigi
spherical shape of the particles, and incompressibility of
liquid. In order to solve this idealized model, we shall pr
ceed in two steps: In Sec. III A we assume that a cert
time-dependent velocity fieldvW (xW ,t) inside the pores is
given, on the basis of which we then establish the stocha
model dynamics of a suspended particle under the actio
the thermal noise. In an intermitting Sec. III B we give a
intuitive argument of why a ‘‘ratchet effect,’’ i.e., the eme
gence of a net particle current in some preferential directi
may be expected for such a stochastic dynamics. Sec
III C complements the model by addressing the problem
how to determine the deterministic velocity fieldvW (xW ,t) for a
sinusoidal pumping of the liquid-plus-particle suspens
through the pore. The quantitative numerical solution of t
quite involved combination of hydrodynamic and stochas
problems is postponed to Sec. IV.

A. Stochastic dynamics

We consider a single spherical particle in a fluid that
periodically pumped back and forth through an infinite

d
s

e

FIG. 3. Schematic cross section through thex-z plane of the
experimental setup. The macroporous silicon wafer, extending f
2zP to zP , is connected at both ends to basins. The pores with t
ratchet-shaped profile along thez axis ~see Fig. 2! are schematically
indicated in dark grey. The basins and the pores are filled w
liquid and micrometer-sized particles~two different species are in
dicated!, pumped back and forth by a pumping device~indicated by
the piston on the left hand side; omitted is a similar piston o
membrane at the right basin boundary, required to keep the liq
volume constant!. In the real experiment, the length 2zP of the
wafer along thez axis~and thus of the single pores! is 100–200mm
and the lengthzB2zP of each basin is 20–200mm. The extension
of the device along thex axis is about 1–2 cm and similarly alon
the y direction. The corresponding number of pores is about
3106–63106.
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long pore. For the typical parameter values of the real
periment one readily finds that buoyancy effects due to
influence of gravitation as well as inertia effects of the p
ticle are negligibly small; i.e., the particle dynamics in t
viscous liquid is strongly overdamped. Assuming that
three-dimensional time-dependent velocity fieldvW (xW ,t) of
the liquid is given, the particle with coordinatexW (t)
5„x(t),y(t),z(t)… is governed by the deterministic dynami

xẆ (t)5vW „xW (t),t…. To be precise,vW (xW ,t) is here in fact not the
velocity field of the fluid alone but rather the speed w
which a spherical particle with center atxW (t) and a small but
finite radius is carried along by the surrounding liquid~see
Sec. III C!. This dynamics induced by the streaming liqu
has to be complemented by proper boundary condition
the pore walls, which we model as perfectly reflecti
boundary conditions, and by the diffusion of the micromet
sized particle due to random thermal fluctuationsjW (t). These
random forces, stemming from the impacts of the surrou
ing liquid molecules, can be described in the common w
by Gaussian white noise. We thus end up with the follow
Langevin model equation for the trajectoryxW (t) of a micro-
sphere inside a single pore:

xẆ~ t !5vW „xW~ t !,t…1A2DthjW~ t !. ~1!

Here, DthªkT/h is the thermal diffusion coefficient, with
the temperatureT ~kept constant at room temperature!, the
Boltzmann constantk, and Stokes’ friction coefficienth. The
latter is given by 6pRn in leading order in the Reynold
numberRe , with the sphere’s radiusR and the viscosity of
the liquid n. The vector componentsj i(t), i 51,2,3, of the
noise jW (t) are independent Gaussian stochastic proce
with ^j i(t)&50 and^j i(t)j j (t8)&5d(t2t8)d i j .

The time and space dependence of the velocity fi

vW „xW (t),t… arises from the periodical pumping of the carri
liquid through a pore with periodically but asymmetrical
changing diameter. As a concrete working model for
ratchet-shaped profile of the pores we assume a variatio
the pore radiusr p(z) along the pore axis (z axis! of the form
~see Fig. 4!

FIG. 4. Cross-section (x-z plane! through a single pore with
z-dependent radius according to Eq.~2!.
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r p~z!5
1

2.1F2.91sin@f~z!#1
1

2
sin@2f~z!#G mm,

f~z!ª2pz/L2p/3, L56 mm. ~2!

The reflecting boundary condition in particular encompas
the requirement that the entire spherical particle with cen
xW (t) and some finite radius never exceed the pore bounda
from Eqs.~2!.

B. Ratchet effect

Clearly, after one period of driving, the liquid in the po
returns ~after averaging over thermal fluctuations! to the
same position from where it started out. Why should we
expect the same null effect for the suspended particles?
der various comparable conditions, the emergence of su
systematic particle transport has indeed been documente
detail, e.g., in@2,3,7,11,12# and further references therein
with the main conclusion that under far-from-equilibriu
conditions, periodicity in combination with spatial asymm
try is generically sufficient for the manifestation of this s
called ‘‘ratchet effect.’’ These preconditions are all given
our setup as well; especially the far-from-equilibrium situ
tion is created by the periodical pumping of the liqu
through the pore. The crucial difference between a part
and the liquid is its finite extension. First, the speed of
particle in general does not exactly agree with that of
liquid at the center of the particle if this particle were n
present. Due to spatial asymmetry, there is no reason
the net displacement of the particle by diffusing random
between liquid layers of different speeds~similarly as in the
so-called Taylor dispersion@13#! should after one driving
period average out exactly to zero like for the liquid. Seco
the finite radius implies collisions with the pore walls, whic
again alter the dynamical behavior of the particles in co
parison with that of the liquid.

While for finite particle sizes we thus expect generically
finite net particle current, in the limit of a vanishing radiu
the particles behave like the liquid and the current dis
pears. On the other hand, too large particles will no longer
able to pass through the bottlenecks of the ratchet-sha
pores, giving rise again to a zero current.

C. Computation of the velocity field

The first step towards a quantitative solution of the s
chastic dynamics~1! consists in calculating the velocity fiel

vW (xW ,t) caused by the liquid flow through the pores. For th
purpose, we start with the Navier–Stokes equation in
following dimensionless form@14#:

ReF1

S

]vW 8

]t8
1~vW 8•¹W 8!•vW 8G52¹W 8p81D8vW 8, ~3!

supplemented by the continuity equation for the incompre
ible liquid ¹W •vW 850 and the boundary conditionsvW 850W at
the pore walls. Here, the primed dimensionless quantities
related to the original dimensionful ones byvW 85vW /vc , t8
5tv/2p, xW85xW /r min , ¹85r min¹, and p85prmin /(nvc).
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Furthermore, the argumentsxW8 andt8 of the functionsvW 8 and
p8 have been omitted. The velocity scalevc is given by the
maximal velocity of the liquid~typically 2–9 mm/s for
v/2p540 – 100 Hz,A5L23L, see below!, r min is the
minimal pore radius@0.76 mm for the example~2!#, and
v/2p is the pumping frequency~typically 40–100 Hz!.

The coefficientsRe andS in Eq. ~3! denote the dimension
less so-called Reynolds and Strouhal numbers, respecti
defined asReªvcr l r min /n and Sª2pvc /vr min , with the
liquid densityr l . Under typical experimental conditions th
Reynolds numberRe is found to be in the range of 1023–
1022 and the Strouhal numberS is about 102. Due to Re
!1 andRe /S!1, the left hand side in Eq.~3! can be ne-
glected, which leaves us with the so-called ‘‘creeping flo
equations’’@14#

DvW ~xW ,t !5¹W p~xW ,t !. ~4!

Here and in the following paragraphs we have dropped
primes but continue to work in dimensionless units. T
physical picture behind the above approximation is that
friction terms are dominant over the inertia terms and t
the flow is able to adapt instantaneously to the time va
tions of the pressure fieldp(xW ,t). In the presence of a sinu
soidal pumping with frequencyv/2p, this pressure field
takes the form

p~xW ,t !5p0~xW !sin~2pt !. ~5!

Note that within the creeping flow approximation~4!, the
resulting time dependence of the velocity field is mer
parametric. In other words, once a solutionvW 0(xW ) has been
determined for the steady pressure fieldp0(xW ), i.e.,

DvW 0~xW !5¹W p0~xW !, ~6!

the solutionvW (xW ,t) at any timet is simply given by

vW ~xW ,t !5vW 0~xW ! sin~2pt !. ~7!

A convenient strategy to solve the time-independ
creeping flow equations~6! is by means of the so-called vec
tor potentialAW (xW ), implicitly defined viavW 0(xW )5¹W 3AW (xW ).
The continuity equation for the incompressible liquid¹W

•vW 0(xW )50 on the one hand guarantees the existence of s
a vector potentialAW (xW ) and on the other hand is automa
cally fulfilled in this way. EliminatingvW (xW ) in favor of AW (xW )
in Eq. ~6! and then taking the rotation on both sides leads
to the linear homogeneous equation

D2AW ~xW !50W . ~8!

Next we go over the cylinder coordinate
(x,y,z)°(r ,z,f) and corresponding velocity componen
(v r , vz , vf), defined through

vW 05v r eW r1vz eW z1vf eW f . ~9!

Note thatv r5@vx
21vy

2#1/2 and that we have dropped the in
dex ‘‘0’’ in ( v r , vz , vf). We assume that the solutio
ly,

e
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e
t
-

t

ch

s

vW 0(r ,z,f) respects both the cylinder symmetry and the d
crete translational symmetry of the system, i.e.,vW 0(r ,z,f)
5vW 0(r ,z), independent off, vf(r ,z)[0, vW 0(r ,z1L)
5vW 0(r ,z), and]vz(r 50,z)/]r 50. The assumption that th
solution does not spontaneously break the symmetry of
system is quite plausible and is further corroborated by
fact that we will indeed find such a solution in the followin
if the solution were unique, this in fact would rigorous
justify the above assumptions. The linearity of Eqs.~6! and
~8! reflects the fact that we are in the deep laminar~nontur-
bulent! regime and thus indeed suggests a unique solutio
the liquid flow for a given pressure drop per spatial periodL.

Note that, much like in classical electrodynamics,v0(xW )
fixes the vector potentialAW (xW ) only up to a gauge freedom
Exploiting this freedom and thef independence of the vec
tor potential one can prove@14# the existence of a scalar fiel
C(r ,z) with the properties thatAW (r ,z)5C(r ,z) eWf /r and
that lines of constantC are everywhere tangent to the velo
ity field ~henceC is also named the ‘‘streamline function’’!.
In terms ofC, the velocity field is now given by

vW 0~r ,z!5¹W 3@C~r ,z!eWf /r #. ~10!

SubstitutingAW (r ,z)5C(r ,z) eWf /r in Eq. ~8! one arrives at
the following linear homogeneous fourth order equation
the streamline function:

L̂C~r ,z!50, L̂ªF r
]

]r

1

r

]

]r
1

]2

]z2G 2

. ~11!

From the boundary and symmetry conditions forvW (r ,z) the
following boundary conditions for the streamline functio
can be derived:

C~r 50,z!5c, ~12!

]2n11

]r 2n11
C~r 50,z!50, n50,1, ~13!

¹W C„r 5r p~z!,z…50W , ~14!

C~r ,z1L !5C~r ,z!. ~15!

Once a solution of Eqs.~11!–~15! with an arbitrary constan
c in Eq. ~12! has been found, the velocity fieldvW 0(xW ) is
determined by Eq.~10! up to a multiplicative factor. Due to
the linearity of Eqs.~6!, ~10!, and ~11!, this factor together
with the pressure fieldp0(xW ) can finally be obtained as fol
lows: We define the pressure dropdp0 over one spatial pe-
riod by

dp0ªp0~r ,z!2p0~r ,z1L !. ~16!

Note that the sign convention in Eq.~16! is chosen such tha
a positivedp0 will cause a liquid flow to the right~in the
positivez direction!. Further,dp0 is indeed independent ofr

and z due to Eq.~6! and vW 0(r ,z1L)5vW 0(r ,z) and can be
rewritten as
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dp0522E
0

L ]2

]r 2
vz~r 50,z!dz. ~17!

Given dp0, the multiplicative factor of the velocity field is
now fixed by Eq.~17!.

We remark that in the infinite pore limit the pressure dr
dp0 over one period is the only free parameter in the pr
lem ~6!. In contrast, for a finite pore, the pressure field nee
in general no longer agree with the infinite pore soluti
p0(r ,z) near the ends of the pore@15#, but will quickly con-
verge towardsp0(r ,z) as the distance from the pore en
increases.

Instead of the pressure dropdp0 we will later use the
equivalent parameter,A5 E 0

Tp/2Vz@r 50,z(t),t#dt, with Tp

being the period of driving, defined as the amplitude~maxi-
mal elongation! of the liquid around the reference positio
r 5z50.

By closer inspection of Eqs.~11!–~15! the following ana-
lytical approximation, valid for small variations ofr p(z), can
be derived:

C~r ,z!5c2
1

2 S r

r p~z! D
2

1
1

4 S r

r p~z! D
4

. ~18!

This approximation, which becomes exact for a const
r p(z), can be used to roughly estimate the pressure dropdp0
for a given amplitudeA. However, for the purpose of nu
merical simulations in Eq.~1! with Eq. ~2! the accuracy of
the approximation~18! is not sufficient, and a numerical so
lution of Eqs.~11!–~15! becomes necessary. To this end,
have adopted a modified relaxation scheme according to
following recursion relation:

C (n11)~r ,z!5C (n)~r ,z!2a•L̂C (n)~r ,z!. ~19!

Note that on a discretizedr-z lattice, the corresponding dis
cretized operator~11! is no longer uniquely fixed at the bor
dersr 50 andr 5r p(z) of the lattice. This ambiguity is re
moved by taking into account the boundary conditions~12!–
~14!. The boundary condition~15! is automatically fulfilled if
it is satisfied by the initial functionC (0)(r ,z). The constant
a in Eq. ~19! must be chosen positive but sufficiently sma
otherwise the iteration scheme diverges. On our standardr-z
lattice of 2503750 sites, a value ofa<0.09 has proved to
work well. Since the convergence is not very fast, it is a
vantageous to start with a coarse grid and then steadily
ceed to finer and finer grids.

Figures 5 and 6 give an impression of the solutionvW 0(r ,z)
in cylinder coordinates@cf. Eq. ~9!# and dimensionful units,
which has been obtained numerically in the way descri
above: Whilevf(r ,z) is identically zero, the velocity com
ponentsv r(r ,z) andvz(r ,z) exhibit the typical ratchet form
when drawn as a function ofz ~Fig. 5.! Note, however, that
in contrast to most previously studied ratchet systems@2,3#,
these functions characterize here a velocity field, no
‘‘ratchet potential.’’ As a function of r, the component
vz(r ,z) takes its maximum in the center of the pore~Fig. 6!,
while the radial velocityv r(r ,z) is maximal at about half the
local pore radius.
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Thus far we have restricted ourselves to the velocity fi
of the liquid through a pore in the absence of any ther
suspended particles. However, what actually counts in
overdamped stochastic dynamics~1! is the velocity with
which a particle is carried along by the surrounding liqu
For a finite particle radius, this velocity field can strict
speaking only be obtained by solving the hydrodynamics
the compound liquid-plus-particle system. Practically, t
problem is beyond what can be done numerically or anal
cally. Moreover, by including thermal fluctuation effects
in Eq. ~1!, a truly rigorous approach is possible only on t
basis of a kinetic description like the Boltzmann equatio
which even more so is way beyond practicability. Hence
keep staying with our phenomenological combin
stochastic-hydrodynamical description, well establish
@12,13# since Einstein’s Brownian motion theory, with th
following approximations for the relevant velocity field i
Eq. ~1!: First, we neglect back reactions of the particle on t
flow of the liquid. Second, we approximate the relevant v
locity field in Eq. ~1! by that of the unperturbed flow, aver
aged over the particle volume. Clearly, this approximat

FIG. 5. The componentsv r(r ,z) and vz(r ,z) of the liquid ve-
locity field ~9! inside an infinitely long pore~2! ~see also Fig. 4! as
a function of z at a fixedr value of 3r min/4. The viscosityn is
0.5nwater and the pressure dropdp0 per periodL from Eqs.~16!
and ~17! is about 7.6 Pa. The corresponding pumping amplitudA
~see main text for the exact definition! is A52L512 mm and
v/2p540 Hz.

FIG. 6. Same velocity field as in Fig. 5 but depicted as a fu
tion of r at a fixedz value ofL/6.
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PRE 61 317DRIFT RATCHET
for the velocity field in Eq.~1! is in general not identical bu
of comparable quality to the approximation by the veloc
field of the unperturbed flow, evaluated at the center of
spherical particle. Comparing the results when using eit
of these two approximations in Eq.~1! thus seems also
reasonable indicator for the deviations from the exact so
tion. Our simulations, as described in more detail in the n
section, lead to practically indistinguishable results for b
above-mentioned approximations for the velocity field in E
~1!. We finally remark that in the limit of vanishing particl
radius the diffusion coefficient in Eq.~1! diverges. The fact
that our simulations still seem to approach a vanishing a
age particle current in this limit, in agreement with our pr
diction from Sec. III B, is another very strong indication
the self-consistency of our approach.

FIG. 7. Numerical simulation of the stochastic dynamics~1!
with pore shape~2!, T5293 K ~room temperature!, viscosity n
50.5nwater , and particle diameter 2R50.7 mm. The velocity field
in Eq. ~1! has been obtained numerically as described in Sec. I
~unperturbed velocity field, averaged over spherical particle v
ume! with a sinusoidal pumping of the liquid at a frequencyv/2p
of 40 Hz. The pumping amplitudeA ~see main text for the exac
definition! is chosen equal to the periodL56 mm of the ratchet-
shaped pore. Depicted is thez component~along the pore axis! of

the trajectoryxW (t) with initial condition xW (0)'0W for eight realiza-
tions of the stochastic dynamics~1!.

FIG. 8. Same as Fig. 7 but for a doubled pumping amplitude
A52L.
e
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IV. NUMERICAL SIMULATIONS

An analytical treatment of a driven three-dimensional s
chastic dynamics far from equilibrium like in Eq.~1! is im-
possible. In this section we present and discuss results
few representative numerical simulations with paramet
that provide a reasonable description of the real experim
While we will confine ourselves to numerical simulations
the stochastic dynamics~1!, it should be mentioned that w
have also cross-checked the results by numerical solution
the associated Fokker-Planck-equation@16#. Unlike in the
preceding subsection, Sec. III C, we will exclusively use
mensionful units throughout the rest of the paper.

A. Average directed particle transport

Figures 7–10 illustrate the particle motion inside a po
shaped like in Fig. 4. As pumping frequencyv/2p of the
sinusoidal driving our standard values arev/2p 5 40 Hz
and v/2p5100 Hz. Further, the viscosityn of the carrier
liquid is expressed in units of water viscosity, i.e., by mea
of the relative viscosity

nRªn/nwater , nwater51.02531033
Ns

m2
, ~20!

C
l-

f

FIG. 9. Average particle currentve from Eq.~21! versus particle
diameter for various driving frequenciesv/2p and viscosities@cf.
Eq. ~20!#. Further details are as in Fig. 7.

FIG. 10. Same as Fig. 9, but for a doubled pumping amplitu
of A52L.
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with nR50.5 andnR51 as standard choices. A further p
rameter is the pumping amplitudeA, i.e., the amplitude
~maximal elongation! of the liquid around the reference po
sition r 5z50.

With the numerically determined velocity field along th
lines of Sec. III C as input, the Langevin equation~1! is
integrated numerically in small discrete time steps, with
correspondingly discretized thermal noise supplied by a r
dom number generator. The reflecting boundary conditi
are approximately taken into account by the prescription
any step in the discretized dynamics that would lead ou
the pore is replaced by a null step.

Figures 7 and 8 display results of such a numerical sim
lation of the stochastic dynamics~1!. A systematic displace
ment of the particles along the pore axis in the course of t
~ratchet effect! is clearly visible. Superimposed to this d
rected transport is a considerable diffusion-type spread
out of the different realizations. For small driving amplitud
~Fig. 7! the particles remain within the same period of t
ratchet-shaped pore for some time before they cross ove
an adjacent period. For larger driving~Fig. 8! this underlying
periodicity of the pores is almost completely washed out a
the net particle motion is just in the opposite direction than
Fig. 7.

In the remainder of this section we discuss results that
obtained by averaging~indicated by^•••&) over ca. 100 re-
alizations of the stochastic dynamics~1!, each evolved from
t50 up to the same ‘‘running time’’t5t run ~typically t run
5250 s!. From the spread of the numerically simulated
sults the standard deviation can be calculated in the u
way, indicated as error bars in the plots.

Figure 9 shows the average velocity

veª^z~ t run!&/t run ~21!

of particles in the pore for a pumping amplitude ofA5L. As
anticipated in Sec. III B, the particle velocity exhibits a d
tinct maximum as a function of the particle size and a
proaches zero for both very large and very small diamet
All particles move to the left with respect to the ratchet p
file from Fig. 4. With increasing viscosity, the velocities d
crease, especially for the larger particles, whereas increa
the pumping frequencyv/2p from 40 Hz to 100 Hz only
seems to affect the smaller particles. Note that the ave
systematic drift per driving period of about 1/100–1/40 se
is rather small in comparison with the typical displacem
of a few mm during such a period. This makes reliable n
merical simulations rather time consuming.

The striking implication of the current inversion as
function of the pumping amplitude seen in Figs. 7 and 8
the case of a variable particle diameter is depicted with F
10. As compared to Fig. 9 withA5L, in Fig. 10 with A
52L, the transport direction is reversed for the larger p
ticles; i.e., they now move through thesamepore just in
opposite direction than the smaller particles. Since in t
direction~to the right in Fig. 4! the pore looks like a series o
funnels, we suggest that the transport mechanism in this
may be comparable to that of an ‘‘entropic ratchet’’@17#:
The bigger particles experience many collisions with
pore walls, whose asymmetric shape apparently make
easier for them to proceed into the funnel direction. An
e
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tuitive explanation of the transport direction for the sm
particles does not seem possible.

The occurrence of current reversals in ratchet mod
when certain parameters are varied has been observed
discussed before under various circumstances@3#. In our
case, the current reversal is characterized by the follow
features:~i! It is accompanied by a rather strong variation
the current as a function of the particle diameter,~ii ! the
location of the reversal is very weakly dependent on the d
ing frequency~Fig. 10! and the relative viscosity~Fig. 11!,
and~iii ! the maximal currents in both directions are of com
parable size.

For a few shapes of the pore other than in Eq.~2! we have
obtained very similar qualitative features. Furthermore,
specific particle size at which the inversion of the transp
direction occurs is a function of the pumping amplitudeA, as
Fig. 11 shows. In principle, one still might have doub
whether the current inversion in Fig. 10 is not an artifact
our approximations for the velocity fieldvW (xW ,t) form Sec.
III C. Since these approximations become better and be
with decreasing particle size, while in Fig. 11 the inversi
point can be made to occur even for very small sizes, th
remains little doubt that the current inversion isnot an arti-
fact of our approximations.

Altogether, the effective transport velocities exhibit e
tremely nonlinear behavior as a function of the particle si
which qualifies this ratchet type as an attractive candidate
a separation device.

B. Effective particle diffusion

As Figs. 7 and 8 already suggest, and as we will see
detail in the next section, besides the time- and spa
averaged transport velocityve from Eq. ~21!, a further cru-
cial quantity for the particle separation mechanism is
effective diffusion constant, i.e.,

Deª@^z2~ t run!&2^z~ t run!&2#/2t run . ~22!

Numerical calculations show that this definition mak
sense; i.e.,De seems to approach a well-defined, finite lim
for t run@2p/v.

FIG. 11. The pumping amplitudeA at which the particle curren
changes sign as a function of the particle diameter for differ
relative viscositiesnR5n/nwater . Further details are as in Fig. 7.
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However, the ratioDe /Dth is not independent of the par
ticle size; cf. Fig. 12: For smaller particles the effective d
fusion is increased since they frequently change between
uid ‘‘layers’’ of different speeds. Larger particles develop
tendency to get trapped inside the pore cavities, yieldin
reduced effective diffusion. For similar reasons,De /Dth also
increases strongly as a function of the pumping amplitudeA,
as Fig. 13 shows.

V. MODELING FINITE PORES WITH BASINS

In this section we abandon the idealization of infinite
long pores and return to the real experimental setup wit
finite pore length and adjacent liquid-plus-particle basins
indicated in Fig. 3.

A. Coarse-grained description

Assuming an initial homogeneous distribution of the p
ticles in the liquid, how long does it take to achieve a co
siderable gradient in the particle density under the action

FIG. 12. The effective diffusion coefficientDe from Eq. ~22! in
units of the thermal diffusion coefficientDth versus particle diam-
eter for the same parameter values as in Fig. 9.

FIG. 13. The effective diffusion coefficientDe from Eq. ~22! in
units of the thermal diffusion coefficientDth versus pumping am-
plitude for a fixed particle diameter of 0.6mm. Other parameter
values are as in Fig. 9.~For the dashed lines only two data poin
have been computed.!
q-

a

a
s

-
-
f

the pumping mechanism in the pore domain as describe
Sec. III? The time scale of this separation process is cle
much longer than any other relevant time scale of the s
chastic dynamics. On the one hand, this ‘‘separation of ti
scales’’ makes a direct simulation of the process practic
unfeasible; on the other hand, it may be exploited as a m
ingredient for deriving a much simpler approximate effecti
description on a coarse-grained level. The second ingred
for doing so is based on the observation that the variation
the particle density within one pore period is not of intere
for our question. Neither is the density variation in thex and
y directions: Inside the pores, it cannot be observed,
outside we may assume a homogeneous distribution, s
there are about 1.53106 pores per square centimeter of th
silicon wafer.

Our starting point is the time-dependent particle dens
P(x,y,z,t). Note that this density is defined on the enti
three-dimensional space, being zero outside the region w
is accessible to the liquid-plus-particle suspension. Next
define a coarse-grained one-dimensional probability den
P̄(n,t) according to

P̄~n,t !ª
v

2p LEt2p/v

t1p/v

dt8E
n L2L/2

n L1L/2

dzE dxdyP~x,y,z,t8!.

~23!

Thus, P̄(n,t) represents the one-dimensional probabil
density along thez axis of finding a particle in thenth ‘‘unit
cell’’ of length L ~summed over all the parallel pores!. Inside
the pores, i.e., for2zP<z<zP in Fig. 3, n52nP , . . . ,nP
numbers the pore periods. The total pore length is thus gi
by (2nP11) L. In total,n runs from2nB to nB to cover the
whole relevantz range @2zB ,zB# in Fig. 3. Note that for
reasons of particle conservation, the average over time in
~23! has typically only a very small effect but is include
here for the sake of convenience.

In order to predict the further evolution in time of th
coarse-grained density~23!, knowledge of its present stat
P̄(n,t) is obviously not sufficient; one needs also a detai
distribution of particles inside each ‘‘unit cell’’ or, alterna
tively, knowledge of the coarse-grained density over the
tire past ~non-Markovian dynamics!. The above-mentioned
separation of time scales, however, suggests that a very
curate effective Markovian dynamics@further evolution only
in terms of the present-coarse grained stateP̄(n,t)] should
be possible. The situation is much like in the context
random walk theory@18#, deterministic diffusion@19#, Tay-
lor dispersion@13#, or nucleation@20#. For physical reasons
only transitions between neighboring cells can play a role
infinitesimal time increments; i.e., the coarse-grained dyna
ics has the general form of a Markovian chain model

] P̄~n,t !

]t
5k1~n21!P̄~n21,t !

1k2~n11!P̄~n11,t !2 P̄~n,t !@k1~n!1k2~n!#.

~24!
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So far, all the ratesk6(n) are still undetermined model pa
rameters. However, all but two of them are immediat
fixed by the requirement that the known coarse-grained
havior inside the basins and inside the pores be corre
reproduced. Namely, we require that the average drift ve
ity in the pore region, i.e.,unu<nP , be ve and the effective
diffusion coefficient beDe . In the basin regions, i.e.,unu
.nP , we have pure thermal diffusionDth and no drift in a
preferential direction.@The quantitative values ofve andDe
follow from the simulations in Sec. IV, whileDth is given by
kT/h; see below Eq.~1!.# In order to correctly reproduce
these transport properties in the coarse-grained model~24!,
the rates are bound to take on the following values:

k6~n!5
D~n!

L2
6

v~n!

2L
, ~25!

v~n!ªveQ~nP2unu!, ~26!

D~n!ªDth1~De2Dth!Q~nP2unu!, ~27!

where the step functionQ(x) is 1 for x>0 and 0 otherwise.
This formula~25! applies to all rates with the exception o
those two ratesk2(nP11) andk1(2nP21) which describe
the transitions from the left and right basins into the por
respectively. Strictly speaking, the dynamics of the liqu
and thus of the particles at the matching points of the p
and the basin regions is very complicated and thus the d
vation of these two rates is difficult, with the exception of t
fact that they are equal. Since alsok2(nP12) is equal to
k1(2nP22), we thus may write

k2~nP11!

k2~nP12!
5

k1~2nP21!

k1~2nP22!
5:k. ~28!

A reasonable approximation for this single remaining mo
parameterk can be obtained as follows: neglecting the p
ticle dynamics in thex andy directions, a particle attemptin
to enter the pore region will hit a pore and thus be succes
with a probability that is given as the ratio of areas of all t
pore cross sections and of the cross section of the basin.
k2(nP11) is simply reduced by this factor in compariso
with the ‘‘normal case’’k2(nP12), and similarly fork1

(2nP21). In other words, we can approximately identifyk
with the ratio of areas of all the pore cross sections and of
cross section of the basin. A typical value of this ratio
areas for the real experiment is

k51/9. ~29!

This one-dimensional Markovian chain model~24!–~29!
has also been checked by comparison to an improved th
dimensional Markovian model, which naturally is able
describe the change of accessible volume at the basin-
transitions without a modification of the hopping rates like
Eqs. ~28! and ~29!. The numerical results from the one
e-
ly
c-

,

e
ri-

l
-

ul

us

e
f

e-

re

dimensional approach have been found to agree excelle
with those of the three-dimensional model.

Note that the terms on the right hand side of Eq.~24! with
Eqs. ~25!–~28! can be rearranged into the form of a di
cretized Fokker-Planck equation in Ito interpretation. Aft
taking the limit L→0 with (2nP11)L52zP and (2nB
11)L52zB kept fixed, andzªnL, a continuous Fokker-
Planck equation of the following form can be derived@16#:

] P̄~z,t !

]t
5

]

]z H 2v~z!1g~z!
]

]z

D~z!

g~z! J P̄~z,t !, ~30!

where we introduced

g~z!ª12~12k!Q~zP2uzu! ~31!

and wherev(z),D(z) are defined analogously to Eqs.~26!
and ~27!. Note that~up to a normalization factor! g(z) is
nothing else than the area in thex-y plane that is accessibl
to the liquid-plus-particle suspension as a function ofz. In
other words, the ratio

r~z,t !ª P̄~z,t !/g~z! ~32!

characterizes the averaged particle concentration, i.e.,
number of particles per volume of the surrounding liquid~up
to an overall normalization factor and within the approxim
tions of our coarse grained description!. By closer inspection
of Eq. ~30! one can infer thatD(z) r(z,t) is continuous at
the transition from the basins into the pore, whereas all ot
quantities likeD(z), g(z), P̄(z,t), and r(z,t) are discon-
tinuous.

B. Particle separation

The one-dimensional model~24! can be readily solved in
the steady state, i.e., in the long time limitt→` ~superscript
‘‘ ` ’’ !:

P̄`~n!5N
)
2nB

n21

k1~m!

)
2nB11

n

k2~m!

, ~33!

where N is a normalization constant. Taking into accou
Eqs. ~25!–~28! we find thatP̄`(n) is constant and equal to
P̄`(nB) within the entire right basin, i.e., forn.nP , and
similarly for the left basin, and that the ratio of these tim
asymptotic particle concentrations is

P̄`~nB!

P̄`~2nB!
5S 11

ve L

2De

12
ve L

2De

D 2np11

, ~34!



r
l
e

io
e
in
ith

a
ie
tw

nte-
nu-

t
sity

ible

hey
is

mi-
as
e-
r, a
ich

e

ults,
dis-
icles
the
tain
ow-

to

de-
f an
ier
.36
e
f

-
f

n in
ram-

PRE 61 321DRIFT RATCHET
independent of the factork from Eq. ~28!. In the limit L
→0, with (2nP11)L52zP and (2nB11)L52zB kept
fixed, we find from Eq.~33! or, equivalently from Eq.~30!
that

P̄`~z!

5N 5
1, 2zB< z ,2zP ,

k
Dth

De
expS ~z1zP!ve

De
D , 2zP< z <zP ,

expS 2 zPve

De
D , zP, z <zB .

~35!

The continuous expressionP̄`(zB)/ P̄`(2zB)5exp(2zPve/
De) following from Eq. ~35! underestimates the ratio from
Eq. ~34! by an amount depending on the length scaleL and
the exponent 2zPve /De . The deviation stays below 10% fo
L56 mm and exponents between28 and 8. For the mode
parameters as used in Figs. 9 and 10, this expon
2zPve /De takes values from223 to 0 and28 to 7, respec-
tively. Generally speaking, the continuous approximat
~35! is useful in the parameter region where transport inv
sion occurs. However, for small driving amplitudes like
Fig. 9, where high transport velocities in combination w
low effective diffusion may occur, the expression~33! is
preferable.

C. Numerical results

For practical applications, not only are the steady st
concentrations important, but also the time needed to ach
reasonably large concentration differences between the
basins. An analytical solution of Eq.~30! is still possible in

FIG. 14. Time evolution of the averaged particle densityr(z,t)
from Eq. ~32! by numerically solving Eqs.~24!–~29! with particle
diameter 0.36mm, L56 mm, zP563 mm, zB587 mm ~cf. Fig.
3!. For t50, the initial distribution is chosen homogeneous@r(z,t
50)51#. The input parameters for the Langevin equation~1! are
v/2p5100 Hz,nR50.5, andA5L, resulting in an effective trans
port velocity of ve520.69 mm/s and an effective diffusion o
De /Dth53.8 ~compare Figs. 9 and 12!.
nt

n
r-

te
ve
o

the time-dependent case but involves tedious definite i
grals over Gaussians. We therefore restrict ourselves to
merical solutions of the Markovian chain model~24!–~29!.
@Again, the agreement with solutions of Eq.~30! has been
found to be very good.# Figure 14 shows how the drif
ratchet works as a micropump: The averaged particle den
r(z,t) of microspheres with 0.36mm diameter is plotted as a
function of z, for different pumping timest. For t50, the
particles are equally distributed over the whole access
volume in basins and pores, corresponding tor(z,t50)51.
For t55 s, two peaks appear right outside the pores. T
originate from the facts that the diffusion inside the pores
stronger than outside, and that the diffusive process is do
nant at small time scales. After 1 min, the pumping h
caused a clear bias in the particle distribution, which b
comes even more pronounced after 10 min. One hour late
considerable concentration gradient has been built up wh
is already quite close to the asymptotic long-time limit.

For this calculation, the extension of the basins in thz
direction was kept at a relatively small value of 24mm. For
larger basins, more time is needed to achieve similar res
because the particles have to diffusively cover a longer
tance in the basins and because a larger quantity of part
has to be transported from one basin into the other until
concentration difference takes appreciable values. A cer
acceleration can be achieved by stirring in the basins. H
ever, if larger basin volumes are desirable, it is better
extend the geometry inx and y direction, thereby also in-
creasing the number of macropores.

Figure 15 shows the separating power of our model
vice: Here, we started with a homogeneous suspension o
equal number of two different types of particles in the carr
liquid: The microspheres of type 1 have a diameter of 0
mm and those of type 2 of 0.7mm. The input parameters ar
the same as before, except for the pumping amplitude oA
52L. The corresponding effective velocities areve

(1)

FIG. 15. RatioP̄2(zB ,t)/ P̄1(zB ,t)5r2(zB ,t)/r1(zB ,t) of the
densities for two types of particles at the borderz5zB of the right
basin, as a function of the pumping time, calculated from Eq.~24!.
Solid line: for homogeneous initial densitiesr1,2(z,t50) over ba-
sins and pores. Dashed line: for homogeneous initial distributio
the pore region and vanishing densities in the basin regions. Pa
eters: microsphere diameters 0.36mm and 0.7mm, nR50.5, A
52L, v/2p5100 Hz, ve521.6 and 0.54mm/s, andDe /Dth

510.8 and 10.5, respectively.
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521.6 mm/s andve
(2)50.54 mm/s, respectively~compare

Fig. 10!, and the effective diffusion constants areDe
(1)

510.8Dth andDe
(2)510.5Dth , respectively.

Since the smaller particles travel to the left basin and
bigger ones to the right basin, the ratio of the particle den
ties at the end of the right basin,P̄2(zB ,t)/ P̄1(zB ,t), in-
creases with time. Note that the ratio of densiti
r2(zB ,t)/r1(zB ,t), from Eq. ~32! coincides with
P̄2(zB ,t)/ P̄1(zB ,t). The solid line shows the case of an h
mogeneous initial distribution of all particles throughout b
sins and pores@r1,2(z,t50)[1#. The dashed line corre
sponds to homogeneous initial distribution only within t
pores, and no particles in the basins. Due to the larger d
sion of the smaller particles, the ratioP̄2(zB ,t)/ P̄1(zB ,t) is
smaller than one in the beginning, but then the separatio
somewhat faster than in the first scenario.

The steady-state ratio~long time limit! P̄2
`(zB)/ P̄1

`(zB)
for an equal number of type 1 and type 2 particles can
calculated from Eq. ~35!. With the abbreviation E1,2

ªexp(2zPve
(1,2)/De

(1,2)), the ratio is given by

P̄2
`~zB!

P̄1
`~zB!

5
E2

E1
,

~36!

~zB2zP!~11E1!1k
Dth

(1)

ve
(1) ~E121!

~zB2zP!~11E2!1k
Dth

(2)

ve
(2) ~E221!

.

For the parameters of Fig. 15, this theoretical ratio reac
the valueP̄2

`(zB)/ P̄1
`(zB)52958, which somewhat undere

timates the value of 3272 found as the large time end in F
15.

Note that these results were achieved without fine-tun
any parameters or optimizing the shape of the pores.
instance, for higher pumping frequencies, the transport
locities can be considerably increased, with the effective
fusion almost staying constant. This should allow an ev
better separation of different types of particles.

Obviously, the ability of our drift ratchet to transport pa
ticles in different directions is very useful for separation p
poses. As already mentioned at the end of Sec. IV A,
particle size at which the current inversion occurs w
change when the geometry of the pores, e.g., their diam
is changed. Therefore, each macroporous silicon wafer w
a certain geometry of the pores can be used as a hi
accurate filter for a certain spectrum of particle sizes.

VI. SUMMARY AND OUTLOOK

In this paper we have theoretically analyzed a silicon w
fer, pierced by a huge number of practically identical para
pores with a ratchet-shaped, i.e., periodic but asymme
variation of the diameter along the pore axis~Figs. 1–3!. The
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pores are filled with a liquid~e.g., water! and connected a
both ends to basins and some pumping device that prod
a time-periodic current of liquid back and forth through t
pores. Suspended in the liquid are particles of microme
size and the objective is to separate them according to t
size into the two basins.

We have put forward a stochastic model for an idealiz
infinitely long and exactly periodic pore under the assum
tion of negligible particle inertia, gravitation effects, intera
tions with other particles, and interactions with the po
walls other than via the perfect reflecting boundary con
tions. In the calculation of the liquid velocity field that ca
ries the particles we have used the Navier-Stokes equa
for an incompressible viscous liquid with negligible inert
terms ~so-called creeping-flow approximation!, justified by
the small Reynolds and big Strouhal numbers arising un
realistic experimental conditions. The impact of the fin
particle size on the liquid velocity field has been neglect
but the effective velocity experienced by the extended p
ticle in the inhomogeneous velocity field has been taken i
account approximately.

The ratchet-shaped pore profile in conjunction with t
far-from-equilibrium situation created by the periodically a
ternating velocity field of the liquid gives rise to a ratch
effect, i.e., a net particle transport along the pore axis,
though both the external force of the streaming liquid and
thermal noise average out to zero. The basic physical me
nism for the emergence of such a nonvanishing net part
current is the thermal diffusion between ‘‘liquid layers’’ o
different speed—similar to Taylor dispersion@13#—and the
collisions with the pore walls. Through the asymmetry of t
pore profile an asymmetry between pumping forth and b
arises for both the thermal interlayer diffusion and the co
sions with the pore walls, resulting in a nonvanishing parti
displacement on average after one driving period. The
that the excursions of the particles during one driving per
are typically much larger than the net displacement after
period motivates the name ‘‘drift ratchet.’’ It may also b
worth noting that in biological systems where substances
transported in determined directions along so-called mic
tubuli, the achieved velocities of about 1mm/s are of the
same order of magnitude as those predicted for our setu

The dependence of the magnitude and even the direc
of the net particle current upon the particle size is difficult
predict intuitively. The numerically observed sensitive d
pendence of the current direction on the particle size~Fig.
10! appears to be a quite robust feature of this class of
fusion ratchets. In particular, an exact spherical shape of
particles does not seem necessary.

For a real silicon wafer with pores of finite length, co
nected at both ends with liquid-plus-particle reservoirs,
have introduced a coarse-grained description, based o
approximate but apparently fairly faithful Markovian a
sumption, with the result of an effective one-dimension
Markovian chain model, quite similar to the coarse-grain
models employed in various other contexts@13,18–20#. The
model parameters in this effective description can be de
mined either through the ‘‘first principles’’ Langevin ap
proach from Secs. III and IV or by fitting with the real ex
periment. For a realistic choice of parameters our numer
and analytical calculations predict a surprisingly high se
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rating power of the device with a remarkable resolution w
respect to particle size~Figs. 14 and 15!.

As a generalization of the original setup from Fig. 3 o
may also consider an alternating sequence of several ba
and silicon wafers with different pore characteristics. In t
way, more than two types of particles could be separa
within a single run by accumulating them in a controlled w
inside the different basins.
s-

-

-
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.
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