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Controlling activated surface diffusion by external fields
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Abstract

A theory is presented for the diffusion coefficient and the hopping distribution of an adatom on a surface in the
presence of external fields. Relatively simple expressions are derived for the probability of multiple hops in the
exponential hopping limit. This limit is the one which is usually found in the diffusion of a metal atom on a metal
surface. In this limit the barrier height (in units of kBT ) is large compared with the bias created by the field and the
energy loss of the particle as it traverses from one barrier to the next. The hopping distribution is obtained for
constant and time varying fields in the adiabatic limit. Typically, the presence of an external field will increase the
probability of long hops. The magnitude of the field needed to appreciably increase the probability of multiple hops
is 108–109 V m−1. © 1999 Elsevier Science B.V. All rights reserved.

Keywords: Atomistic dynamics; Computer simulations; Diffusion and migration; Energy dissipation; Equilibrium thermodynamics
and statistical dynamics; Friction; Surface diffusion

1. Introduction The particle is subjected to a frictional force char-
acterized by the friction coefficient c and a
Gaussian delta-correlated random force j(t) withThe dynamics of diffusion of a particle on a

periodic potential is of interest for a variety of zero mean such that at temperature T,
physical problems, such as surface diffusion of 
j(t)j(t)�=2cmkBTd(t−t).
atoms and molecules [1,2], the current–voltage If the barrier height V‡&kBT then the diffusion
characteristics of superconducting devices [3], or is activated, and the particle must receive energy
the rotation of molecules in solids [4]. The ‘stan- from the surrounding bath in order to surmount
dard’ model studied by many authors is that of a the barrier and escape from its present metastable
particle with mass m moving on a one-dimensional state. The dynamics of activated diffusion has been
periodic potential w(q) with ‘lattice length’ l0, with studied extensively during the past decade [5–
barrier height V‡, whose equation of motion is the 19,44]. The phenomenon of stochastic resonance
Langevin equation: [20] for periodic potentials is also of interest [21–

25]. Quantities of physical interest are the escape
rate C from a given well, the diffusion coefficientmq̈+

dw(q)

dq
+mcq̇=j(t). (1)

D and the hopping probability distribution p
n
.

Upon escape, the particle may be retrapped in an* Corresponding author. Fax: +972 8 9344123.
adjacent well or it may be retrapped only afterE-mail address: cfpollak@weizmann.weizmann.ac.il

(E. Pollak) traversing over n adjacent wells. The hopping
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distribution ( p
n
) is defined as the probability for the barrier height for escape, the particle will no

the particle to be retrapped in a well which is n longer be trapped in a well and the process is no
lattice lengths distant from it. longer an activated one. We will consider only

Mel’nikov [6 ] has provided analytic solutions weak fields, in the sense that Fl0%V‡ and the
for the escape rate, the diffusion coefficient and particle is moving on a tilted potential. Mel’nikov
the hopping distribution as a function of the provided an analytic solution for the diffusion
magnitude of the friction coefficient. For a given dynamics in this case, but he did not study in any
potential, the dynamics is characterized by the detail how the force affects the hopping distribu-
energy loss parameter D, which is defined as the tion. In the presence of a constant force, the
average energy lost by the particle as it traverses symmetry is broken, the particle will move ‘down-
from one barrier to an adjacent one. When hill’ and one will observe a current. At the same
D%kBT one is in the underdamped regime, the time though, the hopping distribution is modified.
characteristic jump length is long, of the order of The first new result presented in this paper is that
1/D, the escape rate is proportional to D and the a constant force will also increase the probability
diffusion coefficient diverges as 1/D. When the for multiple hops. A simple expression for the
friction is ‘low’ but the energy loss is high such modified multiple hopping probability in the physi-
that V‡>D>kBT, the total escape rate is given by cally relevant, exponential hopping regime is
the transition state theory limit C=(v0/p) derived in Section 2.
exp(−V‡/kBT ) (where v0 is the frequency If one applies an a.c. field, the Langevin equa-
of the adsorbed particle) and the hopping distrib- tion is modified by the addition of a time-depen-
ution is exponential in the energy loss dent periodic force Ff(t) where F is the field
p
n
~exp[−(n−1)D/4kBT ]. We shall refer to this strength and f(t) oscillates with period t. Without

situation as the exponential hopping regime. When loss of generality we assume that | f(t)|≤1. We will
the friction is high – the strong friction limit – also assume that the time average of the force over
only single hops are allowed, the rate follows

one period is zero. If in addition, the time depen-
Kramers’ law [26 ], it is inversely proportional to

dence is symmetric in the sense that there exists athe friction coefficient and the diffusion coefficient
time t0 such that f(t0+t)=−f(t0−t) for all t (allis proportional to the product of the rate and the
odd moments of such a force are zero) then thelattice length squared.
particle will have equal probability of diffusing toThe hopping distribution has lately been a topic
the right or to the left. One remains with a purelyof special interest since it can be observed during
diffusional process. However, the hopping distribu-the diffusion of metal atoms on metal surfaces.
tion is modified by the symmetric field. We willVarious experimental groups have reported sig-
show in Section 3, that the presence of the externalnificant probabilities for multiple hops [1,2]. Their
symmetric field increases the probability ofresults have been interpreted in terms of
multiple hops and that accordingly the diffusionMel’nikov’s theory [14,15,19] and with the aid of
coefficient is increased.molecular dynamics computations [27]. Typically,

Guided by recent work on the control of diffu-the friction felt by a diffusing atom is weak,
sion in the strong friction limit [28–33] we willalthough the energy loss is of the order of the
also consider the case of a field that is periodic,thermal energy or higher. One is therefore in the
but asymmetric in time. In the strong friction limit,exponential hopping regime, and one observes
it has been shown that such a field can induce adouble or triple jumps; longer jumps are very
current; the symmetry of the process is brokenimprobable.
through the asymmetry of the field. As demon-The topic of this paper is the control of the
strated in Section 3, the same holds true in thehopping distribution in the exponential hopping
exponential hopping regime. The asymmetric fieldregime, by the use of an external field. If the force
induces a current but at the same time it modifiesis very strong such that the field strength F

multiplied by the lattice length l0 is greater than the hopping distribution. Finally we shall discuss
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the conditions under which such control of diffu- defined as:
sion may be realized in atom diffusion on surfaces.


l2�=l2
0
∑
j=1
2

j2p
j
, (5)

where p
j

is the hopping distribution defined above.
Since the diffusion coefficient is proportional to

2. Diffusion in the presence of a constant force the escape rate, the lowering of the barrier on the
downhill side will cause an exponential increase of

As already mentioned in Section 1, in this paper the diffusion coefficient. In contrast to a free
we will consider the physically relevant exponential particle, where the addition of a constant force
hopping distribution limit. In this limit, the does not change the diffusion coefficient, the pres-
reduced barrier height v‡¬V‡/kBT&1 is the largest ence of a nonlinear potential causes the external
parameter of the problem. The magnitude of the force to enhance the diffusion coefficient. This
friction coefficient is small (c/v0%1), but the effect is the same as in the strong friction limit
reduced energy loss parameter d¬D/kBT is of the [34,35]. In the presence of strong time varying
order of unity or larger. A positive constant force fields (u>v‡), the nonlinear potential can cause
results from the addition of a linear potential term the particle to diffuse faster than the free particle
−qF to the Hamiltonian of the system. The con- [30,31]. This is not the case in the weak field limit
stant force tilts the potential. The (reduced) energy considered in this paper.
difference between left and right adjacent barriers The external force also changes the hopping
will be denoted as u and u can be either positive distribution and thus causes a further increase of
or negative. We will assume weak fields, in the the diffusion coefficient. In the exponential hop-
sense that |u|%v‡. ping regime, the energy distribution of escaping

The particle may escape to the left with a rate particles is thermal. As a particle moves from one
Cl or to the right with the rate Cr. If the constant barrier to the next, the effect of the environment
force is positive, the energy difference between is to cause a fluctuation in the energy. As shown
adjacent barriers u is taken to be positive and the by Mel’nikov [6 ], in the weak field limit, the
escape rate to the right is higher than the escape conditional probability that the particle changes
rate to the left. One will have a net current of its (reduced) energy (e¬E/kBT ) from e to e∞ as it
particles moving to the right. The rates are given traverses from one barrier to the adjacent one is a
by the TST expressions, which in the exponential Gaussian:
hopping regime and under the weak field condition
are well approximated as:

P(e∞|e)=
1

E4pd
expC− (e∞−e−u+d)2

4d D. (6)

Cl=
v
0

2p
expC−Av‡+ u

2BD. (2) The fraction of particles that start at a barrier
with positive (negative) momentum and reach the
adjacent barrier whose relative height is u (−u) is

Cr=
v
0

2p
expC−Av‡− u

2BD. (3) given by (the barrier energy is zero):

F
2,1

(d, u)=P
0

2
deP

0

2
de∞ P(e|e∞) exp(−e∞)The diffusion coefficient is proportional to the

product of the rate and the mean squared jump
length of an escaping particle:

=
1

2 CerfcAd−u

2EdB+eu erfcAd+u

2EdBD. (7)

D=1
2

C
l2�, (4)
In the absence of an external force (u=0), this
fraction is independent of the direction of thewhere C is the total rate out of the well

(C=Cl+Cr) and the mean squared jump length is jump. In the presence of an external force, u≠0,
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the fraction to the right F2,1(d, u) will differ from and the probability for double jumps to the right
( left) is:the fraction to the left F2,1(d, −u).

The probability for single jumps is by definition:
p
2,r(l)=F

2,1
(d, ±u)−F

3,1
(d, ±u). (14)

The enhancement of the double hopping probabilityp
1
(d, u)=

C−CrF2,1(d, u)−ClF2,1(d, −u)

C
. (8)

is by definition:

and the multiple hopping probability is:
r
2
=

p
2
(d, u)

p
2
(d, 0)

. (15)
p
j≥2(d, u)=1−p

1
(d, u)

In this manner, one can continue and derive the
=

CrF2,1(d, u)+ClF2,1(d, −u)

C
. (9) complete hopping distribution.

In Table 1 we compare theory with numerical
simulation for a particle with unit mass and theThe fraction of particles that start at the barrier
potential w(q)=cos q at the temperature of b=10top with positive (negative) momentum and are
such that the reduced barrier height is v‡=20. Theimmediately trapped in the well to the right ( left)
reduced friction coefficient is fixed at c/v0=0.1 sois:
that the reduced energy loss parameter is d=8. These

p
1,r(l)=1−F

2,1
(d, ±u). (10) parameters mimic roughly the diffusion of Pt on

Pt(110), where the observed fraction of double
The enhancement of the multiple hopping prob-

jumps in the absence of an external bias is of the
ability as a result of the bias is given by the ratio

order of 0.1 or less. The numerically exact computa-
of the multiple hopping probability in the presence

tions were performed using the reactive flux method
of the field to the probability in the absence of the

[13,35–38] and the 4th-order Hershkovitz integrator
field:

[39]. Results are given for the probability for double
jumps (Eq. (14)) as a function of the bias parameter

r
j≥2=

p
j≥2(d, u)

p
j≥2(d, 0)

. (11) u. As can be seen, the agreement is quantitative.
The enhancement of the multiple hopping prob-

ability (Eq. (11)) as a function of the bias u isIt is straightforward to obtain the fraction of
plotted in Fig. 1. We note that the multiple hoppingparticles that start at a barrier with positive (nega-
probability may be doubled already when u~2. Thetive) momentum and jump to a barrier which is
enhancement of the diffusion coefficient (D(u)/D(0))distant by at least two lattice lengths. Following
is plotted in Fig. 2 (thick solid line) as a function ofthe derivation of Eq. (7), one finds that:
the bias u. As already mentioned, the enhancement
comes from two sources: one is the enhancement ofF

3,1
(d, u)=P

0

2
deP

0

2
de∞P

0

2
de◊ P(e|e∞)P(e∞|e◊)e−e◊

the escape rate, the other is the increase in the

Table 1=
e−d/2 eu

4 P
0

2
dx CerfAx−u

E2dB Hopping probabilities in the presence of a constant force

u p1,ra p1,la p2,ra p2,la+erfAx+u

E2d BD erfcA−x

E2dB e−x. (12)
p/5 .938 (.94) .967 (.97) .0557 (.055) .0312 (.03)
p/2 .906 (.91) .980 (.98) .0799 (.081) .0190 (.018)

The probability for double jumps is then: 0.6p .892 (.89) .9837 (.98) .0889 (.091) .0159 (.015)
p .826 (.83) .9925 (.99) .127 (.133) .0074 (.007)p

2
(d, u)

1.2p .784 (.79) .9950 (.98) .144 (.153) .0049 (.004)

=
Cr[F2,1(d, u)−F

3,1
(d, u)]+Cl(F2,1(d, −u)−F

3,1
(d, −u)]

C
. a The first number in the column is the analytical result based

on Eq. (14). The number in parentheses is the result from
numerical simulation.(13)
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probability for multiple hops. To get a feeling for
the relative contribution of the two effects, we also
plot in the figure the enhancement of the rate
(C(u)/C(0), thin solid line) and the enhancement of
the mean squared jump length (
l2�(u)/
l2�(0),
dashed line). In this plot, the diffusion coefficient
and the mean squared jump length were obtained
by allowing only up to triple jumps, since the
probability for longer jumps is negligible within the
present parameter range.

3. Time-dependent fields

3.1. The symmetric time-dependent force case

The next case to be considered is that of a
symmetric periodic force. It is straightforward to
estimate the hopping distribution in the adiabatic

Fig. 1. Enhancement of the multiple hopping probability in the limit. In this limit, the periodic force changes
presence of a constant force. The ratio r2 defined in Eq. (11) is

slowly when compared with the time it takes theplotted versus u the reduced energy difference between succes-
particle to escape from the well (the inverse TSTsive barriers. The energy loss parameter is d=8.
rate). One may then define time-dependent rates,
obtained for the biased periodic potential with the
constant force Ff(t). The full rates are obtained
by averaging the time-dependent rates over one
period of the force. If the force is symmetric, the
time average of the hopping rates to the left and
to the right will be identical. The absolute value
of the escape rate as well as the multiple hopping
probabilities will be increased relative to the
multiple hopping ratio in the absence of the force,
since the downhill part of the force will enhance
the multiple hops as before, while the uphill part
is less probable because of the increased barrier
height.

The enhancement of the time averaged multiple
hopping probability is defined as: (cf. Eq. (11)):


r
j≥2�=

1

t P0t dt
p
j≥2(d, u(t))

p
j≥2(d, 0)

, (16)

Fig. 2. Enhancement of the diffusion coefficient in the presence where t is the period of the symmetric field and
of a constant force. The ratio r of the diffusion coefficient in u(t) is the instantaneous (reduced) energy differ-
the presence and the absence of a field is plotted (thick solid ence between adjacent barriers. In the weak field
line) versus u – the reduced energy difference between successive

limit, u(t)≈uf(t) where u>0 is the maximalbarriers of the potential. Also plotted in the figure is the
reduced energy difference between two adjacentenhancement of the rate (thin solid line) and the mean squared

jump length (dashed line). barriers.
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In Fig. 3 we show the adiabatic results obtained flux method which allows one to initiate trajecto-
ries at the barrier. However, the reactive fluxfor f(t)=cos(Vt), keeping the same parameters as

in Figs. 1 and 2. Comparing Figs. 1 and 3, one method is not well defined for time-dependent
Hamiltonians, as there is no stationary equilibriumnotes that the enhancement of multiple hops in

the presence of the a.c. field is similar to the d.c. probability. A more extensive study of the numeri-
cally exact diffusion dynamics in the presence of afield case. As might be expected, the a.c. field does

reduce somewhat the effect, as a result of the time-dependent field remains at present a challenge
for future work.averaging.

If the frequency of the field V is fast compared
with the characteristic frequency of the diffusing 3.2. The asymmetric time-dependent force case
particle v0 then the field averages out to zero and
there is no effect. Between this mean field limit In the adiabatic limit, one can just as well treat
and the adiabatic limit there can be variations of the case of an asymmetric force. For each instant
the field frequency over many orders of magnitude, t one has an escape rate C±(t) to the right or to
as the typical reduced barrier height v is assumed the left given by the TST expression:
to be large. To get a feeling for the effect of an
external force in this intermediate frequency range

Cr(l)(t)=
v
0

2p
expC−Av‡A u(t)

2 BD, (17)
it is necessary to carry out numerical simulations.
However, even this is not trivial. If the reduced

where u(t) is the instantaneous adjacent barrierbarrier height is large, it will take a long time for
height difference. The net rate in each direction isa trajectory initiated at the bottom of a well to
then the time averaged rate:escape. In the absence of a time-dependent field

one overcomes this problem by using the reactive

Cr(l)�=

1

t P
0

t
dt Cr(l)(t), (18)

where t is the period of the asymmetric force.
Consider for simplicity the time-dependent

force:

f (t)=f
1C t

t
1

h(t
1
−t)−

t

t−t
1

h(t−t
1
)D, (19)

defined over the period 0≤t≤t, such that
t1<t/2. The absolute magnitude of the force will
be greater in the short interval t1 than in the long
interval t−t1. The averaged rate depends exponen-
tially on the magnitude of the slope, but only
linearly on the time the force is exerted. Therefore,
the main contribution to the rate will come from
the strong force. This will bias the rate in favor
of the high negative slope direction and a net
current will be created. The magnitude of the
current is proportional to the difference between
the uphill and downhill rates. The efficiency of the

Fig. 3. Enhancement of the multiple hopping probability in the asymmetric field, denoted by e is defined as:
presence of a slowly varying symmetric periodic force – f(t)=
cos(Vt). The enhancement, computed in the adiabatic limit (see
text) is plotted versus u – the (reduced) maximal height differ- e=

|
Cr�−
Cl�|


Cr�+
Cl�
. (20)

ence between successive barriers.
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In practice it is easier to prepare a continuous
asymmetric time-dependent field. We therefore
used the following form, plotted in Fig. 4:

f (t)=2
3

[cos(Vt)+1
2

cos(2Vt)]. (21)

The efficiency of the field is plotted in Fig. 5 as a
function of the field strength, as represented by
the barrier energy difference u, which is the maxi-
mal height difference between adjacent barriers.
As is evident, the typical efficiency is of the order
of 10−2–10−1. The enhancement of the multiple
hopping probability is plotted in Fig. 6.

4. Discussion

The central question which must be answered Fig. 5. The efficiency of the asymmetric periodic force in induc-
is whether the proposed control mechanism can ing a net current. The efficiency defined in Eq. (20) is plotted

versus the reduced bias parameter u defined as the maximalactually be implemented experimentally. In this
energy difference between successive barriers. The results are inpaper we consider specifically the case of activated
the adiabatic limit of a slowly varying asymmetric field.surface diffusion of adatoms on surfaces. As shown

by Kandel and Kaxiras [40], because the electronic
control the motion of the atom. A back of thestructures of the barriers and wells of the surface
envelope computation for the field strength neededare different, the electronic cloud at the surface
to cause a bias of u=1 (in reduced units) isinduces an effective small charge of the order of
108–109 V m−1. This is a very strong field when0.1e on the adatom. An electric field can then
compared with characteristic breakdown in insula-

Fig. 6. The enhancement of the multiple hopping probability
Fig. 4. An asymmetric periodic force. The asymmetric periodic (Eq. (16)) in the presence of an adiabatically varying asymmet-

ric field. The enhancement is plotted versus the reduced biasforce given in Eq. (21) is plotted versus the time t, measured
in units of V−1. parameter u. All other details are as in Fig. 5.
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