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I. INTRODUCTION

The general subject of colored noise driven dynamical flows is rooted in
the study of the motion of small particles suspended in a fluid and moving
under the influence of random forces that result from collisions with
molecules of the fluid induced by thermal fluctuations. In short, the
phenomenon of Brownian motion [1]. In the earliest studies of Brownian
motion, the damping of the motion of the suspended particles was very
large compared to that of the fluid molecules, so that inertial effects could
be neglected. Moreover, the thermal fluctuations occur on a time scale
that is very much shorter than that of the Brownian particle. It is then a
good approximation to assume that the random forces are uncorrelated
delta functions as perceived by the particle on its own, much slower time
scale. This assumption considerably simplifies the problem, because it
allows one to treat the stochastic dynamical motions as a Markovian
process for which many methods and approximation schemes are avail-
able. The fluctuations that can be treated under this assumption have
often been termed “white noise”. Thus, white noise fluctuations £(¢), are
those for which the autocorrelation function is given by

(£(t)é(s)) = 2D8(t — s) (1.1)

where we designate the noise intensity as D. This noise has no time scale
and exists independently of any other physical system. A large body of
literature on white noise applications exists, and appropriate starting
points are the now classic reviews of Chandrasekhar, Uhlenbeck and
Ornstein, and others in the collection of Wax [2]; the texts by
Stratonovich [3], van Kampen [4], Risken [5], and Horsthemke and
Lefever [6]; or the reports by Hinggi and Thomas [7], and Fox [8].

In the physical world this idealization, however, is never exactly
realized. What must be done is to consider the noise and the physical
system within which, or upon which, it is operating together. Specifically,
the time scales of the two systems must be taken into account. Therefore,
we seek, in the first instance, a noise with a well-defined characteristic
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time. One of the simplest examples for an introductory discussion of
time-correlated noise is the Ornstein—-Uhlenbeck process, which exhibits
an exponential correlation function,

(E()£@s)) = (DI,) exp(=|t —s|/7,) (1.2)

with noise correlation time 7,. This fluctuation process is called ““colored
noise’” in analogy with the effects of filtering on white light. The terms
“white”” and ‘‘colored noise’’, are, of course, jargon words. Nevertheless,
because they are widely recognized and understood, even though some-
what imprecise, we shall use them throughout. Now 1t is important to
understand what clock is being used to measure the noise correlation
time. It is the physical system itself, which is either generating the noise
internally or is subject to the noise as an external forcing which,
according to its own characteristic response time, perceives the time scale
of the noise. The physical system is frequently and simply modeled with a
stochastic differential equation termed a Langevin equation. A damped
oscillator subject to a one-dimensional (1-D) deterministic potential U(x),
and additive noise serves as a simple example:

U()

+ &(t) (1.3)

mx + myx = —

where m is the mass and v is the damping factor. By dividing through by
my, neglecting the inertial term in the limit of large y, and properly
scaling the system coordinate x to be dimensionless, that is, x— ax and

D — D(«), we have
= [J-{%42) )

$

where 7, is the system characteristic time. Now for simplicity, we can
scale time in the Langevin equation so that =, is removed by letting
t' = t/7,. But we must measure time in Eq. (1.2) on the same scale, where
with D = D(a)/T,

(&) = 215 exp[ -l - 1(Z) | (1.5)

n

It has become customary to write the Langevin equation in this scale, and
the noise correlation function in terms of a dimensionless time 7 =7, /71,
so that

5= =200 4 s (1.6)
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and
(£()é(s)) = (D/) exp(—|t —s|/7) (1.7)

where D = D is now a dimensionless noise intensity. Though this is a
convenient scale, which we shall adopt throughout this paper, it has
sometimes obscured the role of colored noise in real physical systems by
hiding the “clock” with which the system measures time. Next, we shall
discuss various approximations, some valid only for small values of 7. In
order to successfully apply these theories to any real physical system, it is
essential to understand what “small”’ means. As the above discussion
indicates, this means that 7, <7, (or 7<1), but how much smaller
depends not only on the particular approximations used but also on the
problem or system. A related question is one of measurability and
distinguishability. The analogue simulators and associated measurements,
which mimic real physical systems, are not accurate enough to convinec-
ingly distinguish any colored noise approximate theory from the white
noise predictions for the same system for 7= 0.1. Digital simulations can,
of course, achieve much greater accuracy and further improvements are
currently forthcoming. Even so, it is probably not practical (with finite
computing time) to expect distinguishability for = 0.001.

Moving toward larger 7, approximations that are based on perturba-
tions of the white noise theory become progressively less accurate once
again for values of r that depend both on the system and on the particular
approximation used. These so-called “small 77’ approximate theories have
roots that date to the original work of Stratonovich [3] cited above. A
different approach is expounded by Risken [5] who has pioneered the use
of matrix continued fraction expansions, which offer solutions to the
colored noise problem. These expansions are in principle exact, but are in
practice rendered approximate by the necessity to truncate and numeri-
cally invert a final matrix of infinite dimension. Moreover, in the absence
of supercomputers, the matrix continued fraction method is practically
limited to systems with a low number of state variables.

One of the earliest definitive results, which indicated that colored noise
plays an important role in nature was Kubo’s explanation of motional
narrowing of the observed magnetic resonance line shapes induced by
thermal fluctuations [9]. Kubo’s model is exactly solvable and applicable
to all ranges of 7, since it treats a linear system: an oscillator with a noisy
frequency. The observed statistical properties of the fluctuations of dye
laser light [10] offered the next solid evidence that the noise found in
some physical systems is colored. Initially, the evidence was provided by
numerical simulations of the nonlinear laser Langevin equations using
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Ornstein—Uhlenbeck noise, compared to measurements of the correlation
function of the actual laser light fluctnations [11]. Soon after, an early
success of the so-called “small 7 theory resulted from its application to
the same experimental dye laser data [12]. Recently, it has been
demonstrated that the pump parameter in dye lasers can be adjusted
close enough to the laser transition that the laser fluctuations are driven
by (pump) noise of moderate values of 7 [13]. The intensity fluctuations
in all pumped lasers originate from two sources: the spontancous
emission, or quantum, noise that derives from the statistics of photon
emission from the inverted population within the laser cavity, and the
pump noise that derives from fluctuations in the intensity of the pump.
The pump noise is governed by a much slower time scale than the
emission noise, and so has been treated as colored noise, while the
emission noise has until recently been assumed to be white. Colored
spontaneous emission noise has been shown to have a strong influence on
the properties of the proposed correlated spontaneous emission laser [14].
Noise color also has a strong effect on the systematics of noise induced
bifurcations among ordered and turbulent states in nematic liquid crystals
[15,16].

II. USE AND ABUSE OF COLORED NOISE

This section first reviews the development of the field of systems driven
by noise starting from the early work on Brownian motion around the
turn of the century, then continues with the pioneering studies and
applications to physical systems during the decade of the 1950s, and
concludes with the more recent theoretical developments through the
early 1980s.

A. The Role of White Noise

As already mentioned in Section I, the most well-known application of a
noisy differential equation for a state variable x(¢f) is the theory of
Brownian motion, described first in 1828 [17], with the first precise
experiments carried out in 1888 by Gouy [18]. The description in terms of
a noisy differential equation wherein one splits the motion into two parts,
a slowly varying systematic part and a rapidly varying random part, is due
to Langevin [19], who first wrote the familiar expression for the damped
motion of a randomly forced particle, with X = v,

mu = —myv + &(t) (2.1)
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with

(e =L 5~ 1) (22)

A study of the solution of this equation, however, had to await Ornstein’s
early work on Brownian motion (see the historical discussion on colored
noise given below). It is important to note that a general study of Eq.
(2.1) is nontrivial. In order to make progress, one necessarily must
specify the properties of the random force. It is often justifiable to assume
that the random forces, which sometimes derive from the environment,
are correlated on a very small time scale 7, compared to the characteristic
relaxation time for the system 7,, around a locally stable state. An
idealized treatment then assumes the random force to have zero correla-
tion time, that is £(¢) is approximated by a (generalized) 8-correlated
process:

(£@)é(s)) =2D8(1 — s) (2.3)

where all the frequencies of its power spectrum Sy(w)=
JZ. (E@)é(s)Ye ™" dr=2D, are present with equal weight. Obviously,
there exist several classes of such white noise processes, all of which are
completely understood [20]. The classes are defined in terms of the
derivative &(t) = dz(t)/dt of processes with stationary, independent incre-
ments. For example, the derivative of the Wiener process [21, 22] defines
Gaussian white noise, whereas the derivative of the Poisson process yields
white shot noise. These two elementary noise processes form the building
blocks for the theory of Markov processes [20,23—-26]. Stochastic dif-
ferential equations composed of nonlinear drift flows £ (x) and multiplica-
tive noise forces g ,(x)£,(¢r), that is,

%, = f.(x) +,-=21 2.0ERD  a=1,...,n (2.4)

where £,(f) denotes a white (generally) non-Gaussian random force, thus
describe a multidimensional Markov process x(¢). The corresponding
master equation, which describes the rate of change of the probability, as
well as the statistical properties of the nonlinear noise forces, has been
discussed in the literature [27-29].

From an historical point of view, the statistical consequences of Eq.
(2.1) have first been studied by Ornstein {30, 31], implicitly assuming
Gaussian white noise (see also [32, 33] and the bibliographical notes given
in [34]). For the mean-square displacement in thermal equilibrium, he
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obtained from Eg. (2.1) the central resuit [30, 31},

(e ~x)%),, = (:f;)["yt —1+e™ ] (2.5)

where an average over x(¢,) =x, is implied by the subscript on the
left-hand side. In Eq. (2.5) T denotes the temperature and k is the
Boltzmann constant. This result, which accounts also for the inertia
effects mu, generalizes the celebrated result by Einstein [35].

2
(x >_(m7)x (2.6)
The inertia induced shift obtained by Ornstein in Eq. (2.5), given by the
terms [—1 + exp(—vt)]/y inside the bracket is, of course, the result of the
two-dimensional 2-D stochastic motion in phase space, which is equiva-
lent to a colored noise driven dynamics in configuration space. The
passage from Eq. (2.1) to a partial differential equation for the
probability’

kTy &
2 P =7 o [P+ 5 p ) (2.7)

has been achieved by Fokker [36,37], Smoluchowski [38], and Planck
[39]. Actually, Eq. (2.7) was obtained earlier by Lord Rayleigh {40, 41]
who employed a limiting procedure from a discrete state Brownian
motion model for a heavy particle (the Rayleigh model). This connection
between the Langevin equation driven by Gaussian white noise and the
parabolic partial differential equation, Eq. (2.7), commonly known as the
“Fokker—Planck equation”, was subsequently generalized to account for
the Brownian motion of the configuration coordinate of a particle moving
in an external potential field by Smoluchowski [42,43] and Fiirth [44].
The generalization to the full phase space, that is, ap,(x, v)/d¢, has been
obtained first by Klein [45] (see also [46]).

Useful applications of the theory of Brownian motion to the calcula-
tion of other statistical quantities, such as the probability density of first
passage times or absorption and escape probabilities, had been consid-
ered as early as 1915 by Schrodinger [47] and others [42-44]. For
nonlinear flows, interesting applications, such as calculations of the
stationary probability density of a 2-D noisy limit cycle, and the exact

'We will refer throughout this article to the “probability density” as simply the
‘“probability”.
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quadrature formulas for the mean first-passage time of 1-D Fokker—
Planck processes, have been obtained as early as 1933 by Pontryagin et
al. [48] (translated by Barber in [49]).

Interesting as these applications are, however, the fact is that noise
with zero correlation time leads to stochastic realizations, generated by
the noncontinuous noise-sample paths, which are in reality nonphysical.
For example, for the state variable x_(¢) driven by a white Gaussian noise
source, as given by Eq. (2.4), the sample paths are not of bounded
variation, nor are they continuous (as it is the case with white shot noise)
or differentiable [21, 22, 50]. Thus, any results obtained from white noise
theory that make predictions about the dynamics on time scales approxi-
mately equal to 7, clearly do not lie within its regime of validity.
Nevertheless, the results of measurements on real physical systems for
which noise forces with very large effective bandwidths are encountered
(at least a factor of 10 larger than the deterministic system bandwidth) are
for almost all practical purposes indistinguishable from the predictions of
the white noise theory. Of course, all actual noise encountered in nature
has some nonzero (though perhaps small) correlation time. In Section
ITI, corrections to the white noise theory that are necessary to describe
systems driven by noise with nonnegligible correlation time, commonly
known as “‘colored noise’, are considered.

B. The Role of Colored Noise

Statistical fluctuations always refiect a lack of knowledge about the exact
state of the system. Usually, the system behavior is modeled in terms of
two classes of variables: state variables that change on a slow time scale,
which are most often monitored directly in experiments, and those that
are generally more rapidly varying and more closely related to the
random forces. Moreover, the random forces themselves can be classified
into two groups as ‘‘internal noise” or ‘“‘external noise”, though this
distinction is often ambiguous depending, as it does, on how the
boundary between the ‘‘system” and the ‘“external world” is drawn.
Generally, external noise can be thought of as imposed on some
subsystem by a larger fluctuating environment in which the subsystem is
immersed. In laboratory experiments, external noise with well character-
ized and immediately controllable statistical properties, such as the
stationary probability density, intensity, and correlation time, is imposed
by the experimenter on the system whose response he then measures. In
laboratory experiments, as well as in many naturally occurring instances
of nonequilibrium noise driven systems, the external noise can take on
correlation times that are much smaller than, comparable to, or much
larger than the characteristic relaxation times of the system. Furthermore,
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random forces of moderate-to-large correlation times, 7, =7, can also
emerge with internal noise as was already clearly shown in 1962 by Kubo
in the case of spin relaxation in magnetic systems [9].

In practice, for a complex system, any strongly colored noise implies a
significant deviation from Markovian behavior. In the theoretical treat-
ment of such systems it is often the case that strongly colored internal
noise emerges as the result of coarse graining over a hidden set of slow
variables. In this context, we touch upon a major problem that sooner or
later confronts nearly every perplexed modelist of noisy stochastic flows:
Given a nonlinear system, which and how many slow variables are
needed to adequately describe the system dynamics? One generally hopes
to monitor only a few, and preferably just one physical variable. There is
a price to be paid for this simplification, however, precisely because such
a resulting low-dimensional flow implies a loss of the Markovian prop-
erties of the original higher dimensional system. Systems that exhibit
noise of moderate or large correlation time are often intrinsically high
dimensionally, and can be reduced in dimension only at the expense of
the Markovian character. Because multidimensional Markovian objects,
of the form given by Eq. (2.4) with n > 1, present a rather complicated
dynamics that is already difficult to study in analytical form, the study of
colored noise driven flows even in one-coordinate dimension, such as

= f(x) + g)EQ) (2.8)
where £(¢) is a stationary noise with correlation function,
(£()é@s)) = Dyt —s) (2.9)

is thus expected to be challenging as well. However, any modeling in
terms of colored noise is expected to be more physically realistic, since
when a nonzero correlation time is explicitly accounted for, the realiza-
tions become differentiable as they must be for all real macroscopic
systems. The white noise limits of such theories can then be compared to
purely white noise theories as well as to the results of experiments
performed with wide bandwidth noise. Often, the fluctuations &(z)
represent the cumulative effects of many weakly coupled environmental
degrees of freedom. Outside critical neighborhoods, and in the absence of
long-range correlations that induce large scale collective effects, one can
invoke the ceniral limit theorem and thus treat the fluctuations as
Gaussian. In particular, if &(¢) is in addition Markovian, then Doob’s
theorem? [50, 52] states that £(¢) is necessarily an Ornstein—Uhlenbeck

? For a generalization of Doob’s theorem to nonstationary processes (see [51]).
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process, with exponential correlation function,

() = (2)e (2.10)

with the Lorentzian power spectrum S.(w) =2D/ (r’w” + 1) [Fourier
transform (FT) of the correlation function]. In the following discussion,
we will often restrict the discussion to Gaussian processes with exponen-
tial correlation functions, as given by Eq. (2.10), uniess stated otherwise.
This exponentially correlated Gaussian noise source has been widely used
in numerous recent studies. One of the earliest application dates back to
1966 by Berne et al. [53], where it has been used to model transport in
simple liquids.

Pioneering studies of stochastic, nonlincar flows of the type given by
Eq. (2.8), and applied to problems in electrical engineering and
radiophysics, date to the late 1950s and were developed primarily by the
school surrounding Stratonovich and co-workers [3, 54]. They considered
corrections to the white noise theory valid for small r, meaning, of
course, that their approximate theory would apply in the range 7, <7,
and succeeded to obtain an approximate Fokker-Planck like evolution
for the probability [55],

LT 2 yp e + D g)

{g(x)[l + Tg(x)(é(( ;) ]p,(x, ’T)} (2.11)

where the prime (') indicates differentiation with respect to x.

This celebrated result is now commonly known as the “small =
approximation’’. Over the last two decades it has been applied to many
different systems, rederived, commented on, and extended by many
authors using a variety of methods. In particular, we mention here the
method of cumulant expansions [56—63], expansions in functional deriva-
tives [64—66], singular perturbation methods [67-71], the method of
moments {72], adiabatic elimination procedures [73, 74}, and projector
operator techniques [75-77]. We wish to emphasize that this list of
references is intended to be representative only and certainly is not
complete. These different methods will not be further reviewed, instead
we will return, in Section IV.A, to the small = approximation with a
discussion of the regime of its validity.

Colored noise of arbitrarily long correlation time has been considered
in Kubo’s cornerstone paper on the theory of line shapes and relaxation
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in magnetic resonance systems [9, 78]. He employed a modified Bloch
equation, that is, the so-called “Kubo oscillator’?

X =i[w, + &()]x() (2.12)

Because this is inherently a linear system, and because £(¢) is Gaussian,
Ornstein—Uhlenbeck noise in Eq. (2.10), Eqg. (2.12) can be solved
exactly for the first moment [9, 78]

(x()) = {x(0)) exp{iwyt — D[t —7(1 — exp(—t/1))]} (2.13)

The transformation, u = In x yields a linear stochastic flow with additive
noise,

i = i[w, + &0)] (2.14)

which in turn yields an exact master equation for p (x) = p,(w)|x]™"; see
Eqgs. (3.28-3.34). Defining the relaxation function ¢(¢),

d(—t)=¢(t) = <exp fot £(s) ds> == T(;i(%—))l)— e ot (2.15)

we obtain, in the white noise limit, from Eq. (2.13) (termed ‘fast
modulation limit” in [9]),

im, g $(1) = bo(t) = exp(~Df)  7—0 (2.16)

whereas in the case of large © we have the Gaussian (termed ‘‘slow
modulation limit” in [9]), that is, with (D7)'*>1

lim, . &@) = ¢ () =exp[-(DE/21) + O(r™*)] 17— (2.17)

For the absorption spectrum,
1 (" ;
Ko — wy) =75~ f dt (t)e o) (2.18)

one obtains, using Eq. (2.16), a Lorentzian in the white noise limit,

1 D
Iy(w ~ wy) = (@ — w0)2 + D2

(2.19)

3 Note that the Kubo oscillator, Eq. (2.12), is not overdamped, although it is described
by a differential equation of first order. Eliminating the real or the imaginary part of the
complex variable x reveals the undamped harmonic oscillator if no noise is present.
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In contrast, for the limit of large =, or the “slow modulation limit”, Eq.
(2.17) yields a Gaussian line shape,

Iy(w —wy) = (ZWD) o exp[—" (_“iﬁ‘;?_)i} (2.20)

T

Thus, with o = D/t held constant, and with D <o (i.e. D<VD/r, as
7<€1),the line shape in Eq. (2.19) becomes narrowed as compared with
that given by Eq. (2.20). In nuclear magnetic resonance (NMR), this
experimentally well-known effect is called “motional narrowing > [9, 78],
whereas in paramagnetic resonance it is called “exchange narrowing”
[79, 80]. It is worth emphasizing that Kubo’s explanation of these line
shapes represents an exact theory, valid for arbitrarily long correlation
time 7, successfully applied to nonsubtle, experimentally observable
features of many-body spin systems, which are naturally subject to
internal colored noise. It is, historically, one of the best known examples
elucidating the effect of fluctuations with nonzero 7 in a macroscopic
physical system.

Prior to the advent of this theory, Anderson {81] and Kubo [82]
considered a Markovian modulation £(¢) in Eq. (2.12), which became
known as the *“Kubo-Anderson process’. The noise model consisted of a
discontinuous Markovian process z(¢), which was made up of indepen-
dently occurring steps with random amplitudes m,(t) during the interval
[, =t<t,.,. The amplitudes were distributed with density p(m), and the
jump times {¢;} were determined by a Poissonian distribution. This
process, too, has an exponential correlation.

(z(D)z(s)) = (m>)e ! (2.21)

with (m ) =0, where A denotes the Poisson parameter in P[n(t) = k] =

[(A8)*/k!] exp(—Af), with n(f) describing the number of jumps. When
p(m) = ($)[8(m +a) +8(m —a)] one obtains as a special case the

(Symrnetric) two-state Markov process z(¢) discussed, for example, in [7]

z(t) = a(—1)"" (2.22)

with
(z()z(s)) = a’e >l (2.23)
This process is also known as ‘““telegraphic noise” and “dichotomous

noise”, and it plays an important role in applications in radiophysics
[83, 84] and in noise-induced transition phenomena [6, 85]. In particular,
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for nonlinear colored noise flows of the form
x(2) = f(x) + g(x)z (1) (2.24)

one obtains an exact, retarded but closed master equation, which results
in stationary probabilities [83—85], and non-Markovian mean first-passage
times [86—90], which can be calculated exactly. An interesting application
of nonexponential correlated colored noise has been brought forth by
Brissaud and Frisch [91,92] in order to explain noise-induced Stark
broadening. They make use of the “Kangaroo process™, that is, a
Kubo—Anderson like noise with a correlation function {z(t)z(s)) = |t —
s|—1. This noise, however, is not always realistic, at least for short times
(or high frequencies), since it clearly does not have an integrable FT. In
this chapter, we confine the discussion largely to Gaussian noise. For the
many results and applications of stochastic flows driven by, for example,
two-state or “dichotomous’ noise as given by Eq. (2.24), we refer the
reader to Section IV.

III. COLORED NOISE THEORY

A. Characterization of Colored Noise

In the following sections we shall elaborate on various theoretical
methods being tailored to investigate stochastic differential equations
driven by colored noise sources, Eq. (2.8). These dynamical flows are
rather difficult to study because the statistical properties of such flows
depend at least on two intrinsic parameters which, apart from the
statistical nature of the random force (i.e., Gaussian versus non-Gaussian
noise) characterize the correlation function of the noise. The first
parameter is its overall rnoise intensity D, which we identify with the
zero-frequency part of the power spectrum of the (stationary) noise
source £(1),

2D= | EO0))] de=S,(w = 0) (3.1)
The second parameter refers to the intrinsic correlation time v of £(t),

Jo [£()€(0))| dt
(£%)

Thus, the complete theoretical analysis of the noisy dynamical flow
involves a study in terms of a two-parameter space (D, 7); certainly a

T=

(3.2)
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dmcll T Za‘/b;iz’t

Figure 3.1. Study of colored noise: The various asymptotic regimes in parameter space
(r, D) are indicated by the set of boxes. The arrows connect mutually asymptotic regimes.

rather formidable task. Accurate approximation schemes for colored
noise are thus expected only in the asymptotic limits of one or both
parameters D and/or 7. These possible asymptotic regimes are depicted
in Fig. 3.1. Note, that for the asymptotic regimes indicated in Fig. 3.1 by
vertical double arrows, one must also distinguish between the limiting
behaviors /D —0, or +/D—, that is, one has to account for the
relative change of one parameter compared to the relative change of its
accompanying second parameter. Because most of the practical applica-
tions are driven by weak noise intensities our primary goal has been to
develop workable approximation schemes that hold for weak noise D (see
Section V). For a state vector x = (x,;, ..., x,) we shall assume in the
following a noisy, multidimensional dynamical law, which is of the form

%, =f.(x, A) + 2)1 g NEW a=1,....n (3.3)

wherein A denotes a set of external control parameters, and {£,;(¢)} are
colored noise forces. In particular, we restrict ourselves to memory-free
dynamical laws for x(¢), which generally model nonequilibrium phenom-
ena. For the vast literature on colored thermal equilibrium fluctuations
obeying a fluctuation—dissipation theorem in terms of a memory friction
we refer the reader to the references given in Section VIII. The dynamics
in Eq. (3.3) constitute a non-Markovian process x(t); this occurs because
x(r) is with colored noise {¢,(z)} not made up of independent, in-
finitesimal increments that are statistically uncorrelated [93]. Moreover, it
should be noted that the drift vectors { f,(x, A)} are generally not identical
with the deterministic flow F,

X, =F,(x,7) (3.4)
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which is the result of the motion of the conditional average (x,(t)|x(¢) =
x), with the noise intensity approaching zero; but f,(x, A) contain, in
general, nonlinear, noise induced effects of the fluctuations £;(¢). This
constitutes one of the major problems of any phenomenological modeling
if partially internal noise sources are involved: The deterministic flow
does not even determine the drift term uniquely [94]. The basis for the
form in Eq. (3.3) is related to the notion already discussed in Section II.
Usually, one assumes that the variables of the system separate into two
classes: One class of slowly varying macroscopic variables x(¢), the
motion of which is determined by the drift vector f(x, A) varying on a time
scale 7,, and the small perturbation around this relevant motion, that 1S,
its irrelevant motion varying on a much shorter time scale 7 <€ 7,. In this
case, the random forces &,(¢) are almost white noise forces. This limit is
referred to in the literature as (see Section II) short-correlation time
limit, “off-white noise’’, or “pink noise’, respectively. In general,
however, the experimenter does not monitor the complete set of all
slowly varying variables. Then the noise term &,(¢) can be correlated on
the same, or on an even larger time scale, that is, 7 = 7,. We will refer to
this situation as “moderate-to-strong noise color”. Before we engage in
the study of colored noise driven flows, we first elaborate on general
properties of propagating non-Markovian processes

B. Time Evolution of Non-Markovian Processes

The stochastic flow generated by Eq. (3.3) is non-Markovian, whose
conditional probability R(xt|ys), t>s, depends on the previous history.
Thus, the operator R(t|s) with the kernel R(xt|ys) is not a linear
operator, but depends in a nonlinear way on the initial probability p,(x)
at time ¢, of preparation [95]. Consequently, this operator fails to satisfy
the celebrated Bachelier—Smoluchowski—Kolmogorov—Chapman equa-
tion [95]. Therefore, an important question is whether it is possible to
construct an operator G(t|s) for the single-event probability

p®)[= p(x, )],
p(t) = G(t|s)p(s) (3.5)
which satisfies the property of a ﬁropagator,
G(tlt) =G(|s)G(E ) t=s=t (3.6)
with

Gt |6 =1 | (3.7)
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This concept allows the derivation of a master equation
p@) =T(@)p(r) (3.8)

with the operator I'{¢) given by
d
() =—-Gu|nl,, (3.9)

The existence of such propagators {G(s|t)}, or corresponding (pseudo-
Markovian) generators I'(z), which yield the identical propagation be-
havior of the non-Markovian single event probability has been studied
some time ago [96—99]. It has been shown that Eq. (3.5) does not
determine the propagator set {G(¢|s)} uniquely, but there exists many
such sets, which in general depend on the initial probability p,. We must
stress that the kernels G(xt|ys) of these propagator sets are in general
different from the conditional probability R(xt|ys); thus they cannot be
used to calculate correlation functions such as C,(t, s) = (x,()x;(s)), or
conditional averages, (x(¢)|x(s) =x). There is one important exception,
however: If the system has been prepared at time ¢, without any memory
of the past, and for time sets for which R(t|¢,) is nonsingular for ¢ >¢,,
the operator

Gt |s)=R({|t,)R(s | 2,) " (3.10)
or

L(e) = R(t| 4)R(s | 1)~ (3.11)

is independent of p,; that is, G(¢| ¢,) = R(¢| ;). Therefore, G(t|t,) can be
invoked to calculate inifial, non-Markovian correlations, such as
(x()x(t,)). For the dynamical flow in Eq. (3.3) we shall further assume
for the following that the system has been prepared at time ¢, without any
memory of the past and without correlations between system and environ-
ment, that is, p,(x, environment) = p,(x)p,(environment). This prepara-
tion scheme (7) will be termed ‘““correlation-free preparation’, with the
conditional preparation function W,_[environment|x(¢,)] = py(environ-
ment) {97].

This concept can be generalized [100] for any preparation scheme
characterized by a preparation function W_[environment|x(¢,)], charac-
terizing the distribution of microstates of the environment for given
macrostate x, =x(z,) [100]. Of particular importance is the stationary
preparation W, for which W, ([environment|x,]p,(x,) tepresents the
Stationary probability of the total system (system plus bath). Then
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R, (t]f,) becomes time homogeneous, that is, R (¢]1)) =R (t + 5]z, -+ 5),
and thus can be used to calculate stationary correlation properties [95-—
100].

C. Correlation Formulas between Noise Functionals

In this section we restrict for the sake of clarity and simplification only,
the further discussion to 1-D stochastic flows in Eq. (2.8), that is,

# = fx) + g (&) (3.12)

Moreover, for a multiplicative noise function g(x), which does not vanish,
we can use the transform: x —y = [*[dz/g(2)], h(x) = f(x)/g(x), to obtain
the simplified, additive noise equation

y=nh(y)+ &@) (3.13)

Its single event probability p,(x) is given in terms of an average over the
noise realizations of £(¢), that is,

p.(x) = (8(x(t) ~ x)) (3.14)

The rate of change of p,(x) then obeys

B = == (8(:(t) = 9)%(0) = — 5= [FIP,0)] — o 85)
x (£0)80) — ) (3.15)

We note that a colored noise master equation for the probability p,(x)
introduces a correlation between the noise £(f) and the functional
F{E} = 6(x(t) — x) of the colored noise source £(5), t=s=¢, ({, is the
time of preparation). The expression in Eq. (3.15) can only be disen-
tangled further if we explicitly invoke the statistical properties of the
noise £(¢). We now give (without proof) some important relations that are
needed for the derivation of a colored noise master equation. For an
explicit derivation of these relations the readers are referred to the
original paper [101] and the reviews [102, 103]. Moreover, we shall
explicitly assume that the random force £(¢) is of vanishing mean,

(6(®)) =Ci()=0 (3.16)

Let F{£¢}, G{£¢} denote two functionals of &£(¢#). Then we have with
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F{&} = £(@) and G{£)} = 8(x(r) ~ x) the important relation [101, 102]

(@B () —x)) ~—" : (n,)f j dt,---dt,C, .t t,...,t,)

8"[6(x(¢) — x)] >
5E(t;) - - BEC,) (3-17)
Here, C, (¢,,- . - ,t,) denotes the mth order cumulant of the noise £(z).

The notation 8F{£}/8&(s) denotes the functional derivative; it can be
viewed of as a usual derivative if we set

BF{£}  dF{E{) + A8(t —s))
5E(S) an -

(3.18)

assuming that both sides exist.
For a stationary Gaussian random force £(t) one then finds with

Colt, 5) = C(t — 5) = {E(O)E(s)) — (£ ()} = (&(1)é(s)), the useful re-
sult [104, 105)

(EG{¢)) = fr; C(t — S)<%%%> ds (3.19)

For two functionals F{£}, G[£¢] one obtains for stationary Gaussian noise
[102, 103]

(r(er6(e) = FEGEN + 2 [ [ Gt
“ <3g(sf)G{§;§(r >HC(£ —s) di, ds, (3.20)

With these results in hands we are well equipped to tackle the master
equation for colored noise in Eq. (3.15) in greater detail.

D. The Colored Noise Master Equation

Here we only consider the case of stationary Gaussian noise &() of
vanishing mean {£(t)) =0 and correlation (£()&(s)) = C(t — s) [see Eq.
(3.19)]. Then, the rate of change of the single-event probability p,(x) =



COLORED NOISE IN DYNAMICAL SYSTEMS 257
(8(x(¢) — x)) from Eqs. (3.15) and (3.19) is given by

p.(x)=— —(%C- [FEOp, )] — == g(x) f (e — <6 [&;g&; x)]> e

(3.21)

With
_8 8x(t)
5EG) 8(x(t) —x) = [———B(x(t) x)} BEG) (3.22)

we have from the dynamical law in Eq. (3.12) for the functional
derivative 6x(¢)/8&(s) the integral equation [101, 102]

Sx(t) { f (ax(u)) 6x(u)}
8§(s) o(t — 5)3 glx(s)) + ox() ) BE(s) (3.23)
Here 6(t — s) is the unit step function expressing causality. Its solution is

readily found to read

S = 0~ g exp | e (3.24)

= 0t~ )g(e(s)) exp | {F/(:00) +&'G@)EW) du (3.25)

where A’'(x) denotes differentiation dh(x)/dx. Equation (3.25) can be
recast in alternative, and more appealing form [103, 106]

0 b syse) exp [, { £ — st £ . 3.26)

Combining Eq. (3.22) with Egs. (3.21) and (3.26) we then have for
Gaussian noise £(t) the formally exact result [101-103],

B = = 55 WP 0] + 55 86 35 80 - | e =)o) =)

X exp f [F' - g 'lg)] du) (3.27)

which with different notation has been given first in [101]. At this point,
the exact relation in Eq. (3.27) cannot be generally simplified further.
Because of the function 8(x(¢) — x), a closed expression that involves only
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the single-event probability p,(x),t=u =1, only results if either 8x(z)/
5&(s) does not depend on the process x(¢), or if it depends on x(s) solely
on its endpoint time ¢. Classes of such exact, closed colored noise master
equations (e.g., all linear processes, X =a + bx + c&(t), nonlinear pro-
cesses driven by two-state noise and/or white noise) have been discussed
in [101-103]. The main result obtained in Eq. (3.27) will serve as our
appropriate starting point in Section V to construct various approximation
schemes.

E. Master Equation for a Linear Process Driven by Gaussian Colored
Noise

We shall illustrate the result in Eq. (3.27) for a linear colored noise
process. Let

X=a—bx + &) (3.28)
From Eq. (3.26) we obtain

ox(r)

BE(s) =6(t — s) exp[— bt — 5)] (3.29)

Thus, the master equation, Eq. (3.27), takes on a Fokker—Planck like
form, that is,

B.00) = —a gz P+ b5 lp )+ || dsCe—5) expl-bte 1]

2

x5 p,0) (3.30)

Note that with time-independent drift coefficients in Eq. (3.28) and
stationary Gaussian noise £(¢) the effective diffusion in Eq. (3.30) is time
dependent, and it may even take on negative values when C(z — s) is, for
example, an oscillatory-like function. The solution of Eq. (3.30) consti-
tutes with p,(x) =8(x —x,) a Gaussian, non-Markovian probability,
which explicitly reads [96, 107]

exp{—za (@, to)lx — B, x, to)]z}
[2ma(t, t)]'"?

p(xX)=R,(x|x) = (3.31)
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where

a(t,ty)= f exp|—2b(t — )] D(s) ds (3.32)

D(s)=12 f drC(s — r)exp[—b(s — r)] (3.33)

!

B(t, x4, 1) = x, exp[—b(t — 1,)] + a f exp[—b(t—s)]ds (3.34)

Thus, R(z]7,) is a Gaussian, and with the initial probability p, also
Gaussian, the time evolution of p(t) =R(t|¢,)p, will remain a Gaussian.
This clearly no longer holds for a non-Gaussian initial probability p,(x,).
We close this section with some general observations about non-Marko-
vian master equations as exhibited by Eq. (3.27). The non-Markovian
character of the process x(t), Eq. (3.12), is reflected by the dependence
of p,(x) on the initial time of preparation = ¢, in Eq. (3.27). Moreover,
the initial rate of change of p,(x) is given by

Brery®) = = oz [F0)Pmy )] (3.35)

Equation (3.35) holds true for any noise statistics with nonsingular
cumulants C,(t;,...,¢t,).

IV. COLORED TWO-STATE NOISE

In Section IIT the emphasis has been put on the equation of motion for
the time evolution of the single-event probability, that is, the master
equation. The environmental colored noise fluctuations are frequently
based on the cumulative effect of an abundance of environmental factors.
The central limit theorem implies then that the fluctuations are distribut-
ed Gaussian. As demonstrated in Section III, any Gaussian process leads
to a closed equation of motion of the probability. Moreover, its solution
for the conditional probability is solely determined by the vector of mean
values and the covariance matrix [51]. Moreover, any process resulting
from a linear transformation of Gaussian processes (Markovian or non-
Markovian) is again Gaussian. Colored noise processes that are the result
of a nonlinear transformation of a Gaussian process can also be consid-
ered to be exactly solvable. A set of criteria, which show when a process
y(t) can be related (via a nonlinear transformation) to a linear transforma-
tion of a Gaussian process, can be inferred from the literature [108]. The
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models of Hongler [109] are precisely of this form, being a nonlinear
transformation of a Gaussian process [108, 110]. For Gaussian colored
noise sources that result from an embedding of an n-dimensional Gauss—
Markov process the statistical properties together with the spectral
behavior are known explicitly [111]. Likewise, colored noise Markovian
processes, which via the Darboux procedure, the Abraham-—Moses
procedure, the Pursey procedure, or the supersymmetry procedure, are
isospectral with the quantum harmonic oscillator [112-117] can be
considered as exactly solvable., Such specific examples are the models by
Hongler and Zheng [118, 119] and by Razavy [120]. Other examples of
noise sources, described by a Fokker—Planck process that can be related
to exactly solvable 1-D Schrédinger equations [5, 7, 121], can be found in
[122]. Next we shall focus on a class of exactly solvable colored noise
driven nonlinear systems, whose stationary probability and mean first-
passage times can be obtained (up to quadratures) in exact closed form
for an arbitrarily chosen nonlineary f(x) [see Eq. (2.8)].

A. Correlated Two-State Noise

A class of correlated noise that has found applications in numerous
systems is fwo-state noise, that is, a noise that switches back and forth
between two prescribed state values with a waiting time probability that is
Poissonian. Note that within any switching process in which intradomain-
of-attraction motion is filtered out can satisfactorily be modeled by such
two-state noise. For the sake of simplicity we confine the discussion here
to symmetric two-state noise (for asymmetric two-state noise the reader
may consult chapter 9 in [6]), which switches back and forth between the
state £ =a and & = —a; that is,

&) = a(—1)"" (4.1)

where n(r) =n(0, ¢t) is a Poisson process with parameter A. Put differently,
£@) in Eq. (4.1) is a two-state Markovian process [6, 7]. Let us investigate
its statistical properties. With £(0) = a, its mean reads,

(60)) =a 2 (~1)"Pln(t) =m]

= q exp(—At) 2.::0 (”1);(11\0'"

= a exp[—2Az] t>0 (4.2)
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Likewise one readily evaluates the correlation as

(EQ)EES)) = a*((—1)" 0Ty pe

— a2 < (_ 1)2n(0,s)+n(s,r) )

=a¥{((=1)"*")

= a’ exp(—2At — s|) (4.3)
In particular, note that the correlation is time homogeneous although &(z)
in Eq. (4.2) is not stationary. Let us now distribute the initial value. By
use of the symmetric initial probability for the state variable p,(u) =
{6+ a)+8(u—a)} the noise £(¢) assumes a zero mean. For the

sequence of time instants [¢, =¢,=...=¢,] we then find for the nth
correlation m,,

m, = (&) - ‘f(ﬁ;)) = (§(t1)§(t2)><§(t3) - E(2,)) (4.4)

or
m, =a’ exp[—2A(t, — £,)Im,_, (4.5)

Here we used the fact that the statistics of nonoverlapping time intervals
are independent of each other. The result in Eq. (4.5) can be generalized
to yield

(E()ER)CIEE]) = (£0)EE) Y (GIESD (4.6)

where with s <t, =t,, G[£(s)] is a functional of the two-state noise. The
analogue of the Furutsu [104] and Novitrov [105] correlation formula for
the case of two-state noise has been derived by Klyatskin [83, 84]; that is,
with 6(x) being the step function

(0511 = || ds expl-20¢ ~ ) (5 Gle0G - )
(4.7)

where the noise dependence in G[£] is switched-off for times u >s; that
is, £=0 for u>s.
B. Master Equation for Colored Two-State Noise Driven Nonlinear Flows

Give the nonlinear flow in Eq. (3.12), that is, X = f(x) + g(x)§(r), with £(¢)
being correlated two-state noise in Eq. (4.1), the rate of change of p,(x) in
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Eg. (3.15) can, by use of Eq. (4.7), be recast as

pt(x) =T 50 [f(x)p:(x)]

— -;; g(x)a” fg ds[exp —2A(t — S)]<6§8(S) 8,(x(t) — x)> (4.8)

where &, =8,[£w)6(s — u)] and 7, =0. From the dynamical equation of
motion we find that 8, = 8(x(¢) — x) satisfies

— - [f)8] ~ o= [8() €8] (4.9)

and §,_, = 8(x(s) — x). With £(u) being switched off for times u>s we
thus find for o, the differential equation

Z8=—2(f08]  t>s (4.10)

Therefore, its solution can be cast in operator form to read
A o
o, = exp{~ ™ et — s)}S(x(s) — X) (4.11)

Observing that (8/86£,)6(x(s) —x) = —— g(x)B(x(S) — x) we end up with a
closed-form master equation

5. = — = [Fp, )]

+a 2o g() | dsexp{ (¢~ 92A + 2 1] 2,00
(4.12)

The stationary probability p(x; A) is obtained from Eq. (4.12) if we
integrate between se[0, ], and equate the probability current at zero
value, that is,

PP ) = 8| S5 T | s (WP X)) (4.13)

After multiplication from left with g '[2A + (d/dx)f] one finds an or-
dinary first-order equation for p(x; A). Its solution therefore is readily
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found as [6, 83~85, 102]

e lg®) ) /)
PN =2 128 — )] cwp(2r | @ [azgz(y)—fz(y)]}

(4.14)

where Z ! is the normalization constant. Note that p(x; A) has a support
on all those x values for which the term [a’g®(x) —f*(x)] takes on a
positive value! With the correlation time 7= (2A)"', p(x; A) depends
exponentially on the colored noise correlation 7. We conclude this section
by presenting (without proof) a few further relations that are of use in
applying two-state noise in colored noise driven flows.

The curtailed characteristic functional

$,[v] = (expi fo ds&(s)u(s)) (4.15)
obeys the exact second ordinary differential equation
d? 1 dv(t)] dp, , , B
F‘f’,"r[Z}L— 0@ dt pr +av(t)ep, =0 (4.16)

which with ¢,=1, and ¢,_,=0 generally is not explicitly solvable.
Equivalently, Eq. (4.16) can be recast as an integrodifferential equation

2 4= —a?o() | dsw(s) expl-22¢ - )14, (4.17)

From a nonequilibrium Brownian motion driven by correlated two-state
noise £(t), that is, with a®=2kTyA

X=u
= f(x) — yu+ £@)

we obtain for the stationary probability p(x, u; A) the exact equation

(4.18)

_a 2kTyA) d
Tpe, 15 2) = (Sxlts) o PG5, 1 2) (4.19)
where I'=uwu(a/ax)+ f(x)(8/09u) ~ y(8/0u)u is the deterministic drift
operator. With the parameter A—> @, telegraphic noise approaches Gaus-
sian white noise of vanishing mean and correlation 2kTy8(z). With A — o,
Eq. (4.19) reduces to the usual equation for Brownian motion in a force
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field f(x) = —[dU(x)/dx]. Equation (4.19) can further be recast as a
partial differential equation, that is,

2

9
{(2,\ + YT — 2kTyA(2A +T) ™

o*  df
dx du  dx

— (2 + I + 2kTyA I‘}p(x, u; A)=0 (4.20)
which generalizes the usual Klein—Kramers equation [45, 46, 123]. With
Eq. (4.18) violating the fluctuation—dissipation relation for any finite A,
the solution of Eq. (4.20) clearly no longer exhibits the Boltzmann form,
but the coordinate x and its velocity ¥ =u now become statistically
dependent variables.

C. Mean First-Passage Times

A quantity that carries valuable dynamic information is the first average
of the first-passage time random variable, the so-called mean first-passage
time (MFPT). The MFPT can be used to characterize relevant time scales
in nonlinear dynamical problems such as they originate in chemical
kinetics, decay of arbitrary metastable states, decay of unstable states,
and nucleation [123], to name only a few. With a colored noise driven
flow, the concept of the MFPT becomes rather nontrivial [124, 125]. For
two-state noise with exponentially distributed waiting time, however, the
complexity can be handled in analytical closed form.

In Section IV.B we already made extensive use of the fact that the
stationary probability obeys an ordinary differential equation being of
first order. Not totally surprising, this fact also holds true for the
derivative of the MFPT [86].

Let T, (y) denote the MFPT for a particle, which started out at initial
time ¢, =0 at x =y, with initial velocity £(0) = +a, i.e. p,(1) = 8(a — w).
Here y is restricted to some a priori prescribed interval 1= [x,, xz].
T_(y) is the MFPT for a particle starting out with initial velocity
£(0) = —a, i.e., py(u) = 8(a + u). For the dynamical flow

x = flx) + g(x) @) (4.21)
The coupled equation for T, (y) is explicitly given by [86, 90]
(f +ag)T, — AT, + AT_=—1
(F—ag)T. —AT_+ AT, =—1 (4.22)

Here the prime denotes differentiation after y, that is, T'(y) = dT/dy.
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Upon eliminating 7. or T_ one obtains an ordinary first-order differen-
tial equation for T or T/, respectively. The MFPT is therefore readily
integrated if only the boundary conditions are known. For absorbing
boundaries at x, and x, the exact MFPT has been obtained first in [86],
and has been reobtained by use of alternative techniques in [87-89, 126,
127]. The essential difficulty in obtaining the MFPT for non-Markovian
processes is the incorporation of the correct boundary conditions [86, 90,
124, 125]. For a detailed discussion of implementing the correct absorbing
and/or reflecting boundary conditions we refer the interested reader to
the original literature [86, 90]. For the important problem of escape from
a domain of attraction, where with x, >x,, x being a metastable state
and x, <Zxg, X, denoting an unstable (barrier toplike) state, the MFPT
with x, being reflecting and x, being absorbing yields the time scale for
the escape; and its inverse yields the reaction rate, respectively. This
MFPT can then be obtained in closed form, that is, from Egq. (4.14) in
[90] we have with D =a®/2A and p =p(x; A) given in Eq. (4.12)

ref _ *B g £ -1
re)=) " Dz + all(s — (@)l f dug (g + fla)p

* "l;_ p(xas M8* — (f12)°]yer, 87 (a)

N g 4.23
fy du D[g + (fla))’[g — (fla)]p (4:23)

and a similar expression holds for T7'(y) [90]. At weak noise strength
D <1, the use of the steepest descent approximation yields the reaction
rate k=1/T%" as [90, 128-131]

— L [l w1 exp(—AID) (4.24)

with the “Arrhenius energy” given by

o f
¢ = j W= Dlg + (f1a)] (4.25)

Alternatively, this reaction rate can be evaluated directly (via the method
of flux over population), if one solves Eq. (4.12) for a constant, vanishing
probability flux [128, 129]. The result again can be cast into a closed form
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involving only two quadratures in terms of the stationary probability. This
exact quadrature expression thus intrinsically incorporates all the correc-
tions to the steepest-descent expression in Eq. (4.24). These latter
corrections are of relevance for finite but small effective barriers Ad/D.

V. COLORED NOISE THEORY: APPROXIMATION SCHEMES

Apart from the specific set of classes of systems (see Sections 11I.D and
1V) that yield a closed-form master equation, the relation in Eq. (3.27)
cannot be evaluated explicitly. Further theoretical progress must there-
fore invoke some form of approximation. In practice, such approximate
schemes become useful only if the approximation reduces to an approxi-
mate Fokker—Planck process, or at best, a Fokker—Planck like master
equation for the single event probability p,(x). The tacit assumption with
such a procedure is that the resulting approximate solution in fact
presents a useful estimate for the actual non-Markovian process in Eq.
(3.12). Of course, such an approximation is not expected to describe all
of the statistical information of the true non-Markovian process but only
some limited statistical quantities such as its stationary probability, or its
transient initial correlation function. As it will become clear below,
approximation schemes that also approximate the dynamics equally well,
such as the stationary two-point correlation function, the relaxation time,
or its mean first-passage time, are much more difficult to obtain. Next, we
shall report, extend, and interpret various novel approximation schemes
for colored noise driven Langevin equations. Particular emphasis will be
put, wherever possible, on a study of the regime of validity of such
corresponding approximation schemes.

A. Small Correlation Time Expansion

If the noise color is “‘off-white”, that is, close to the white noise limit, it
seems appropriate to search for an effective Fokker—Planck like equa-
tion. Our starting point for this approximation is the formally exact
master equation in Eq. (3.21) or (3.27). If we expand 6x(z) /6&(s) into a
Taylor series around the latest time ¢,

Sx(t)  8x(r) = (—1)" o[ d" 8x()
566) s T 2 AT () [dsn‘af(s")L,- CRY
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one finds from Eqgs. (3.12) and (3.23)

g;((g =00 - S){g(X(f)) + [g'(x(@O)f(x(0)) — g (D) (NI — 9)

[l @) ] -slsf) Jeo) e-o] -}

(5.2)

Here, the prime (') again denotes differentiation with respect to x.
Obviously, this expansion involves the noise £(¢t) already in second order.
This leads to new correlations that again must be disentangled with
relations such as Eq. (3.19). We will now specify the Gaussian noise £(¢)
to the Ornstein—Uhlenbeck process,

D
C,(t— ) =—;—exp(-—|t—s|/fr) (5.3)

If we truncate Eq. (5.1) at first order (i.e., # = 1) one finds for the master
equation in Eq. (3.27) with ¢, =0 [65, 66]

B8 = = [P ] + Do g(x) o [g(Ih(x, Dp, )] (5.4)
where

h(x, 1) =[1—exp(—t/T)]+ Tg(x)(%) {[1 — exp(—t/1)] --—:j exp(-mr/fr)}

(5.5)

This is the time-dependent small + approximation describing the time
evolution of p,(x). Next we address the long-time limit, that is, we neglect
the transients in Eq. (5.5) to obtain the standard small T approximation

B,0) = = [f)p,)] + D 8) e gG[1 + gL /) g (9}') | p,)
(5.6)

By far this presents the most often used small correlation time approxi-
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mation [55—77, 132, 133]. The stationary probability p(x; ) is given by

(o5 1) = Z
PR TI = To00{1 + rg() [ f(x) /g(0)]'}]

[ £(3) dy
o | Do+ ey O

where Z is the normalization constant. This very result has been
repeatedly derived in the literature by a variety of methods mentioned in
Section IL.B below Eq. (2.11). Some authors [57, 61-63, 66, 67, 132, 133]
also consider higher order corrections to Eq. (5.6) being proportional to
D+". By doing so, however, one simply neglects the noise-dependent
contributions of the type in Eq. (5.2), which also yield additional
Fokker—Planck terms together with non-Fokker—Planck terms: As first
pointed out in [134], and later reiterated in [135, 136—138], such a formal
ordering of the 7 expansions is fictitious, and does not improve the
approximation consistently. In short, these higher order terms are of the
same order as other neglected Fokker—Planck and non-Fokker—Planck
terms. We next state a few properties of the approximation in Eq. (5.6).

1. For 7 =0, one recovers the white noise result from both Eqs. (5.4)
and (5.6); that is, the white noise Fokker—Planck equation for a
white noise Langevin equation Eq. (3.12), being interpreted in the
Stratonovich sense.

2. The drift and diffusion coefficients in Eq. (5.6) differ in order 7
from the corresponding Markovian Fokker—Planck equation. In
particular, with increasing v the diffusion coefficient in Eq. (5.6)
may take on zeros, and negative values, thereby introducing
unphysical, approximation-related boundaries for the non-Marko-
vian process.

3. With the diffusion in Eq. (5.6) generally not satisfying strict
positivity, there exists no white noise Langevin equation which is
stochastically equivalent with Eq. (5.6), that is, p,(x) cannot be
sampled in terms of random trajectories.

4. The solution p,(x|x,) of the time-dependent equation Eq. (5.4)
with initial condition p, = 8(x — x,) represents an approximation to
the conditional probability R(xt|x,t, =0) of the non-Markovian
process with correlation-free initial preparation (see Section 111.B).
Thus, Eq. (5.4) can be utilized for the calculation of initial
correlations in the regime of small noise color 7.

5. As demonstrated below, the regime of validity of the small =
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approximation is limited to small correlation times 7—0, with
(+/D) being a small quantity, and to regimes in state space where
r8(x)[f(x)/g(x)]’ < 1. In particular with (r, D) both understood as
being dimensionless, the weak noise asymptotic regime 1—0;
7/D> 1 is not within the regime of applicability of the small 7
approximation in Egs. (5.4) and (5.6).

Now, let us consider the contribution of the second Taylor coefficient in
Eq. (5.2) in greater detail. This part contributes, with g(x) =1, to the
master equation in Eq. (5.5) the term (see in [134])

2

pr* 2 {1 @) - 0 @Ip @)
+% fff(x)% J:<5(x(.t) -—X) g;é;;> eXp(__ (‘tL ’; S)> dS} (58)

If we approximate 8x(t)/8&(s) by its first term [see Eq. (3.23)], that is,
8x(t)/8&(s) =1, we find, upon neglect of transients, the following third-
order non-Fokker—Planck contribution to Eq. (5.6)

D= () 5 ) (5.9)

By use of a nonequilibrium potential ¢,(x, 7); that is, p,ocexp(— ¢, (x, )/
D), we note that each Kramers—Moyal moment yields a contribution of
order D', D and higher to p,(x). If we collect the singular terms we
find the following contributions to p,(x) [134] with Eq. (5.8)

A(l) A(Z) T :
p',(x)«»pt{ 5+t D +—5[A§2)+TA§2)+TA§3)]}+O(DO) (5.10)

Here, the superscript in the functions {A®}) indicates a contribution
stemming from the i-th order Kramers—Moyal moment. Thus, we
immediately see that it is not consistent to keep contributions of order
D+", n >1 in the Fokker—Planck like equation in Eq. (5.5), while at the
same time neglecting non-Fokker—Planck terms. Moreover, with 7 # 0,
the correction to the white noise limit should be small, that is, the
parameter (v/D) must be small in order for Eq. (5.6) to present a
meaningful correction to the white noise limit! In recent work on small
noise color =<1, Fox [106, 137] attempted to patch up some of the
shortcomings inherent in Eq. (5.6), such as the problem with unphysical
boundaries. In this approximate treatment he obtains for the effective
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diffusion operator the result [106]

® g(x)
ax & ax [1 — 7g(x)(f(x)/g(x))']

(5.11)

It corresponds to formally summing up a geometric series, that is,
[1+ 7h(x)]— 1/[1 — th(x)]. This expression has the advantage that the
small 7 theory in Eq. (5.6) with the diffusion coefficient substituted by
Eq. (5.11) yields the exact (Gausstan) stationary probability for a linear
process. However, the diffusion in Eq. (5.11) is in general still not strictly
positive for all x values. With Eq. (5.11) the corresponding stationary
probability p"°*(x;7) reads

1 — 78()(fx)/8(x))']|
| g(x)]

SO —g(M(f(y)/g(y))']
Dg*(y)

p sy =2""

X epr. dy (5.12)

Here we stress that the validity of the Fox approximation in Eq. (5.11) is
restricted to the very same regime of validity as the standard small T
approximation in Eq. (5.6); that is, r— 0 with 7/D <.

We bring out further complications not present in the 1-D non-
Markovian flow Eq. (3.12) by turning to the multidimensional stochastic
flow in Eq. (3.3). Use of the functional methods in Section ITI.C for the
multidimensional flow yields in terms of the functional derivative in Eq.
(3.23) (we use, apart from the index i, the summation convention over
equal indexes)

Syor-of([ al2 ) 22) ) 529

being an analogue for Eq. (3.23) for the multivariable case [139-142].
One finds that generally there does not even exist a consistent Fokker—
Planck like structure in first order in the correlation time 7. Such a small 7
multidimensional Fokker—Planck like approximation does exist, however,
if the Gaussian correlations (£,(2)€,(s)) = C;;(t — s) =Dy, (t —s), with
correlation time Ty are diagonal and all are of equal correlation time,
7 =7; =7 for all i. It can also be obtained whenever the antisymmetric
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tensor K, vanishes, that is, if [141]

98s;\ _ (%8s

Here again, a summation convention over « is implied. Moreover, if
{g.;} has an inverse obeying

ap 0o

oy (5.15)

v

one can transform multiplicative noise in Eq. (3.3) into additive noise;
therefore trivially obeying Eq. (5.14). This multidimensional, small 7
Fokker—Planck like approximation, whose precise form is given in {139~
142], has, of course, the same regime of validity discussed above, that is,

7i Tij
7,0 —L—)—_é‘l F<1 (5.16)

i ij

B. Decoupling Approximation

As noted in Section V.A, there is a definite need to consider approxi-
mation schemes that do not, a priori restrict the noise correlation time to
small values, 7, <<, only. Let us go back to Eq. (3.27): On inspecting
the structure in Eq. (3.27) we note that a Fokker—Planck like master
equation results if we decouple the correlation entering the second part of
Eq. (3.27), that is,

(s - my exp [ 177~ (fet) dr)—(exp [ 1~ (g dr) o)
(5.17)

Consistent use of this decoupling procedure yields for Eq. (3.27) the
approximation

51 =~ e + ([ ascu=syexp [ 1) = (grig)) ar)

- g(x) o= g)px) (5.18)

Next, we also only consider the long-time limit of Eq. (5.18); that is, with
t—> o we neglect transients consistently and use the stationary average in



272 PETER HANGGI AND PETER JUNG
all occurring averaging prescriptions. This yields the Fokker—Planck

approximation for a general stationary Gaussian colored noise with
correlation C(¢), that is,

5 = =5 Up1 + ([ dec exple (£ - (1)) )

2 gx) o gIP,() (5.19)

For Ornstein~Uhlenbeck noise in Eq. (5.3) this reduces to [143—145],

o ; D
700 = = N+ (G )
X = g(x) 3= £(Ip,(x) (5.20)

This approximation thus retains the white noise Fokker—Planck form
wherein the diffusion strength is substituted by the effective diffusion

D (1)

D
{1-7[{f) = (f2'1)]}

which must be determined from Eq. (5.20) self-consistently. In practice,
however, it is usually sufficient to evaluate the stationary averages in Egs.
(5.19-5.21) within the white noise approximation for the stationary
probability. Note also that with the neglect of transients and the
consistent replacement of averages by stationary averages, the Fokker-
Planck equation in Egs. (5.19) and (5.20) is restricted to yield reliable
information about the stationary probability p(x;T) only. The stationary
solution of Eq. (5.20) explicitly reads

N Z [1—r((f) —{fe'/g))] [*_f(»)
P ) = gy Pl D £0)

where Z denotes a normalization constant. For globally stable physical
systems, that is, (f') is less than zero, we find the relation 0< D (1) <
D.i(r = 0) = D. Thus, the stationary probability in Eq. (5.22) generally
[e.g., for g(x) = const] exhibits a sharpening of the probability peaks upon
increasing the noise color 7. Indeed, numerical studies verify this typical
colored noise effect (see Section VI). The approximation scheme in Eq.
(5.17) does not restrict the value of the noise color r. The decoupling

D D (1) = (5.21)

dy} (5.22)
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ansatz in Eq. (5.17), however, neglects correlations, and thus is expected
to be a valid procedure only for narrow distributions, that is, generally
D < 1. Normally, the decoupling approximation is not suitable to approx-
imate multidimensional features such as multidimensional probabilities
that may exhibit color dependent correlations among the state variables
[146—148]. Thus, the approximation in Egs. (5.19-5.22) can be viewed as
a weak noise approximation to the colored noise flow in Eq. (3.12), that
is, the (dimensionless) noise intensity must be small, D < 1. This latter
weak noise condition is fulfilled in most physical applications, see, for
example, in [148, 149]. It is not straightforward to evaluate a gencrally
valid estimate on the error induced by the decoupling ansatz. In principle,
the decoupling procedure in Eq. (5.17) can be corrected to higher order
if we observe the exact relation in Eq. (3.20). The approximation in Eq.
(5.17) just presents the first term in Eq. (3.20). For example, we have
with g(x) =1 from Eq. (3.20) to second order (n =0 and n=1)

<5(x(t) — Xx) exp f f d1-> = <exp E I d'r>p,(x)

_%Jt; du f!; dvC(u — v)<3(x(f)“x) exp £ r dT)

(o [ 57ar) [ r(ero [ ar) )

Thus, with a repeatedly applied decoupling procedure as outlined above
we obtain the result that non-Fokker—Planck contributions already enter
at second order. Such an improved approximation is thus not tractable
from a practical viewpoint. Nevertheless, the decoupling approximation
to lowest order in Egs. (5.20-5.22) has successfully been applied to
model moderate-to-large noise color in a dye laser [138, 149, 190], the
optical bistability [135, 144], and the ring-laser gyroscope [150].

(5.23)

C. Unified Colored Noise Approximation

In Section V.B we belabored an approximation for weak noise D <1
which, however, does not restrict the noise correlation time T. The
decoupling scheme, however, involves the averaging of state functions.
This means that the approximation is of a global character. In other
words, local effects such as colored noise induced shifts of probability
extrema are likely not sensitively accounted for. With weak noise
intensity D <1, such effects are generally strongly suppressed; neverthe-



274 PETER HANGGI AND PETER JUNG

less, the local character can be substantially misrepresented with the
decoupling ansatz in regions of small probability as it occurs with the tails
of the probability, or with minima of the probability in bistable situations.
Moreover, neither the small + approximation in Section V.A, nor the
decoupling approximation in Section V.B can be used to evaluate the
stationary dynamics such as the stationary correlation function
{(x()x(0)), the relaxation time T,

Jo {x(6) = (x))x(0) — (x)) dt
(x*) ~ (x)*

or other quantities of dynamical origin. The authors recently have put
forward an approximation scheme that effectively overcomes most of
these restrictions. We have termed it the unified colored noise approxi-
mation (UCNA) (see [151]).

T= (5.24)

1. UCNA for Colored One-Dimensional Flows
Let us consider Eq. (5.25),

x = flx) + g(x)6() (5.25)

where £(¢) is an exponentially correlated Gaussian noise [see Eq. (2.10)]
of vanishing mean. First, let us consider additive noise, that is,

% =f(x) + £0©) (5.26)

which with £(¢), an Ornstein—Uhlenbeck process, constitutes a 2-D
Markovian process driven by Gaussian white noise ¢,{z),

%=f(x)+ £ (5.27)
. 1 D'V?
E=——E+— 1,0 (5.28)

where ({,(8)¢.(5)) =28(¢ —s). If we follow our original work [151] we
eliminate £ in Eq. (5.27) by use of Eq. (5.28). Then we obtain a
Langevin equation for a noisy nonlinear oscillator,

1/2

4+ Hr T = L] = fx) T = ,0) (5.29)

T

with a nonlinear damping function. On the new time scale s = tr~''? this
nonlinear oscillator dynamics is recast as (a dot indicates the differentia-
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tion with respect to time s)

1/2

£+ (e, 1)~ ) = 7 £, (5.30)

where {(Z (s),.(s’)) =28(s —s'). The nonlinear damping 7y explicitly
reads

vy, ) =7+ 72 [—f'(0)] (5.31)

With multiplicative noise, g(x)&(¢), see Eq. (5.25), the corresponding
nonlinear friction would read

yix, ) =7"1"%+ T1/2|:"f’(X) + f(x) ———gg’((;))] (5.32)

If the expression in the squared brackets in Eq. (5.31) or (5.32), is
positive, the damping will become large for both small and large
correlation times 7. The positivity condition is with f'(x} <0, obeyed in
regions of state space, where the noise-free flow is locally stable. The
condition of large positive damping v(x,7)>1, allows the adiabatic
elimination of ¥ =wv. Setting v = # =0 then yields a truely Markovian
approximation of the colored noise flow in Eq. (5.26),

) pl
X = v(x, 7) + (x, 7) (s (5.33)

Within the original time variable ¢ =7''%s, and with multiplicative noise
g(x)£(t), the analogue of Eq. (5.33) reads [144, 151]

=1 —7(f' @) — fx)g' &) g™
+D'g@)[1 — 7(f'(x) — fx)g" (x) /g (N1 ¢, () (5.34)

which is to be interpreted in the Stratonovich sense [3—7]. Equations (5.33)
and (5.34) define a truely 1-D (Stratonovich) Fokker~Planck process,
whose equation is readily written down [7]. We must emphasize the true
Markovian (approximate) description in Eq. (5.34) of the original non-
Markovian process. This feature has a striking advantage over the small
correlation time theories outlined in Section V.A. Not only does Eq.
(5.34) become exact both at correlation time v =0 and 7— 0, and hence
is expected to be a useful approximation for intermediate noise color, it
also provides an approximation for the time-homogeneous conditional
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probability of x(z), that is, the stationary conditional probability
R(x,t|y,ty) =R(x,t+7]|y,t,+7) obeys the very same Fokker—Planck
equation. Thus, Eq. (5.34) and its corresponding Fokker—Planck equa-
tion, can be used to evaluate approximate stationary correlation func-
tions, and so on. The approximation scheme is valid for both small and
large correlation times 7, and in parts of the state space where the
nonlinear damping y(x, 7) is positive. In contrast to the dynamics of the
small correlation time approximation, which corresponds to the cor-
relation-free preparation (see Section III.B), the UCNA in Egs. (5.33)
and (5.34), closely models the stationary preparation class of the non-
Markovian process x(t) [144].

We now discuss the regime of validity of the UCNA in more detail. We
recall that the UCNA is valid only for regimes in state space where
v(x, 7}, Eq. (5.32), is positive. Based on the noise intensity D we form
the characteristic length scale L

D1/2
L =
v{x, 7)

(5.35)

Then the adiabatic elimination procedure o =% =0 implies that Egq.
(5.33) or (5.34), respectively, is a good approximation only on time scales
t>7"%y " thatis, with y >0

t>rl+7(—f" +fe'lp)]™’ (5.36)

and if on the characteristic length scale L the drift force is not varying
appreciably, that is, L|f’|<|f| [144, 151]. This latter condition is the
analogue of the condition for the validity of the Smoluchowski approxi-
mation in Brownian motion theory [151], wherein L = (kTm ™'y ~*)'?
denotes the thermal length scale. Let £ denote a characteristic value
within the regime where y > 0. Then, we obtain for the validity of the
UCNA the relation

f'(X)
f(%)

Thus, we deduce from Eq. (5.37) that the UCNA improves in accuracy
for increasing nonlinear damping y-—>~, and decreases in accuracy with
increasing noise intensity. Keeping the restrictions in Egs. (5.36) and
(5.37) in mind we study the solution of Eqgs. (5.33) and (5.34). With the
effective multiplicative noise function gy (x, 7)

Buena (6, T) = g1 —7(f' — fg'lge)] " - (5.38)

y(%,7)>D'"? (5.37)
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the (%tratonovich) Fokker—Planck equation for the UCNA in Eq. (5.34)
reads

PR () = = [ f(x)8 ™ (8uena (s IPX)]

d d
+D ax Zuena (s 7) ox [guenalx, TP.()] (5.39)

UCNA

Its stationary solution p (x, 7) reads

-1

pUSA G, 7) =2 |[1 — () () 1)) ]|

|g(x)|
f" FI — rg(M(f(y)/g(y))'] dy
Dg*(y)

being valid both for small and moderate-to-large correlation times 7. Note
also that the Fokker—Planck equation in Eq. (5.39) substantially differs
from the small 7 Fox theory [138] in Eq. (5.11). Nevertheless, the
stationary probability p™®*(x, ) in Eq. (5.12) precisely coincides with
p" N4 (x, 7) in Eq. (5.40). Keep in mind, however, that [in clear contrast
to UCNA in Eq. (5.40)] the theory of Fox, that is, its dynamics, IS
restricted nevertheless to the small 7 regime discussed in Section V.A. The
extrema of p"“"*(x, 7) are located at position {¥}, which obey

[1 - 7g(/g) {1 — &(f/8)'| f— Dg'g} + Dg’[1 —78(f/g)'}' =0 (5.41)

In particular, even in the case where the noise is additive only, one
obtains a colored noise induced shift of extrema of p"“"*(x, 7) located at

—Drf"(®) + [L — f (DIPA(E) = 0 (5.42)

By use of the Markov character in Eq. (5.39) we can also give the explicit
formula for the relaxation time 7' in Eq. (5.24) [144, 152]

1,7 = (x*) i (x)? f: dy(Dngf(}’{Pg}::)NA()’a ’7'))

where f(y) = =3 dx(x — (x))p"™* ).

*If in Eq. (5.25) additional Gaussian white noise n(f) is present, that is, if *=f(x) +
e()EW) +1(t), with {(n(t)n(s)) =2T8(t —s), the UCNA can be generalized by introducing
the auxiliary process u =& + (f/g){1 + (T/Dg"[1 —7g(f/g)']} ~', An adjabatic elimination
of u(r); i.e. u(t) =0, then provides the UCNA with the correct behavior as 7 — 0, and which
with ©— 0 as T— o is corrected also for 7> o; for applications cf. Section VIL.

< exp (.40

(5.43)
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D. Remarks on Sundry Colored Noise Approximation Schemes

The small noise color approximation reviewed in Section V.A, the
decoupling theory (often also termed Hanggi—Ansatz [135, 138, 149, 190])
in Section V.B, and the UCNA in Section V.C.1, are by and large the
most often employed perturbation schemes in the study of dynamical
flows driven by correlated random forces. There exist, of course, other
possibilities that might be preferred from time to time. For example, for
flows driven by Markovian colored noise, such as the exponentially
correlated Ornstein—Uhlenbeck noise, the physics can be studied in terms
of an enlarged phase space, which renders the dynamics Markovian again
[69, 70, 134, 153]. As pointed out in [134] some care, however, must be
observed if one compares the dynamics in full space with the one in
reduced space; because the correlations in the enlarged space are richer
as compared to the reduced, non-Markovian dynamics. Nevertheless, the
approximation schemes available for the study of higher dimensional
Markovian systems, which unfortunately are rather sparse indeed, can be
invoked. Usually, this reasoning has been utilized thus far only for the
investigation of stationary quantities, such as the stationary probability
[69, 70, 153]. The study of colored noise in the asymptotic regime of large
correlation time is another topic that has attracted considerable interest in
recent years [154-158]. The UCNA approach clearly does cover this
regime, as demonstrated in [158]. The very asymptotic extreme large
colored noise regime, can also be more directly addressed by noting that
the noise with correlation time 7—> c© becomes extremely slowly varying.
This then leads to the quasistatic “switching-curve reasoning’’ originally
put forward by Horsthemke and Lefever [159]: With 7— o, the variable x
is in a quasi-stationary state with respect to the instantaneous value of the
fluctuation force £(¢), that is, one finds with X =0 from Eq. (2.7)

f(x) +8(x)é() =0 (5.44)

Setting £ =y~ '(x), and observing the identity between the probabilities,

p(x)dx = p(§)dg (5.45)

one therefore finds

ag

—_—

P, =) = p[y ()] |5

(5.46)
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where p(- - +) denotes the stationary probability for the noise §.
Finally, let us take another look at Eq. (3.27): With Ornstein—

Uhlenbeck noise in mind [see Eq. (5.3)] the exact master equation in Eq.
(3.27) reads

P = AP + 2 5) o ) | s

X exp(* t-;s) <6[x(r) — Xx] exp Lr [f’ — (I‘g—’*)] du>

(5.47)

To obtain a workable equation for the probability we must close Eq.
(5.47). First we let f,— —, so that we can safely neglect transient
effects. We observe that Eq. (5.47) can be closed in a variety of different
ways:

1. We recover the decoupling theory if we make the “Hanggi—An-
satz”, thereby the average in Eq. (5.47) is decoupled. This yields a
Fokker—Planck equation with a diffusion operator

() D& ™) =5 8035 8D T ] )

2. If we approximate the stochastic process x(u), ty=u=¢, for all
times by the final value x(u) = x(¢), the & function in Eq. (5.47) implies a
closure with the state-dependent diffusion operator given by

. 0 d D
() D 7) = 5 80) 35 £ TGy — fg s O+

Clearly, this approximation implicitly requires a small noise correlation
time 7. This form of approximation actually coincides precisely with the
approximation put forward by Fox [106], see in Eq. (5.11).

3. Instead of using the small 7 approximation x(u)==x(t), we could
instead follow the reasoning inherent in the decoupling theory and
replace the stochastic process f[x(u)] not by a stationary average, but by a
time-dependent (deterministic) solution flx(u)]— flxq.. (W)} A good
candidate would be to use the path x,(¢), which extremalizes the action of
the corresponding Onsager—Machlup functional in a path integral solu-
tion of the corresponding non-Markovian process [156, 157,160, 161].
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With x_{t,) = x_, being chosen as an attractor, so that x,(¢) = x is attained
only at very long times, we obtain from Eq. (3.27) upon a change of
variables dt’ = dx,/X, an x dependent, effective diffusion operator given
by

@) D) = 2 2 g8 [ Lexp [ (- 4sa(L) | £

£
(5.50)

Hereby we used stationary Ornstein—Uhlenbeck noise [see Eq. (5.3)}] and
the velocities are determined from the extremal action path. The
reasoning to obtain this effective diffusion has recently been applied by
Venkatesh and Patniak [162] in a study of colored noise driven bistability.
An appealing feature of Eq. (5.50) must be pointed out: The effect of
noise color enters the effective diffusion in Eq. (5.50) in two ways: First,
there is the influence of the noise correlation C(¢) = (D/7) exp(—t/T);
second, there is the r dependence in the extreme action path x,(f).
Moreover, just as with UCNA, the approximation in Eq. (5.50) is not
restricted solely to small noise color.

VI. COLORED NOISE DRIVEN BISTABLE SYSTEMS

Noisy bistable dynamics is an archetype phenomenon in many areas of
physics, chemistry, and biology. It is therefore important to develop a
detailed understanding of the fluctuation-related statistical characteristics,
such as lifetimes of metastable states. Realistic modeling of noise sources,
however, requires us to take into account finite correlation times. An
important application of the theoretical framework of colored noise
driven dynamical systems, provided in Sections II-V is therefore bistable
dynamics. In this section we review key results obtained for probability
densities and escape rates in colored noise driven bistable systems.
Special focus is the dependence of those characteristics on the correlation
time of the noise.

As a model, we are using a Ginzburg—Landau type potential and an
exponentially correlated noise. The equation of motion reads [134]

A= —V'(x) + &) (6.1)

with £(¢) being Gaussian, exponentially correlated noise, that is,
D |t —¢|
(s@)e(t')) == exp( 1)
(e(©)) =0

(6.2)
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The potential V(x) is given by

b
Vix) = —%x2+zx4 (6.3)

with positive constants a and b. The potential V(x) is bistable with
minima at x, , = *Va/b, and a relative maximum at x =0. Introducing
scaled variables £ =xVb/a, i =at, £ =&Vbla®, 7=ar, D = (b/a*)D, the
normalized Langevin equation reads

X=%—% + &) (6.4)

where the autocorrelation function of the noise variable £ is given by

D t—t
(e02)) =2 exp(~ ) (6.5)
The potential is shown in scaled variables in Fig. 6.1. In the case of a
large typical system time scale 1/4 in comparison to the correlation time
of the noise 7, that is, 7 = 7/(1/a)— 0, the correlation function (&(t)£(t'))
approaches a 6 function. The variance of the noise, {&*) = D/, which up
to a factor of two equals the total power of the noise, diverges in this
white noise limit. In the opposite limit, 7—> e, the variance vanishes, that
is, the total power of the noise vanishes.
From now on, we will only use the normalized variables, but drop the
bar for the sake of convenience.

A. Embedding in a Two-Dimensional Markovian Process

The stochastic process Eq. (6.4) defines a non-Markovian stochastic
process. The time evolution of the probability distribution is thus not
given by a Fokker—Planck equation for the state variable x (see Section

V(x)

AV=1/4 _
Figure 6.1. The double-well poten-

tial [Eq. (6.3)] is shown in normalized
coordinates.
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INIT). Nevertheless, one can find an equivalent 2-D pair process
(x(2), (7)), with the auxiliary variable &, obeying the linear white noise
driven stochastic differential equation [134, 163]

‘ 1 VD
E——_q’_‘8+ - £() (6.6)
with the Gaussian white noise
(&) =0

(6.7)
(E@E@)) =280 —1")

where the stationary autocorrelation function of £(¢) is given by the first
equation of Eq. (6.5). The pair process (x(¢), e(¢)) is a Markovian
stochastic process and the time evolution of the joint probability density,
Wi(x, £, ), is given by the two-variable Fokker—Planck equation,

d
B?W(x, g, ty=L_.(x,e)W(x, &, 1)

(6.8)

8 1 a D @*
L., (x, &)= *a(x-—x3+8)+—’;a—88+?§

In order to guarantee that the correlation function for ¢ is stationary for
all times, we have to require that at the preparation time r=0 the
probability distribution in ¢ is stationary [134, 144], that is,

= 1 6
f_m Wx, e,t=0)dx = Vori D exp(— ﬁ) (6.9)

1. Basic Properties of the Embedding Fokker—Planck Operator

Since the Fokker—Planck (FP) operator L., is symmetric with respect to
inversion,

L..x,e)=L, (—x, —¢) (6.10)
the corresponding eigenfunctions

Lew (¥, £)(x, £) = —Adh (x, £) (6.11)
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can be classified into even and odd eigenfunctions [163],

P (x, £) = P3P (—x, —2)

WO (x, &) = —h P (~x, ~¢) (6.12)

The stationary probability, being the eigenfunction corresponding to the
vanishing eigenvalue, is an even eigenfunction

VVM(x, 8) = Ww(—x: _8) (613)

Since the stochastic differential equation for x does not couple to the
equation for g, the eigenvalues of the Ornstein—Uhlenbeck process for &
are also eigenvalues of the stochastic pair process. This result can be seen
more clearly at the adjoint eigenvalue equation

Lzm(x, e)q!;i (x, &)= —z\tpi(x, £)

91 a+D 9°
=x—-x +8) ~ 7 %7: 2 2

(6.14)

which is solved by the adjoint eigenfunctions (H, denotes the Hermite
polynomial of order n)

e =H( 2 ) 6.15
with the corresponding eigenvalues
1
Agp=n—_ (6.16)

It 1s important to note that for large correlation times these eigenvalues
become small and that the corresponding relaxation modes can therefore
influence even the large time behavior of dynamical quantities such as
correlation functions!

The symmetry of the pair process (x(t), £(¢)) allows us to construct two
isospectral Fokker—Planck systems. An equivalent pair process to Egs.
(6.4) and (6.6) is given by

. 3
X=X—X —E&

1 VD
E=——¢g+ -

T

(6.17)
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The spectrum of the corresponding Fokker—Planck operator

. a 19 D 3*
L, _(x, s)=—-é;(xwx3"~s)+—7—¥8+?asz (6.18)

is therefore isospectral with the Fokker—Planck operator L, (x, £) [164].
The eigenfunctions of L,,(x,¢) follow from the eigenfunctions of
L. (x, £) by the substitution £ — —e. Another isospectral Fokker—Planck
operator can be constructed by inverting the potential [164]. This is a
general property of a colored noise driven overdamped system. In order
to show this we convert the eigenvalue problem Eq. (6.11) [here we use a
general force field A(x) instead of x — x°] according to

i (x, &) = exp(gg) — ZTD 32) l,Z‘A (x, &) (6.19)

where the (negative of the) potential is given by
H(x) =j h(y) dy (6.20)

into the eigenvalue problem for J:,\(x, £)

Lonth (x, ) = —Ad, (x, £) (6.21)
with
L..=—8,a, —a2—4,a_ +14 (a, +4a,) (6.22)

and the operators are defined as

* ox 2VD
3 h(x)
=VD-———
P 0x 2VD (6.23)
. __\/5 ] 4 £ .
T PR V)
_ VD 3 €

a, T O0€ + N D

The eigenvalue problem with the inverted potential, that is, H(x)—
—H(x) can be treated analogous, yielding the converted Fokker—Planck
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operator

=
=23

) (6.24)

em

_ X~ 2 %~ 1%
=-—-aa —a —aa_ +ia./(a, +

where the operators with the tilde are given by

ax = —ax
5. = —4
. (6.25)
a,=-—a,
3, =—4a,

In view of the isospectral property with respect to inversion of &, we have
also performed the inversion e — —e&. From the equations above, we can
establish the following operator relation

af.'(x, s) =L(x, —&)a, (6.26)
If Jff(x, g) is an eigenfunction of I:T(x, g), that is,

£, &) (x, &) = —Ad (x, &) (6.27)

then we find by multiplying from the left with a, and by using Eq. (6.26)
f.x, —e)a i (x, ) = —Aa, " (x, ) (6.28)

that is, aerT(x, g) is an eigenfunction of L(x, —&) with the same eigen-
value A. The isospectral property is thus proven.

2. Application of the Matrix Continued Fraction Technique

The two-variable Fokker—Planck equation in the extended phase space
can be solved by using the matrix continued fraction (MCF) technique
[5]. Since our Fokker—Planck operator L., (x, &) has inversion symmetry,
we make this technique more efficient [163] by expanding the even and
odd eigenfunctions separately in complete sets of orthogonal functions
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with respect to both variables x and £. Thus,
" 2m 2 1
'!’(e)(xa g) = po(x)wy(e) 2 . [Czn @y, (X)W, (g) + 02:1:1 ‘P2m+1(x)wzn+1(8)]

":'= (6.29)
‘!’(O)(x: £) = po{x)w(e) 2 [C§:I+I(P2m+l(x)w2n(8) + C§T+1¢’2m(x)w2n+1(8)]

n,m=0

where the complete set {w,(g)} is given by the eigenfunctions of the
operator

Ly=—5"5—7/¢ -I--—; (6.30)

that is,

w () = \/2"n!\1/2fn-T/'r Hn(\/;)—/q_) exp(—z—ij) (6.31)

and the complete set in x is given by the Hermite functions

a 1
@, (x) = PO H, (ax) exp(— 5 azxz) (6.32)

The constant « is an adjustable positive parameter to optimize the speed
of the convergence. The form function p,(x) is assumed to be symmetric
and positive and should decay to zero for x— =, Inserting those
expansions into the eigenvalue equation Eq. (6.11), we find a coupled
system of algebraic equations for the expansion coefficients ¢, which can
be arranged in a tridiagonal vector recurrence relation. We find for the
even eigenfunctions [163}

k kD k+1)D
0= (éo“ (‘;“A))CH V= Boecss + \/——'( - ) Bo.ciy1 (6.33)

for odd %, and

k kD k+1)D
0= (4, — (E-))e + V2 Bre,, + VEELL B o (630
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for even k. The components of the matrices A, Aps Beos Bo. are given by

Ao = f_m Pq l(x)cpz,-ﬂ(x)(* - x3))P0(X)<P2j+1(x) dx = ML

4" = fi Po ’(x)qozi(x)(— a—ax— (x — x3)) o)y (x) dx = AXY
- - (6.35)
B)" = | 05" @eu)(~ ) po)yi(6) dr = BH

(-MOE)’j:f_m Po (X)%,H(x)( a)Pg(x)cpz,(x) dx = B¥1Y

while the components of the vectors ¢, read

P cy for even k
@) = ¢y’ ™! for odd k

For odd eigenfunctions the conditions for k have to be interchanged. The
tridiagonal vector recurrence relation Egs. (6.33) and (6.34) can be
solved for the eigenvalues by iterating a matrix continued fraction. For
the form junction, the Gaussian, p,(x) = exp(—cx”), has been chosen,
where the constant ¢ has been adjusted to obtain a good convergence of
the matrix continued fraction. The matrices A™" and B™" read for this
Gaussian form function

A = f_D (Vm T D)(m +2)(m + 3)(m + 4)(m + 5)(m + 6338, 46
{5_1) Vm(m — 1)(m —2)(m = 3)(m — 4)(m — 5)} B s
+ {1 B>+ 2cB }\/(m +1)(m+2)(m+3)m +4)5, .4
+ { —;— +2eB*V(m(m — 1) (m ~2)(m — 3)}5,1,1»1—4
+ % + B*(m + 3 +2¢) + 4cB?(2m + 3)}\/("’1 1) +2)8, 1z

-
+ {«% — B*(m —~2—2c) +4cB (2m — 3)}5,l I
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+ {_ % + 3,82(m + % +2c(2m + 1)) + 12cB*m(m + 1) + 6cﬁ4}6,,m

(6.36)

and

B™" = ~{% + 2CB}'\/IT’L—-|:—1-3"’,"+1 + {% — 2cp}3,,,m,1 (6.37)

with 8 = a/ V2.

3. Stationary Probability Density in the Extended Phase Space

For large times, the probability distribution W{(x, &,t) approaches the
time-independent stationary density W, (x, £). This is the stationary joint
probability density, that is, the probability of finding x in the interval
[x,x+ dx] and the auxiliary variable £ in the interval [g, & + de]. The
expansion of the (even) stationary probability density W, (x, €) in the
complete sets (see Section VI.A.2) with respect to x and & reads

W, (x, €) = po(x)wo(e) 2 QLS MOINO)

+ di;n:11¢2m+1(x)w2n+1(5)] (6.38)

where the expansion coefficients have been determined by using the
matrix continued fraction method [163]. In Fig. 6.2, W, (x, &) is shown by
using altitude charts. For increasing correlation times 7, the distribution
exhibits a scewing [147, 163, 165], that is, the ridge of the distribution lies
on a curved manifold. This manifold is approximately given by

ex)=x"—x (6.39)

At a critical value of the correlation time 7,(D), the character of the
probability distribution at the origin changes from a saddle point to a
minimum. One should note, however, that this crater is very shallow, cf.
Fig. 6.2(d), that is, it does not significantly affect transport properties
such as escape rates. One should bear in mind, however, that the whole
region around the origin is very flat [166].

For small correlation times 7, one can derive an approximate expres-
sion for the stationary probability density [69]. Expanding the potential
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Figure 6.2. The colour lines of the stationary probability density in the extended phase
space [Eq. (6.38)] are shown for r =0.2(a}, 7 = 0.5(b), 7 = 1(c), and r =3.333(d) for D =0,
1. .
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(e}
Figure 6.2. (Continued)
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d(x, €), defined by
Wax, ) = exp - (£52) (6.40)

obeying the nonlinear partial differential equation with A(x) =x — x’

9 1ob(  1apy 0 1 8%
[A(x) + €] P + T de (—5+ - as)——D(h (x)—l»:i- Py

)=0 (6.41)

in a power series in 7, that is,

d@x, e)=¢ Ok, &) +7dV(x, £) + 72¢(2)(x, £) + T3¢(3)(x, g) + O@™h)
(6.42)

we find by equating all terms of equal power in T

BGe, &) =5 (L—rh')e +m) — | (RO = rh'(9)] +5 7R(IH() | dy

1 1 1 3

+*~2-1'3£2h"[“2* h(x) t+3 S:I +—2"D'rh’(x) (6.43)
By inserting the corresponding probability distribution into the Fokker—
Planck equation one confirms that the errors are only of the orders =3
and Dr"=%. Neglecting 7> terms, one finds in leading order

G, 8) =2 (L—rh'@)(e + )Y ~ | (R~ 72'()

+ % T h(y)R"( y)) dy + % Drh’(x) (6.44)

The agreement with numerical solutions is very good even for correlation
times up to 7 =0.5.

4. FEigenvalues and Eigenfunctions

The eigenvalues of the Fokker—Planck operator in the extended-phase
space describe the relaxation towards the stationary state,

223

W(JC, €, I) = 2 Cnm'l’um(x? 8) exp(“Anmt) (645)

n,m=0

Most important is the smallest nonvanishing eigenvalue. It describes the
relaxation on the longest time scale. The eigenvalues have been com-
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Figure 6.3. The first three branches of real valued eigenvalues, corresponding to odd
eigenfunctions, are shown at D =0.1 as a function of the correlation time of the noise. The
intersection of the two branches of real values eigenvalues indicates the birth of a pair of
complex conjugate eigenvalues.

puted in [154, 163] by applying the matrix continued fraction technique
[5]. Our focus is on the dependence of the eigenvalues on the noise
correlation time 7. In Fig. 6.3, this dependence is shown for several
eigenvalues. The smallest nonvanishing eigenvalue decreases with in-
creasing correlation time of the noise. It is also worthwhile to mention
that at that critical value of 7, where the stationary probability dis-
tribution changes its shape from a saddle point to a minimum, none of the
eigenvalues exhibits any characteristic behavior.

B. Stationary Probability Density

‘The stationary probability density P, (x) is obtained from the stationary
joint probability density P, (x, £) by tracing out the auxiliary variable s,

P, (x) = f:o P, (x, e)de (6.46)

In terms of the expansion coefficients €, in Eq. (6.38) the symmetric
stationary probability density reads

P, (x) = py(x) ,,,2 Ay Py (%) = P (—x) (6.47)

In Fig. 6.4, P, (x) is plotted at D =0.1(a) and D = 0.05(b). We observe
[163],

1. That for increasing correlation times, the peaks become higher and .
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(b}
Figure 6.4. The numerically evaluated stationary probability density [Eq. (6.47)] is
shown at D =0.1(a) and D = 0.5(b) for various values of the correlation time = of the noise.



294 PETER HANGGI AND PETER JUNG

more narrow and the probability density at x =0 becomes smaller.
This is in accordance with the reasoning put forward in Eq. (5.21)
with the decoupling theory.

2. That starting at 7 =0, the maxima for increasing 7 shift to larger
values of |x| and shift back towards |x|=1 for further increasing
correlation times. The maximum shift increases with decreasing
noise strength D; being in agreement with the UCNA prediction in
Eq. (5.42).

The first observation can be explained by the decrease of the variance of
the noise with increasing correlation times = of the noise. The second
observation can be explained qualitatively by changes of the stability of
the oscillator equation in the variables (x,v =% =x — x> + £).

Using the approximation schemes (introduced in Section V) we can
derive approximate expressions for the stationary probability density.
Within the small correlation time approximation, that is, for r—0,
7/D— 0, one finds with V (x) =x*/4 — x*/2 for the stationary probability
density

1 1
P (x) == (1 — 71— 3x7 —{D— (x —xa)z) exp{— —5%(')6)} (6.48)
defined in the finite region of support

1+
3r

x| < (6.49)

Using the unified colored noise approximation we find

1 1 T
Po(x)=—[1 - 7(1-3x%)] exp{— o Volx) 55 —x3)2} (6.50)
valid in the region of support, given by
1—7r(1-3x*)>0 (6.51)

The decoupling approximation yields

P = exp| = Vi) (6.52)

with
D |
14+7(3(x*) - 1)

D= (6.53)
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Figure 6.5. The approximate expressions, Eq. (6.48) (small correlation time approxi-
mation) (d), Eq. (6.50) (unified colored noise approximation) (b), and Eq. (6.52)
(decoupling approximation) (c) are compared with the numerical solutions (a) at  =0.1 and
D=0,1.

In all expressions, Z is the respective normalization factor. In Fig. 6.5,
the approximate expressions for the stationary probability densities are
compared with numerical results obtained from the full numerical
solutions at D =0.1 and 7 =0.1. The agreement is good for all approxi-
mations. In Fig. 6.6 we have compared the numerical result against the
stationary densities obtained by using unified colored noise approxi-
mation and by using the decoupling ansatz for 7 = 1. The unified colored
noise approximation breaks down locally at x = 0. The overall agreement,
however, is still good. The decoupling approximation yields a distribution
with infinite support, but the overall agreement is not very good.

C. Colored Noise Induced Escape Rates and Mean First-Passage Times

A central, but in recent years also very controversial problem [134-138,
144, 154—158, 161-176, 193] is the dependence of the escape rates and
the mean first-passage times on the noise correlation time 7. To describe a
decay process out of a region { in phase space by a escape rate, the decay
of the population in this region has to be exponential on its longest time
scale, that is, £ has to be a basin of attraction. The system has escaped
when it has crossed the basin boundary of the basin of attraction. To
uniquely identify a basin of attraction and a basin boundary we have to
consider the stochastic dynamics in the extended-phase space. In 1-D x
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Figure 6.6. The approximate expressions, Eq. (6.50) (unified colored noise approxi-
mation) (b) and Eq. (6.52) (decoupling approximation) {c) are compared with the numerical
stationary probabilities (@) at =1 and D=0, 1.

space, a certain value of. x cannot be considered to be in one or the other
basin of attraction, since due to the memory of the noise, the time
evolution depends on the prehistory of the process. The attractors of the
2-D system of equations

(6.54)

are given by the points (x; = —1, & =0) (stable node), (x,=1, &, = 0)
(stable node), and (x, =0, & =0) (saddle point). The separatnx is
obtained as the solution of the differential equation [158]

de 1 £

e T TP te (6.55)

with the initial condition
£(0)=0 (6.56)

Full analytical solutions of Eq. (6.55) are not known to the authors. Near
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the saddle point (x =0, £ = 0), the solution is found to be [158]

e(x) = —(1 + };)x (6.57)

while for large correlation times + the solution is

x —x for |x|<1/V3
forx=-1/V3 (6.58)

%,ﬂnxqu§

S

e(x) = 3

wifta

In Fig. 6.7, we show some numerically obtained trajectories, cf. Eq.
(6.54)], and the separatrix for r = 0.1, r =1, 7 =10, and 7 = 50. We note
that the asymptotic separatrix for large = is approached only at extremely
large values of 7 (r =50 is certainly not sufficient). The noise induced
escape across the separatrix from the left to the right well takes place at
positive values of &. For small correlation times, the actual escape takes
place at large values of |¢|, since the noise acts only in the & direction.
For increasing 7 the separatrix bends over and the escape takes place
across the separatrix at smaller values of |¢|. For large 7, the trajectories
avoid a region around the origin. This unstable region is also responsible
for the formation of the crater of the stationary joint probability density
W, (x, &) in the extended phase space.

For weak noise, that is, D—>0, the mean first-passage time to the
separatrix 7T, is related to the escape rate r; by [123, 167]

1
s =2T.

(6.59)

The smallest nonvanishing eigenvalue A_;, is related to the escape rate 7,
by

(6.60)

The smallest nonvanishing eigenvalues obtained in [154], have been
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plotted as a function of the correlation time of the noise in Fig. 6.3. In
Fig. 6.8, we depict the color induced rate suppression

r (1)

n(r, D) =~ (6.61)
r(r=0)
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Figure 6.7. The deterministic trajectories, Eq. (6.54), are shown for r=0.1(a), 7=
1(p),  =10(¢c), and 7 = 50(d). The dotted lines indicate the separatrix £(x) in (¢) and (d)
while in (a) and (b) the separatrix is the border between the hatched and nonhatched
regions—the basins of attractions. The limiting result in Eq. (6.58) for £(x) is indicated by
the dash-dotted line in (d).
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(d)
Figure 6.7. (Continued)

1. Escape Rates for Weakly Colored Noise

For small correlation times 7, the small correlation time approximation, in
Eq. (5.6) valid on a large system time scale (i.e. small a), yields the 1-D
eigenvalue equation

Lsrratmin = —Asrra Yinin

(6.62)

2

d
Lspra= "E{(x __xa) + a2 [1++(1— 3—"72)]

Accordingly, the approximation by Fox [106,137] leads to the 1-D
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Figure 6.8. The noise color induced suppression of the escape rate n(r, D) [Eq. (6.61)]
is shown for D=0.1, D =0.05, and D =0.025.

eigenvalue equation

LFox min “AFox¢min

(6.63)
3’ 1
0x* 1 —7(1—3x%)

d
Lan= —Fg(xﬁxg')_{_D

The results of the numerical solutions of Eqgs. (6.62) and (6.63) are
compared in Fig. 6.9 with the smallest nonvanishing eigenvalue, obtained
from the full 2-D Fokker—Planck equation.

Using the method of the effective small 7 potential [168], one can find,
within the small correlation time theory, an expression for the correlation
time corrections of the escape rate valid for weakly colored noise. In the
new variable

y=x—1irx —x%) (6.64)

the diffusion coefficient of the Fokker—Planck operator in Eq. (6.62) is a
constant, and the drift term corresponds to the potential

Ver(¥) =1x* —L(1+3D7)x” (6.65)

which is again a potential of the quartic type, but with renormalized
coefficients. Applying Kramers’ formula for the escape rate valid for
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Figure 6.9. The smallest nonvanishing eigenvalues, obtained numerically from the
approximate Fokker—Planck equations (6.62) (dotted) and (6.63) (dashed), are compared

with the eigenvalues obtained from the full 2-D eigenvalue equation (6.11) (solid) at
D=0.1.

weak noise (for a recent review, see [123])

1 " " AV
rs = ....2__.7.;_.. \/Iveff xmin)Veff(xsaddle)l exp(— —IT) (666)

where AV is the barrier height, x_;, is the position of the local potential
minimum, and x_,4,,. is the position of the barrier top. Inserting the
expression for the effective potential, we find

r(r) =r,(r =0)[1 —~ B(D)7)] (6.67)
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where
B(D)=3—-3D (6.68)

This expression is asymptotically for — 0 exact. The dilemma, however,
is that within the small correlation time theory for D — 0, we also have to
reduce 7 according to the condition /D — 0.

In the limit D — 0 and small but finite 7, corrections to the rate have
been obtained by use of a variety of methods. The result reads [123, 134,
154, 156, 161, 169-171]

2 4 6
37 T

r (1) = ry(r = 0){1 — B(D)} exp —{STD +505 + O D] (6.69)

2. Escape Rates for Strongly Colored Noise

For large correlation times, corrections to the exponential part of the
escape rates have been determined by using path integral techniques,
adiabatic arguments, or by using the unified colored noise approximation.
The result in leading order reads [154, 157]

2
¥, < exp(— 27;) (6.70)

Comparison with numerical solutions for the escape rate at finite values
of 7, however, shows that this result is actually very asymptotic
[154, 158, 166]. The dependence of the exponential part of the numerical-
ly evaluated rate in fact shows a dependence of the type in Eq. (6.70) but
with a factor other than 2/27, that is 2/27=0.074...— ~0.1 [154].
Luciani and Verga [156] derived a bridging formula, connecting the
approximations at small 7 and large 7, given for AV=1

1 1 [ 1{1+%7+%¢2}]
rs~—-\/§7r(1 + 37) exp| — 7 i+, (6.71)

3. Mean First-Passage Times for Other Boundary Conditions

So far, we have discussed escape rates and its connection to mean
first-passage times to leave the basin of attraction. Since the concept of
mean first-passage times is valid for more general regions in phase space,
one can also ask for the mean first-passage time to leave the right or left
infinite one-haif plane, x <0 or x> 0. This problem has been studied by
Doering et al. [172} for weakly colored noise. They solved the Fokker—
Planck equation in the extended-phase space (x,z=e/{g)) with a
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Gaussian source term 8(x — 1)p,(z) and an absorbing boundary at x =0
for z > 0. Those boundary conditions vield a current-carrying stationary
solution from which they can derive an expression for the mean first-
passage time. In order to obtain a solution for weakly colored noise, they
expand the stationary current carrying solution in functions of the orders
of V7. As a result one finds

1 2 3
Tico= -\%— exp(m) [1 + \/; Ay VT + 35 T:l (6.72)

with the Milne extrapolation length A,,, given in terms of the Riemannian
¢ function, by A,, = —{(1/2) = 1.460354. This V7 correctxon has been
established by snnulatmg the Langevin equations X = x — x*+e, é=—(1/
7)€ + VD/7£(t). Those results have been contrasted with the escape rates
over the separatrix in detail in [173-176].

D. Colored Noise Driven Systems with Inertia

Up to now, we have neglected the inertial effect completely, that is, we
have assumed that the velocity relaxation takes place on a very fast time
scale in comparison with other time scales. For finite inertia, we introduce
another finite time scale 7,=1/y into the system. The normalized
Langevin equations read

X=v

v=—yu+f(x)+e (6.73)
.1 . VD

ET T T

with Gaussian white noise £(¢),

(&) =0
(EMER)) =28(t—1t")

The corresponding Fokker—Planck equation

(6.74)

d

3 1 9 D a?
P(x v, &, t)—[—-g—v+y-a—vﬂ(v—f(x)—e)+—~as -I—?;asz]

X P(x,v, &, t) (6.75)

can be solved analytically for a quadratic potential, f(x)= —whx, only.
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For the stationary distribution one then obtains

P (x,v,e)= -;— exp(— i(fl—;-lﬂ) (6.76)

with the potential
d(x,v, 8)= —é—'ymg(l +72w)x” + vy lwiw + Ly[(1 + y7)* + s’
+ 37(1+ yr)e? — yr(1 + y1)ev — yrlwixe (6.77)

The quadratic form for the potential can be diagonalized by introducing
the new variable g instead of ¢ [111]

2
YT X
g=—yv+e-— 1_'_;1_ (6.78)
The potential then factorizes, that is,
2 2
T
d@x, v, g)=17(1+yr)g* + 11 + yr + 2wy’ + é—'ng(l + 1T ;q_)xz
(6.79)

This factorization for the parabolic potential implies for a general force
field f(x) the introduction of the new wvariable [111]

yifx) (6.80)

q="Wre T

The system of Langevin equations then reads [111]

b= g+ L) (6.81)

2
T

1=~ DarF i o1l

1. Small Correlation Time Approximation

Starting from the Fokker—Planck equation in Eq. (6.75),

F)
= P=(A+eB+L,)P (6.82)
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where
d d d
AS oV Y g v TIW G,
o
B—n"—'é; (6.83)
L -198 _,D2
g de 1“2 882

we apply the same small 7-expansion technique as presented in Appendix
Al of [5] (generalized to a three dimensional (3-D) Fokker—Planck
equation). As the result one finds for large times and y <€1/7 up to order
O(7*) the 2-D Fokker-Planck approach

d .
-é'EP(x, U, t) = Lgepra P(x, v, £) (6.84)

where
Locra = A+ DB? + +DB[A, B] + Dv’B[A, [A, B]]
+ D**(B[[B, A], B]B + 1B°[[B, A], B]) (6.85)

with [A, B] = AB — BA. The same result can also be obtained by extend-
ing the functional technique to higher dimensions [146, 177]. Inserting the
expressions for the operators A and B, we obtain the Fokker—Planck type
operator (see Appendix of [111})

8 3 2 a*
Lscra = —3, 0 +7 350 ~ f&) 5+ D(1 —y7 + 7°f'(x) + %% ") 302
2
+7D(1 —y1) g g + o) (6.86)

The stationary distribution can be obtained analytically up to order 7 and
reads

P (x,v)= % exp[-—~ % Ulx) — 2D(1y—~ ) vz] (6.87)

where

ve) =~ £y dy (6.88)
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The distribution in x and v factorize within this approximation. The shape
of the distribution function in x only is in first order of 7, independent of
the correlation time of the noise. For a harmonic potential U(x) = w3x?,
the stationary probability density can be computed and obtained up to
second order 72, yielding for the variance o, = (x*), — (x)2 = (¥*),,

D
o, =—F5(1—wer’) (6.89)

XX
waY

which agrees with the exact solution up to order T2
2. Unified Colored Noise Approximation

The starting point for the application of the unified colored noise
approximation is the set of equations in Eq. (6.81). Performing a time
scale transformation r— /7, we observe that we can adiabatically
eliminate g for [111]

AL 6.90
VTt 20
and
r
t>77 - (6.91)
The Fokker—Planck equation for this approach reads [111]
d
-B-}-P(x, v, ) = LycnaPx, v, 1) (6.92)
where
__3 r_( ul E
LUCNA__axU+[1+yT 1%_1+*y7'f(x) FO
3 D @
fx) 98 (6.93)

~ 14T v (1+ 1) av’

The stationary probability density can only be obtained analytically for
the harmonic potential U(x) =1 wyx”. In this case, it precisely agrees with
the exact stationary probability density Eqgs. (6.76) and (6.77). The
unified colored noise approximation—as a truly Markovian approxi-
mation—also correctly describes the dynamical quantities, such as corre-
lation functions within its range of validity Eqgs. (6.90) and (6.91). In
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contrast to the small correlation time approximation, the high friction
limit can be carried through by another adiabatic approximation, yielding
the (Stratonovich) Langevin equation

@) D
T g fY

(6.94)

which is up to a time scale (1/y) identical with the standard unified
colored noise approximation for overdamped systems, discussed in
Section V.C. This higher dimensional UCNA in Egs. (6.92) and (6.93)
has recently been applied to study colored noise driven bistability by
Schimansky-Geier and Ziilicke [178], and for modeling the dynamics in
dye lasers by Cao et al. [179].

3. Decoupling Approximation

The probability density P(x,v,t¢) for the non-Markovian stochastic
process, described by the Langevin equation, Eq. (6.73), obeys the
integrodifferential equation [146]

% P(x,v,t)= % (8(x(2) —x)5( (@) —x))

= —p %P(x, v, ) — f(x) %P(x, v, )ty -é% wP(x,v, t))

*aeas 12 ;o ~ (5 o0 - 000 -0 33)]

22 o (2) 000300 - 353)]

ov 0

(6.95)

where the functional derivatives 8(x(¢))/8(£(s)) and 8(v(¢))/8(£(s)) obey
the coupled integrodifferential equations [146]

&x(t) Su(r)
seis) ¢~ o 5E(5) | o
Su(t) 8x(r) (6-96)

*8u(r)
5E(s) =9(“'S)[1 "L F&D Bgsy 4 =7 ), sy ¥ ]

Factorization of the probability density and the functional derivatives
yields a closed equation of the Fokker—Planck type for the probability
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density P(x,v,t), that is [146],

o
aF P{x,v,t)=Lp. P, v, 1)

, (6.97)
L © o b )] + = -
——+—=-[yv
Dec —U dx Y X 1+ v T2<f:(x)> av2
N D 8’
1+ 97— 77 (f(x)) 2x v
The stationary probability density factorizes in x and v, that is,
1 v’ U(x)
P, (x,v)= = exp(— P ) exp(— po ) (6.98)

vy xXx

with the potential U(x) defined in Eq. (6.88) and the covariances

B S
=y 1= (@) /(A + )]
D . (6.99)

CT Y Ty —T(F)

Tracing out the velocity, we obtain the equation of motion for the
probability density in the position x only [146]

D1+ (1/y7)) a2

d 0 ~
*é—;P(x, t)=— af(x)P(x, )+ L+ (L) — (P ) o0 P(x,t)
(6.100)
where
Foy =L
(6.101)
b=
Y

The prediction of the decoupling theory has been tested by using
analogue simulations [147]. Although the agreement of the stationary
joint probability density P, (x,v) is not very good (incorrect symmetry
due to factorization), the agreement of the reduced density with the
analogue simulation resuit is excellent. The mean values, occurring in the
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Fokker—Planck approach have to be determined self-comsistently. Since
the decoupling theory is not restricted to small correlation times, one can
also perform the overdamped limit yr > 1,

D 9>
R TR P(x,t) (6.102)

-g? P(x, t) = —-(%f(x)l’(x, 1)+

This equation agrees precisely with the standard decoupling theory for
overdamped systems.

VII. MULTIPLICATIVE COLORED NOISE AND PHOTON
STATISTICS OF DYE LASERS

The study of dynamical systems in optical sciences is attracting rapidly
growing interest. In particular, the ficlds of optical bistability and chaos in
optical systems have become the main focus of interest for many
researchers. Here, we restrict ourselves to the influence of noise in
nonlinear optical system. Experiments with dye lasers strongly emphasize
the role played by noise sources with a finite correlation time. For dye
lasers strongly correlated noise enters via the pumping mechanism and it
crucially impacts their photon statistics.

Some time ago it was found that the behavior of a single mode dye
laser was not very well described by the usual single mode laser theory
[180~182]. Short and co-workers [10, 182] suggested taking into account
fluctuations of the pump parameter, to describe the dye laser close to
threshold. Graham and co-workers [183, 184] and Schenzle and Brand
[185] developed a stochastic model for the field of the single mode laser,
which incorporates & correlated pump noise. Some intensity correlation
functions compared very nicely with the resuits of this one-fit parameter
model. It turned out, however, that it is not possible to explain
experimental data at different working points of the laser with one value
of the fit parameter [10]. Short et al. [10] concluded from their experi-
ments that the pump noise should be slower than the fluctuations of the
intensity. Dixit and Sahni [11] and Schenzle and Graham [12] first
discussed the impact of colored pump fluctuations for the photon statistics
of dye lasers. While the stochastic equations have been simulated in [10],
Schenzle and Graham [12] used a small correlation time expansion.
Numerical studies of the dye laser model for arbitrary correlation times
have been put forward in [186, 187].

To describe the behavior of the laser close to the threshold correctly,
one has to take into account both pump and quantum fluctuations [188].
For adiabatically eliminated inversion and polarization, the equation of



310 PETER HANGGL AND PETER JUNG

motion for the complex field amplitude E reads [149, 188, 189]

E=a,E — AE|E|> + p() E + q(1) (7.1)
where
E=E, +iE,
p=p,tip, (7.2)
q=q,+iq,

In Eq. (7.1) a, denotes the pump parameter; A denotes the saturation
parameter, which limits the stationary field amplitude to a finite value; g
denotes the quantum fluctuations due to spontaneous emission processes,
being important at low-field intensities; and p(¢) denotes the pump
fluctuations. Both, quantum and pump fluctuations are assumed to be
Gaussian distributed with zero mean. The correlation functions are given

by

(q,-(r)qj(t')) =2g8(t — t')sij
(7.3)

(p(Op;t')) = % eXp[—% ‘ £ = f']ﬁu

Some typical sets of parameters D, § have been obtained by Zhou et al.
[13] and Roy et al. [190] by comparing simulations of Egs. (7.2) and (7.3)
with experimental data. A typical set of parameters is a, =0.7 X 10%s71,
A =0.114 X 10°s7Y, §=2x10"7s™", D=4.9%x10°s"", and 7=5.0x%
107 "s.

Above threshold (i.e. g, > 0) we transform the equation of motion for
the complex field amplitude into a set of equations for intensity 7 and
phase ¢. The equation of motion for the intensity reads in suitable

normalized form, that is, with t—ayt, I— A/ayl

I=2—-1"+2Ie+ %+ VOIq(@)

1 VD

E=——g+
T T

(7.4)

&)
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where
T=a,T
D
D=— (7.5)
Gy
0-424
tay

Equation (7.4) already takes advantage of the embedding property
introduced in the last section. Inserting the experimental values for the
parameters in Eq. (7.5), we obtain the values for the normalized
parameters D =7%x 1073, 0 =1.86x107°, +=0.35. It is interesting to
note that the quantum fluctuations are six orders of magnitude smaller
than the pump fluctuations, and that the noise correlation time + is not
much smaller than the typical system time scale, which is in our
normalized units of 7, =1. Other experimental sets yield even much
larger values of 7 in the order 10. This makes it clear that in order to
understand the dye laser one needs theories for dynamical systems driven
by colored noise that are nonperturbative in the correlation time of the
noise. If we neglect quantum fluctuations that can be safely done if we are
interested only in the stationary properties of the laser light intensity and
those properties that are not too close to threshold, the equation of
motion for the field intensity reads

I=2(a—DI+2e

1 VD
é=—*;s +**-;_*-f(t)

(7.6)

with the & correlated Gaussian stochastic process &(¢). In Eq. (7.6) we
have made use of a different scaling as compared to Eq. (7.4) by invoking
the dimensionless pump parameter a, i.e. a,—a-a,. This gives the
possibility to vary the working point of the laser. For ¢ <0, that is, below
threshold, the laser is off. In Eq. (7.6) this is reflected in a vanishing
stationary mean value of the intensity, that is, (I,) = 0. For a >0, that is,
above threshold, the laser is on. Accordingly, the stationary mean value
of the intensity is given by (I,,) = a. Note that the mean value agrees
identically with the behavior of the noiseless system [=2(a —1)I; the
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noise has not shifted the bifurcation point. Some quantities of interest are
the stationary probability distribution P, ([}, since it directly relates to the
photon counting statistics [191, 192], and the correlation function

(U@ = (D )UO0) ~ (1))
(Iz>st - (I)gt
which relates, via the Wiener-Khintchine theorem, to the fluctuation

induced line width. The line width is characterized by the effective
eigenvalue A, or equivalently by the inverse of the relaxation time

¢t} = (7.7)

* 1
T=f0 $,(t) dt = Ao (7.8)

A. The White Noise Limit

In the white noise limit, the (Stratonovich) Fokker—Planck equation for
the intensity reads

d
EP(I, ty=L,P{U, 1) (7.9)
where
L *—21 —II-!—4D-—a—Ii
o="277@—1I) ATl (7.10)

Above threshold, the stationary distribution function is given by [6]

P (=P ()= % (4DI)* exp(-— %) (7.11)

with the normalization constant (I' denotes the Gamma function)

1 «
Z=75 (8D?*) " ' IN'(k, + 1) (7.12)
and
a |
Ko =77 — 1 (7.13)

Below threshold, the stationary probability is given by the right-sided &
function &,(I). The stationary distribution function above threshold
shows a noise induced transition at D =a/2 [6]. For D <a/2, the
stationary distribution vanishes at I = 0, while for D > a/2, P (I) has an
integrable singularity at I = 0. This transition, however, does not show up
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in the stationary mean values
I") zf I"P . (dI=(2D)'T(k, +n+1)
a

= (2D)'T(%+ n) (7.14)

The effective eigenvalue, A, for white noise can be obtained from
Equation (7.15) [152], that is,

Aol = 1 ” fz(x)
eff (12) _ ([)2 o D(x)P,(x)

dx (7.15)
with D(x) =4Dx"

=] @~ (1)) dx (7.16)
The integrals can be evaluated exactly, yielding the simple result [152)]
A =2a (7.17)

that is, the bandwidth of the laser does not depend on the noise strength.
B. The Stationary Probability with Colored Noise

The two-variable Fokker—Planck equation
d
EW(I’ g, t)=L, W, e&,t) (7.18)

with the embedding Fokker~Planck operator

L, =A+eB+1L,

d
A=—2-7(@-DI

3 (7.19)
B=—2-5-I“I
18 D&
e =+ e £ 2 952

Expanding the stationary solution of the Fokker—Planck equation, Eq.
(7.18), into complete sets of orthogonal functions with respect to both
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variables I and &,

Wall. &) =g 55y Vol®) S _di(@D)" L () exp(=al)y, ()

n,m=

(7.20)

with L (x) being generalized Laguerre polynomials, @ being a positive
arbitrary scaling parameter, and ,(g) being Hermite functions, that is,

1 £ 7€
i (g) = Hn( ) exp(——) (7.21)
V2'nN2a D/t V2D/7 4D
Arranging the expansion coefficients in vectors,
c,=(,c.,c3,..) (7.22)

we obtain the tridiagonal vector recurrence relation [186]

+/ D 1 A f D
n*;*gc"_l + (émn;;[__)cn + \(n +1)~‘:’_—£cn+1= 60 (7.23)

which can be solved in terms of matrix continued fractions [186]. The
matrices A and B are matrix representations of the operators A and B,
respectively. They are given by

3m + 2w+ 1 + 1+
Amnzzm(l— AL )Smn+2m¥ -

144

3m+v—1 m—1
+ ZI?I( o )6m,n+1 —2m o 6m,n+2

(7.24)
B™=2m(8,, ,, ~ 8 1)

The parameter v has been chosen as a/(2D)—1 [186] to match the
dependency on [ at low intensities. In Fig. 7.1, the numerically obtained
stationary probabilities are shown for D =0.25(a) and D = 1(b) for
increasing correlation times of the noise. We observe crucial changes in
the distribution function for increasing correlation times. The conse-
quences for the photon-counting statistics are evident.

Within the small correlation time approximation, one obtains the
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Figure 7.1. The stationary probability density [Eq. (7.20)] is shown at D} = 0.25(a) and
D =1(b) for various values of the correlation time 7 of the noise, for a=1. Here, the
UCNA result in Eq. (7.29) coincides within line thickness with the numerical (MCF) result

in Eq. (7.20).

Fokker—Planck type equation [186]

9 {09 9,9 9,9
= P(1, r)m(—z 7 1(a—1I)+4D aIIaII)P(I,t)—SDT 7157 I°PU, ©)
(7.25)

The stationary probability density within small correlation time approxi-
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mation is obtained from Eq. (7.25) without ad hoc exponentiation as

P .(I)= P;f“([){l —EZD— [(2D + a)(a — 2I) + Iz]} (7.26)
where P~° is the stationary probability in the white noise limit Eq.
(7.11). The agreement of Eq. (7.26) with the numerical solution is
obviously nonuniform in the intensity. In order that the correction term
for finite correlation term remains a small term, the ratio 7/ has to be
small. How small it has to be is determined by the value of the intensity
itself. In other words, the small correlation time approximation is only
valid in the finite region of support where the resulting stationary
probability density is positive. Using the unified colored noise approxi-
mation [144, 151, 179], we find a Fokker—Planck equation with a strictly
posttive diffusion coefficient

a _d (2(a—DI 4DI )

arP(l”)_—aI( 14271 +(1+271)3 P, 1)
8®  4D7j?
al? (1 + 271)*

P{, ) (7.27)

The condition of validity is given for this particular model by

1
v(I, 7) = =t 2IVT =1 (7.28)

which is fulfilled for small and large correlation times of the noise on the
whole intensity axis, except for I = 0. The stationary probability density is
obtained within this approximation by

P ()= % (1+ 271) exp [5% (2a ~ 1)1] PIND) (7.29)

where Z is a normalization constant and PI °(I) is the stationary
probability in the white noise limit. In Fig. 7.2, the numerically evaluated
stationary probabilities are compared with those obtained by using the
unified colored noise approximation at D =0.5. The agreement is good
for large-to-large correlation times of the noise. The largest deviations are
in agreement with what one expects from Eq. (7.29) at small intensities 1.

The fluctuational line width of the dye laser (i.e., the effective
eigenvalue) is given by the inverse of the integral of the normalized
intensity autocorrelation function over the complete time axis Egs. (7.7)
and (7.8). In the white noise limit, this quantity could be obtained
exactly, yielding the simple expression A_; = 24. Since the unified colored
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Figure 7.2. The approximate (solid line) expression [Eq. (7.29)] for the stationary

probability density is compared with the full numerical (dotted line) result at D =0.5, and
a=1,

noise approximation represents a true Markovian approximation of a
non-Markovian process, we can use the closed expressions for the
effective eigenvalue Eqgs. (7.15) and (7.16) with D(x)—4D2/(1 + 27x)*.
The integrals, however, have to be evaluated numerically. The result is
compared in Fig. 7.3 with the numerical results obtained in [144, 187].

[Tl
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] Dw0.3
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Figure 7.3. The inverse line width (i.e. the relaxation time) Als [Eq. (7.15)] is depicted
versus noise correlation time 7 for different noise strengths D, and @ = 1. The solid lines are
the numerical exact results. The UCNA result [Eqs. (7.15, 7.27, 7.29)] for D=0.3 is
indicated by the full circles, being very close to the exact result.
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The comparison is very favorable for the unified colored noise approxi-
mation. We should mention, also, that for the particular dye laser model
we are using here, a weak noise expansion yields the analytical expression
[187]

A\ ___1_+ 4 2Dr(3ar + 1)
ot = 2 T TV (1 + ar)(1 + 2ar)(1 + dar)

(7.30)

which agrees also well with numerical results.

VIII. SUMMARY AND OUTLOOK

We have reviewed current theories and applications of colored noise
driven dynamical systems. Exact solutions are available for colored
dichotomous noise driven dynamical systems (see Section IV) and for
colored noise driven linear systems (see Section II.E, and Appendix A in
[111]). For colored Gaussian noise driven nonlinear systems, one has to
apply approximation schemes and/or to resort to numerical techniques
(see Sections VI and VII).

For small correlation times 7 of the noise, that is, when the noise
correlation time is smaller than all system time scales, numerous approxi-
mate Fokker—Planck type equations have been derived in the literature
(see Section V.A). Triggered by the need to describe experiments (photon
statistics of dye lasers, electrohydrodynamic instabilities, analogue experi-
ments, or turbulent transitions in liquid He 1I, see the various contribu-
tions in [194]), new theories valid for intermediate-to-large correlation
times (decoupling approximation and unified colored noise approxima-
tion) have been developed (see Sections V.B and V.C, respectively).

In Section VI, the theoretical concepts introduced in Section V are
applied to the problem of colored noise driven bistability. We focused on
the noise color dependence of the escape rates and stationary correlation
functions. The answers of the approximation schemes have been com-
pared with precise numerical results. In Section VII, the impact of
muitiplicative colored noise for the photon-counting statistics and the
fluctuational line width has been investigated.

The reader has certainly noted that throughout this chapter the
emphasis has been placed on nonequilibrium systems described by
stochastic differential equations driven by general multiplicative colored
noise. Thus, we did not address the huge area of colored noise fluctua-
tions within thermal equilibrium systems, being described by the epoch-
making generalized Langevin equation [195-197] and obeying the fluc-
tuation—dissipation theorem of the second kind with memory friction.
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The vast research obtained for this thermal equilibrium colored noise has
been extensively addressed in the literature, see, for example, [100, 123,
195-205].

Before we close our survey we would also like to mention other topics,
related to colored noise driven dynamical systems that we did not cover in
detail. One such topic is the influence of colored noise for transport
quantities in periodic potentials {206—-208], or the work on the relaxation
times, see Eq. (5.24) [209, 210]. Another area, widely studied in recent
years, refers to the decay from unstable states [211] when triggered by
colored noise [212-218], where the decay time T obeys a characteristic
scaling law (Suzuki’s scaling [211]) of the form T «log{(D)+ B(r) + C,
where D denotes the noise strength. The influence of the noise color is
accounted for by the function B(r). Much of the progress on colored
noise approximation schemes has originated from digital simulations.
Likewise, the method of colored noise analogue simulations
[194, 219, 220] has played a pioneering role in guiding the theoretical
practitioners to improve upon their theoretical schemes.

Finally, throughout our survey we restricted the time evolution to
continuous time. If on the other hand the dynamics is recorded by
stroboscopic methods—commonly used in the study of chaotic dynam-
ics—the dynamical flow is not governed by a stochastic differential
equation but rather by a noisy map. Very recently, the study of correlated
noise has been initiated for such discrete-time dynamical flows [221-223].

Undoubtedly, we shall witness more research work in future years
aimed at completing, extending, and interpreting the present state of the
art of colored noise driven systems in chemistry, physics, biology, and the
engineering sciences.
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