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Abstract. The author identifies some subtle difficulties that one encounters within
the framework of nonlinear generalized Langevin equations. These difficulties be-
come even more pronounced when describing an open system that is in contact
with more than one heat bath.

A well known technique to describe the dynamics of a system which
is governed by fluctuations is the method of generalized master equations
and the methodology of generalized Langevin equations. This strategy is
by now well developed for thermal equilibrium systems. Here, the projector
operator methodology (Mori 1965, Kawasaki 1973, Nordholm and Zwanzig
1975, Grabert et al. 1980, Grabert 1982) yields a clear-cut way to obtain the
formal equations, either for the rate of change of the probability, i.e., the
Generalized Master Equation (GME), or the generally nonlinear Generalized
Langevin Equation (GLE). Take the case of relaxation of a system that is
coupled to a thermal bath towards its unique equilibrium as specified by a
single temperature T'. Then, the equivalence between the two approaches is
expected, but it is by no means transparent. Clearly, it are the statistical
properties of the fluctuational force that determine this equivalence, such as
its cumulant averages to an arbitrary high order, see in (Grabert et al. 1980).
This fact is not widely appreciated because one often restricts the discussion
of the statistical properties of the fluctuating force to the first two cumulants
only; namely its average and its autocorrelation. Fact is that little is known
between the connection of the GME and the corresponding GLE. One such
relation which relates the generalized, generally nonlinear memory-diffusion
matrix in the GME with the generally nonlinear memory-friction kernel in
the GLE has been put forward with egs. (55) and (56) in (Grabert et al.
1980).

A popular model consists of coupling a nonlinear system S bilinearly to
a bath of harmonic oscillators. Then, the total Hamiltonian of a particle
with mass M moving in a potential U(z) in presence of a bath of harmonic
oscillators reads (Zwanzig 1973, Ford and Kac 1987, Pollak 1986):
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Let us elucidate the reasoning which leads to the GLE. With (1) the equations
of motion for the system degrees of freedom read
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and for the bath degrees of freedom, respectively
Mado = Po

Pa = —MaWw? o + Cal . (3)

Next we integrate the bath degrees of freedom, which obey first order ordi-
nary, linear differential equations with an inhomogeneity ¢,z (t). Considering
the solution z(t) as given, we formally solve (3) in terms of the Green’s func-
tion for the bath oscillator, 8(t — s) sin(wq (t — 8))/wa, 1-€.,

4a(t) = qa(to) cos(wa(t — to)) + % sin(wq (t — o))
4 t ds sin(wq (t — 5))z(s) - (4)
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Upon inserting (4) into (2) we find
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The last term will be denoted by F(t). It does determine a fluctuating force.
The second and the third term can be combined to read

2 ¢
p=— Z_ZJ,_Z a [ dsx(s)%cos(wa(t—s)) - m(t)] + F(t) . (6)
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With a partial integration we thus arrive at the GLE structure, i.e.,
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Note the dependence on the initial value x(to) in the second contribution.
Hence, we have found already the exact result for the GLE, (Zwanzig 1973,
Ford and Kac 1987):

Mi+ M t ds y(t — s)z(s) + g—g = —M~(t —to)x(to) + F(t), (8)

where the memory friction reads

Vi) = g B e cos(walt =), ©
and
F()= Z Ca [qa(to) cos(wqa (t — o)) + f:(z())) sin(wqa (t — o)) (10)
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is a colored (i.e. the noise has a finite correlation time) Gaussian fluctuating
force, which obeys the fluctuation-dissipation theorem of the second kind,
ie.,

(F(#)ps =0
(F(t) F(s))ps = META(t — ) (11)

where the average is taken with respect to the unperturbed bath, i.e.,
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and 8 = (kT)~ .

Here, we already notice the role of the initial slip, y(t—to)x (o), see also in
(Bez 1980, Canizares and Sols 1994), which usually is simply brushed under
the rug, i.e. simply ‘dropped’. For strict ohmic dissipation it reduces to a
d-function contribution, 2v4(t — t): Although being zero for finite times ¢
it still affects, of course, the time evolution of the realization, as well as the
relaxation of time-dependent averages of the coordinate z(t) and momentum
Z(t) processes, which indeed depend on all previous times ¢ > to. The result
in (8) is not yet the usual GLE, although it begins to look close. Next, we
absorb the initial slip term into the stochastic force. Then, the noise
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no longer has a stationary autocorrelation when averaged with the ‘sudden’
bath ensemble pp. The combined stochastic force ((t) is again stationary
and colored Gaussian, however, if conditionally averaged with respect to the
Gaussian equilibrium ensemble

ﬁ({pa,Qa} | z‘(to) = Z‘)
1 Pl maw? Ca 2
=Z""expq—p S, + — (qa " m) . (19)

With this conditional probability for the bath variables the statistical force
((t) obeys the identical fluctuation-dissipation relations as in eq. (11), i.e.,

(€(®)y =0
(€(®) C(s))p = (C(t — s + o) C(t0))p = METy(t — 5) . (15)

Hence, care must be applied if one refers to the statistical properties of
the two different stochastic forces F(t) and ((t), respectively! Our exercise
elucidates that this exact GLE does not pop out of Pandoras box, but can be
obtained in a straightforward manner. Nevertheless, it needed a master like
Zwanzig (1973), who paved the way for us. The above derivation is worth
to be commented on further: Note that the steps in (2) - (7) carry through
for the corresponding Heisenberg equations of motion as well. This proce-
dure yields the exact (operator)-GLE for the quantum case, see in (Ford and
Kac 1987). Interestingly enough, with U(z) a harmonic oscillator potential
and without the ‘counter-term’, i.e. without the second term in (5) so that
U(z) undergoes a potential renormalization in the GLE, the quantum-GLE
together with a discussion of the corresponding quantum Nyquist formula
has already been presented clearly — on one and a quarter page — by Mag-
alinskij as early as (1959). In the quantum case the stochastic forces are no
longer c-numbers, but become operators which act on the Hilbert space of all
bath degrees of freedom (and composite Hilbert space of system plus bath
for the combined stochastic force ¢(¢)). The symmetrized autocorrelation
of the stochastic force(s) obey a quantum generalization of the fluctuation-
dissipation theorem of the second kind (quantum Nyquist theorem); i.e., the
symmetric quantum noise autocorrelation can be expressed solely in terms
of the macroscopic memory friction kernel v(t — s); not withstanding recent
incorrect claims to the contrary (Cortes et al. 1985).

Next, let me return to classical statistical mechanics. As already demon-
strated by Zwanzig (1973), the above GLE can be generalized to a nonlinear
system-bath coupling, i.e. we set for the coupling, —caga — —CoqaG(2),
in (1). The bath motions are then still linear; thus we again can formally
integrate the bath degrees of freedom, thereby generalizing the result in (4).

With %ﬂ = g(x) the exact GLE for this nonlinear system-bath interaction
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is then evaluated to give the following GLE

¢
Mz +Mg(z(t)) t ds y(t — s)g(z(s)) z(s) + Z—Z =
—M~(t = to) g(z(to)) G(z(to)) + g(z(t))F(¢) - (16)

With G(z) = z it reduces to the previous result in (8). This nonlinear GLE
exhibits multiplicative noise with a generalized, state-dependent memory fric-
tion. The noise F(t) and the combined fluctuating force, F(t) — M~y(t —
to)G(z(to)), then obey the corresponding relations in (11) and (15), respec-
tively. An unsolved problem, to the best of my knowledge, is the detailed
connection between the GLE in (8,16), with the stochastic force given either
by (11), or by (15), and the corresponding non-Markovian GME for the joint
probability density of coordinate and momentum variable; i.e.

pla,@;t) = ...7 (17)

Although the noise is Gaussian, the joint-process [(z(t), Z(t)] is with a (non-
quadratic) nonlinear potential no longer Gaussian. Then the difficulty in
obtaining the GME is rooted in the fact that its derivation requires the
knowledge of corresponding functional derivatives, (Hanggi 1978,1989), such
as (0£(t)/d ((s)) at times s < t; hence, the GME is at best known formally
only. With U(z) being at most a quadratic function of z, the process pair
[z(t), &(t)], given z(to) = o, E(tg) = vo can be shown to be Gaussian, but
non-Markovian. Then, a master equation for p(z, &; t) for a stable process, i.e.
U"(z) > 0, and an initial equilibrium preparation (Adelman 1976) or, more
generally, with an initial non-equilibrium preparation (Hanggi 1978,1989),
as well as for an unstable process with U"(z) < 0, see in (Hanggi and Mo-
jtabai 1982), can readily be constructed. It exhibits a time-convolutionless
structure. Thus, it clearly does not have the retarded (memory) structure
predicted by the (formal) projection operator methodology (Grabert et al.
1980, Grabert 1982). What is the corresponding memory-GME in this linear
case? — I simply do not know. —

Sailing becomes much smoother in the Markovian limit, with ((¢) ap-
proaching stationary Gaussian white noise. Given an arbitrary potential U(z),
the corresponding connection is the well-known relationship between the
Langevin equation and the Fokker-Planck equation, i.e. the Klein-Kramers
equation, (Klein 1922, Kramers 1940), for which, even for the case that a
spatially-dependent friction coefficient governs the inertia motion, no Ito-
Stratonovich dilemma occurs. Another challenge presents the task of a mi-
croscopic modelling of fluctuations in a general nonequilibrium system such
as e.g. a thermal ratchet system (for a recent review see Hanggi and Bar-
tussek 1996). Now, matters become even worse. For example, given the fact
that the detailed balance symmetry of the total system (i.e. system plus all
degrees of freedom of all baths) survives a coarse graining operation, see eq.
(4.3.8) in (Hanggi and Thomas 1982), it is, prima facie, not obvious how the
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violation of the detailed balance symmetry for a stationary nonequilibrium
system does occur. For an elucidating discussion of this point the reader is
referred to page 267 in (Hanggi and Thomas 1982).

To gain further insight, we consider a single particle S which is coupled
simultaneously (!) in a bilinear way, cf. (1), to two harmonic baths at differ-
ent temperatures, with the baths composed of a large number of oscillators.
This situation distinctly differs from the Carnot machine case, where the two
baths never influence the system at the same time. Related in this spirit are
the theoretical models of heat conduction in harmonic chains whose ends are
brought into contact with independent heat baths, which have been modelled
phenomelogically by two independent Gaussian noise forces together with
ohmic friction for the end points, as studied classically by Rieder, Lebowitz
and Lieb (1967), and quantum mechanically by Ziircher and Talkner (1990).
We next assume that two baths are initially prepared in a thermal product
state at the individual temperature 77 and T3, respectively. Then, the re-
sulting exact GLE for this situation has the same form as in (8), but with
two memory kernels, and two stochastic forces of the type in (10), obey-
ing corresponding statistical properties as given in (11). Most important is
the observation that two different initial slip terms of the form in (8) appear.
Likewise, one can introduce two different stochastic forces of the type in (13).

By forming cross-correlations, or by combining them into a single stochas-
tic force we encounter, however, difficulties: What S-value should be chosen
for the conditional, longtime equilibrium ensemble in (14)? Although the two
baths are not coupled between each other, they are in fact in contact via
their finite coupling to the system S. Thus, it is the (relative) heat capacities
of the two baths that ultimately determine the overall equilibrium tempera-
ture. Moreover, the two initial slip terms couple, via the dependence on z(ty),
the two stochastic forces (1(t) and ¢(2(¢). I am not aware that these subtle
aspects have formerly been discussed in the literature. Previous attempts, a
most recent can be found in (Millonas 1995), can be shown to be inconsistent
(neglect of initial slips, and mix up with different ensemble averages, etc.).

Playing naive, let us discuss the simplest situation, namely we use the
Markovian limits, i.e. y(t — s) — 2v8(t — s), for the stochastic forces Fj(t)
and F5(t) of the two baths at temperature Ty and T5, respectively. Further,
we simply neglect corresponding initial slips such that F(t) = (1(t), Fx(t) =
¢2(t). Note that the equality does not hold when ¢ = ¢9. Then, the autocor-
relation for the force (;(t) reads

(Cu(t) Gu(s)) =2My Ty 6(t - s). (18)

With v, = 1 = v, the stochastic force corresponding to the bath at temper-
ature T obeys
(G(t) G2(s8)) =2M~y T 6(t — s) - (19)

Next, we intuitively set

(Ci(t) G2(s)) =0. (20)
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Moreover, we use a vanishing potential field U(x) = 0. With v = &, the
Langevin equation which governs the relaxation dynamics is then expected
to be of the form,

Mo ==2yv+G(t) + G©). (21)

With the equilibrium temperature being T' = %(Tl +T5), the correspond-
ing Fokker-Planck equation for the nonequilibrium situation, with the two
baths at different temperatures 77 # T can then formally be recast by the
stochastically equivalent Langevin equation of a single bath at temperature
T'; namely

Mib = -2y v+ ((t) (22)
with {(¢) being a single white Gaussian noise, obeying
(C(t) C(s)) = 2M (27)T6(t — s). (23)

Both equations (21), and (22) with (23), indeed yield the identical Fokker-
Planck equation

2

. 0 0
p(v,t) = 30 [—2vyup(v,t)] + 2MYT 5 (

v, t). (24)

What does this result imply: Is the nonequilibrium relaxation dynamics
of v(t), given two harmonic baths at temperature 77 and T5, at all later times
t identical to the equilibrium relaxation dynamics of v(¢) in contact with a
single bath at T' = %(Tl + T5)? Clearly, the answer must be ‘no’. Thus, we
must have made mistakes for this most simple situation already, such as e.g.
mixing different averages in egs. (18 — 23).

The Langevin equation in (21) and (22) should describe different physical
situations at finite times t > to; in the longtime limit, ¢y — —o0, however,
these differences vanish and both equations describe the same equilibrium
Boltzmann distribution for the momentum variable v. In this sense, the two
Langevin equations become equivalent in the asymptotic longtime limit; how-
ever, (21) no longer, of course, can be used to describe the nonequilibrium
relaxation of averages towards asymptotic equilibrium.

The generalization with quantum mechanics taken fully into account is
even more subtle. Then, as has been indicated above, an exact (operator)
GLE — which solely acts on the Hilbert space of the system S alone — does
simply not exist.
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