Quantum Brownian Motion: Facts, debatable issues and unsolved issues

Peter Hänggi and Gert Ingold

Brownian Motion 2025, EPFL, Lausanne, CH

Theory of Brownian motion

W. Sutherland (1858-1911)

A. Einstein (1879-1955)

M. Smoluchowski (1872-1917)

Source: www.theage.com.au

$$D = \frac{RT}{6\pi\eta aC}$$

Source: wikipedia.org

$$\langle x^{2}(t)\rangle = 2Dt$$
$$D = \frac{RT}{N} \frac{1}{6\pi kP}$$

Source: wikipedia.org

$$D = \frac{32}{243} \frac{mc^2}{\pi \mu R}$$

Phil. Mag. **9**, 781 (1905)

Ann. Phys. **17**, 549 (1905)

Ann. Phys. **21**, 756 (1906)

Dynamics of Open Quantum Systems

P. Hänggi

Institut für Physik Universität Augsburg

PQUANTUM DISSIPATION

$$L = \frac{1}{2} m_0 e^{xt} \cdot \frac{2}{2} - \frac{1}{2} m_0 e^{xt} \cdot \frac{2}{x^2}$$

=> pt [mox +moxx +mowox]=0

QM: $L \rightarrow H = \frac{p^2}{2m_0}e^{-yt} + \frac{1}{2}m_0e^{yt}w_0^2x^2$

W. E. Brittin, Plays. Rev. 77, 396 (1950) Chung-In Um, K. H. Yeon, T. F. George, Phys. Rep. 362, 634 (2002 4

Quantum Dissipation

How 22

(16)

real world quantum dissipation

- o do not rely ("trust") more or less inspired suesswork
- do the full Q.M. in the universe do the hard work for a realistic laboratory set-up, account for noise!

 Calcleira & Lessett, Grabert, Weiss, Hänssi, Schmid, Larkin,
- extract the relevant information by integration over bath degrees of freedom

PHYSICS REPORTS

A Review Section of Physics Letters

QUANTUM BROWNIAN MOTION: THE FUNCTIONAL INTEGRAL APPROACH

Hermann GRABERT, Peter SCHRAMM and Gert-Ludwig INGOLD

Volume 168

Number 3

October 1988

PRPLCM 168(3) 115-207 (1988)

NORTH-HOLLAND · AMSTERDAM

density matrix of system + heat bath:

 $W(t) = e^{-\frac{i}{\hbar}Ht} \sum_{j} (0_{j} e^{-\beta H} o_{j}') e^{\frac{i}{\hbar}Ht}$ use functional integrals

5 ystem

heat bath

QUANTUM NOISE

NO QUANTUM EQ. PARTITION-TH.

9:= 14(H)><42(+)1 / 11:=== Sdw T(w)

 $\langle v(t)v(t)\rangle = 0$

itig = [Ho, 8] + 4 [X, 8]-3(+)[x,8] - 1 v(t) {x, 8}+ <5(+)3(+')>= Rel(+-+'); <3(+)v(+')>= 2, B(++')[m](++')

PHYSICAL REVIEW A 69, 052109 (2004)

Is the dynamics of open quantum systems always linear?

Karen M. Fonseca Romero,* Peter Talkner, and Peter Hänggi Institut für Physik, Universität Augsburg, Universitätsstrasse 1, D 86315 Augsburg, Germany (Received 1 December 2003; published 17 May 2004)

We study the influence of the preparation of an open quantum system on its reduced time evolution. In contrast to the frequently considered case of an initial preparation where the total density matrix factorizes into a product of a system density matrix and a bath density matrix the time evolution generally is no longer governed by a linear map nor is this map affine. Put differently, the evolution is truly nonlinear and cannot be cast into the form of a linear map plus a term that is independent of the initial density matrix of the open quantum system. As a consequence, the inhomogeneity that emerges in formally exact generalized master equations is in fact a nonlinear term that vanishes for a factorizing initial state. The general results are elucidated with the example of two interacting spins prepared at thermal equilibrium with one spin subjected to an external field. The second spin represents the environment. The field allows the preparation of mixed density matrices of the first spin that can be represented as a convex combination of two limiting pure states, i.e., the preparable reduced density matrices make up a convex set. Moreover, the map from these reduced density matrices onto the corresponding density matrices of the total system is affine only for vanishing coupling between the spins. In general, the set of the accessible total density matrices is nonconvex.

microscopic approach

$$H = \frac{1}{2} M \dot{q}^2 + ll(q)$$
system

$$+\frac{1}{2}\sum_{\alpha}m_{\alpha}\dot{q}_{\alpha}^{2}+\sum_{\alpha}m_{\alpha}\omega_{\alpha}^{2}\dot{q}_{\alpha}^{2}$$

(harmonic) bath

+
$$q \sum_{\alpha} C_{\alpha} q_{\alpha}$$

linear coupling

+ $q^2 \sum_{\alpha} \frac{C_{\alpha}}{2m_{\alpha}\alpha_{\alpha}^2}$

compensation of frequency shift

path integral approach
to density matrix at
temperature T
trace out environment

dissipation

QUANTUM L.-EQ.

10> + 10> 10>B

AT T = 0

IHs+B = IHs + HIS-B + HIB

$$= \frac{p^2}{2m} + V(x) + \sum_{n=1}^{\infty} \left[\frac{p_n^2}{2m_n} + \frac{m_n \omega_n^2}{2} (q_k - \frac{c_k}{m_n \omega_n^2} x) \right]$$

Q L E

$$i \star \dot{o} = [O, H_T]$$
 $m \ddot{x} + m \int_{0}^{\infty} ds y(t-s) \dot{x}(s) + \frac{\partial V(x)}{\partial x}$
 $= I\eta(t) - my(t-0) \dot{x}(0)$
 $INITIAL SLIP$
 $INITIAL SLIP$
 $INITIAL SLIP$
 $INITIAL SLIP$

$$\eta(t) = \sum_{a} \left[q(0) \cos(\omega_{a}t) + \frac{\rho_{a}}{m_{a}\omega_{a}} \sin(\omega_{a}t) \right]$$

 $= \gamma(s-t)$

$$[\eta(t), \eta(s)] = -i\hbar \sum_{m_{1}} \frac{e^{2}}{m_{1}} \sin(\epsilon_{1}(t-s))$$

$$\neq 0$$

$$g_{B} = 2^{-1} \exp\left\{-\beta \left[\sum_{n} \left(\frac{\beta^{2}}{2m_{1}} + \frac{m_{1}n^{2}}{2} g_{n}^{2}\right)\right]\right\}$$

$$\langle \eta(t) \rangle_{S_B} = 0$$

$$= \frac{1}{2} \langle \eta(t) \eta(s) + \eta(s) \eta(t) \rangle = C(t-s)$$

$$= C(\tau) = \frac{\pi}{2} \sum_{n} \frac{c_n^2}{c_{n}c_{n}} \cosh\left(\frac{\pi c_n}{2\Delta T}\right) \cos(n\tau)$$

REMARKS

QLE OPERATES IN FULL HILBERT SPACE OF SOB

$$g(z) = \int_{\infty}^{\infty} e^{i\frac{z}{2}t} f(t)dt = \frac{i}{2m} \sum_{m} \frac{c_{\alpha}^{2}}{m_{\alpha} c_{\alpha}^{2}} \left[\frac{1}{z - c_{\alpha}} + \frac{1}{z + c_{\alpha}} \right]$$

$$\frac{1}{x + i \cdot o t} = P(\frac{1}{x}) - i \pi S(x)$$

$$Ref(z = \omega + i \cdot o t) = \frac{\pi}{2m} \sum_{\alpha} \frac{c_{\alpha}^{2}}{m_{\alpha} c_{\alpha}^{2}} \left[d(\omega - c_{\alpha}) + d(\omega + c_{\alpha}) \right]$$

$$C(\tau) = \frac{m}{\pi} \int_{0}^{\infty} d\omega \operatorname{Re} \int_{0}^{\infty} (\omega + i0^{+}) \cos(\omega \tau)$$

$$\operatorname{coth} \left(\frac{\hbar \omega}{2kT}\right)$$

$$\widehat{S}_{B} = 2^{-1} \exp -\beta \left[\sum_{\alpha} \left(\frac{p_{\alpha}^{2}}{2m_{\alpha}} + \frac{m\omega_{\alpha}^{2}}{2} \left(q_{\alpha} - \frac{\omega_{\alpha}}{m\omega_{\alpha}^{2}} \right) \right]$$

$$\frac{2}{5}(3(\tau)3(0)+3(0)3(4))=C(\tau)$$

4. DEPHASING AT

T=0

< x (0) \$(t) > = 0

 $\langle H_{INT} \rangle_{\hat{P}} \neq 0$

多(t) - C-NOISE 了(t)

WITH CORRELATION

C(T)

IS INCONSISTENT

@ PIT FALLS

MARKOV MASTER EQ

BLOCH-REDFIELD

i.g. NO DET. BALANCE ROTATING WAVE APPROX. (LINDBLAD: DAVIES-APPROX.)

DET. BALANCE V O.K.
BUT

- WRONG EHRENFEST EQ.
- · NO FDT
- · NO KMS-COND. <u(t) >>= <\vu(t+inp)>

TIME REVERSAL

$$m\ddot{x} + m \int_{0}^{t} ds y(t-s) \dot{x}(s) + \frac{\partial V}{\partial x} = -my(t) x(\omega) + \tilde{y}(\omega) = x(\omega)$$

$$\frac{1}{2} + \frac{1}{2} +$$

WITH
$$\dot{y}(t) = \frac{d}{dt} \times (-t) = -\dot{x}(-t)$$

 $\dot{y}(t) = \ddot{x}(-t)$
 $\dot{x}(s) = -\dot{y}(-s)$
 $-\frac{t}{2}$
 $+\frac{t}{2}$
 $+\frac{t}{2}$
 $+\frac{t}{2}$

$$t \quad \chi(\tau-t) = \chi(t-\tau)$$

$$m\ddot{y}(t) + m \int d\tau \, \chi(t-\tau) \, \dot{y}(\tau) + \frac{\partial V}{\partial y} = -m_{\gamma}(t) \, \dot{y}(0) + \frac{\partial V}{\partial y} = \frac{1}{2}(t+\tau)$$

OHMIC FRICTION: y(t-s) = 2yo(+-s)

$$m\ddot{x} = -\frac{\partial V}{\partial x} - m_{\delta} \dot{x} \left\{ \frac{1}{2} (t > 0) + \dot{\xi}(t) \right\}$$

FREE QUANTUM Brownian MOTION

Using the path integral methodology in full phase space of system + bath + interaction

$$\Rightarrow H = \frac{p^2}{2\pi_0} + U(q)$$

$$+ \sum_{n=1}^{N \to \infty} \left[\frac{p_n^2}{2m_n} + \frac{1}{2} m_n \omega_n^2 \left(q_n - \frac{c_n q}{m_n \omega_n^2} \right) \right]$$

spectral density

$$I(\omega) = \frac{\pi}{2} \sum_{n=1}^{N} \frac{c_n}{m_n \omega_n} \delta(\omega - \omega_n)$$

=
$$M_{S_{\infty}} \omega^{\alpha} H(\omega_{c} - \omega)$$
 ; $\alpha > 0$

non-Ohmic

free Brownian Quantum motion

$$H = \frac{p^2}{2M_0} + \sum_{n=1}^{N-2} \left[\frac{p_n^2}{2m_n} + \frac{1}{2} m_n \omega_n^2 (q_n - q)^2 \right]$$

translationally invariant

Q(t) =
$$\frac{1}{2}$$
{ $E < q(w) - q(w) = q(w) + (q(w) = q(w))$ }

= $\frac{1}{2}$ { $< q(w) = q(w) = (q(w)) + (q(w) = q(w))$ }

= $\frac{1}{2}$ { $< q(w) = q(w) + (q(w) = q(w))$ } $- (q^2(w))$ }

= $\frac{1}{2}$ { $< q(w) = q(w) + (q(w) = q(w))$ } $- (q^2(w))$ }

= $\frac{1}{2}$ { $< q(w) = q(w) + (q(w) = q(w))$ } $- (q^2(w))$ }

= $\frac{1}{2}$ { $< q(w) = q(w) + (q(w) = q(w))$ }

= $\frac{1}{2}$ { $< q(w) = q(w) + (q(w))$ }

= $\frac{1}{2}$ { $< q(w) = q(w)$ }

= $\frac{1}{2}$ { $<$

Table 3

Asymptotic long-time dependence of the mean square displacement $[s_0(t) \text{ for } T=0 \text{ and } s(t) \text{ for } T>0]$ and the antisymmetrized part $A^F(t)$ of the displacement correlation function in terms of the exponent α and the quantities defined in eqs. (11.19-11.23). The symmetrized part $Q^F(t)$ of the displacement correlation function is given by $Q^F(t) = -s(t)/2$

α	$s_0(t) [T=0]$	$A^{\mathrm{F}}(t)$	s(t) [T>0]
$0 < \alpha < 1$	$2q_{\infty}$		
$\alpha = 1$	$2d_1 \ln(t) \times [1 + O(\ln^{-1}(t))]$	$\begin{cases} -(\alpha \hbar/2\mu_{\alpha})t^{\alpha-1} \\ \times [1+\mathrm{O}(t^{-1},t^{\alpha-2})] \end{cases}$	$2D_{\alpha}t^{\alpha} \times [1 + \mathcal{O}(t^{-1}, t^{\alpha-2})]$
$1 < \alpha < 2$	$2d_{\alpha}t^{\alpha-1} \times [1+\mathrm{O}(t^{\alpha-2})]$		
$\alpha = 2$	$2d_2t/\ln^2(t) \times [1 + O(\ln^{-1}(t))]$	$-(\hbar/\mu_2)t/\ln(t) \times [1 + O(\ln^{-1}(t))]$	$2D_2t^2/\ln(t) \times [1 + O(\ln^{-1}(t))]$
2<α<3	$2d_{\alpha}t^{3-\alpha} \times [1+\mathrm{O}(t^{2-\alpha})]$	(2.1014)	24-2 (2) .2
$\alpha = 3$	$2d_3 \ln(t) \times [1 + O(\ln^{-1}(t))]$	$\begin{cases} -(\hbar/2M_{\rm r})t \\ \times [1+{\rm O}(t^{-2},t^{2-\alpha})] \end{cases}$	$\frac{2(v_{\beta}^{2}/2)t^{2}}{\times [1 + O(t^{-2}, t^{2-\alpha})]}$
3 < α	constant	J	

Fig. 7. (a) The exponent of the asymptotic time dependence of the response function $\chi(t)$ is shown as a function of the spectral exponent α . (b) The solid (dashed) line shows the exponent of the asymptotic time dependence of the mean square displacement $s(t)(s_0(t))$ for finite (zero) temperature as a function of the spectral exponent α .

SYNOPSIS

LINEAR RESPONSE THEORY & QUANTUM-FDT

$$\hat{H}(t) = \hat{H}_{0} - F(t)\hat{A}; g_{p} = Z \exp(-\beta \hat{H}_{0})$$

$$\langle \hat{B}(t) \rangle - \langle \hat{B}(t) \rangle_{z} = \langle \delta \hat{B}(t) \rangle = \int_{t_{0}}^{t} \chi(t-s) F(s) ds$$

$$KUBO: \chi_{BA}(\tau) = \Theta(\tau) \frac{i}{t_{0}} \langle [\hat{B}(\tau), \hat{A}(0)] \rangle_{z}$$

$$= -\Theta(\tau) \int_{s}^{t} \langle \hat{A}(-ih\lambda) \hat{B}(\tau) \rangle_{z} d\lambda$$

$$= -\Theta(\tau) \int_{s}^{t} \langle \hat{A}(-ih\lambda) \hat{A}(\tau) \rangle_{z$$

QUANTUM-FDT

$$S_{BA}(\tau) = \frac{1}{2} < (\hat{B}(H) - \langle \hat{B} \rangle) (\hat{A}(0) - \langle \hat{A} \rangle) + (\hat{A}(0) - \langle \hat{A} \rangle) (\hat{B}(\tau) - \langle \hat{B} \rangle)$$

$$\chi_{BA}(\tau) = \chi'_{BA}(\tau) + i \chi''_{BA}(\tau)$$

$$\frac{1}{2} \left[\chi_{BA}(t) + \chi_{AB}(-t)\right] \qquad -\frac{i}{2} \left[\chi_{BA}(t) - \chi_{AB}(-t)\right]$$

$$\chi_{BA}(\omega) = \int_{-\infty}^{\infty} \chi_{BA}(t) e^{i\omega t} dt$$

$$\chi''_{BA}(\omega) = \frac{1}{\pi} \tanh(\hbar\omega \rho/2) S_{BA}(\omega)$$

$$S_{BA}(\omega) = h \coth(h\omega \beta/2) \chi_{BA}''(\omega)$$

NOTE:
$$\chi''_{BA}(\omega) = \frac{1}{2} \left[\chi^*_{AB}(\omega) - \chi_{BA}(\omega) \right]$$

$$\neq Im \chi_{BA}(\omega) ; except \lambda = \hat{B}$$

$$\hat{A} = \hat{B} = \hat{q} : S_{qq}(\Omega) = \hbar \coth(\hbar \Omega \beta / 2) Im \chi_{qq}(\Omega)$$

EQ.-CURRENT NOISE

$$H = B$$

$$I := \frac{dB}{dt}$$

$$\frac{\partial I(H)}{\partial t} = \frac{d\chi(\tau)}{\partial \tau}$$

$$\chi'' = \frac{\partial I(H)}{\partial t} = \frac{\partial I(H)}{\partial \tau} = \frac{\partial I(H)}{\partial \tau}$$

$$\chi_{AA}^{"}(\omega) = \frac{1}{\omega} Im(\frac{2(\omega)}{c}) = -\frac{1}{\omega} Re Z(\omega)$$

$$S_{II}(\omega) = -\omega^2 S_{BB}(\omega)$$

kT>>ta: SII(w) → 2kT Re 2(w)

MARNY 2kT/R

JOHNSON-NYQUIST (1928)

kT << kw -> kw Re 2(w)

quantum-zero point fluct.

Silw=0) = 0 at w=0

Quantum Brownian motion and the Third Law of thermodynamics

Peter Hänggi, Michele Campisi, Gert-Ludwig Ingold, and Peter Talkner Uni Augsburg

Acta Phys. Pol. B **37**, 1537 (2006) New J. Phys. **10**, 115008 (2008) Phys. Rev. E **79**, 061105 (2009) J. Phys. A (Fast Track) **42**, 392002 (2009)

Model for a damped free particle

Hamiltonian

$$H = H_{S} + H_{B} + H_{SB}$$

$$= \frac{p^{2}}{2M} + \sum_{n=1}^{\infty} \left(\frac{p_{n}^{2}}{2m_{n}} + \frac{m_{n}}{2} \omega_{n}^{2} x_{n}^{2} \right) + \sum_{n=1}^{\infty} \left(-c_{n} x_{n} q + \frac{c_{n}^{2}}{2m_{n} \omega_{n}^{2}} q^{2} \right)$$

translational invariance: $c_n = m_n \omega_n^2$

$$= \frac{p^2}{2M} + \sum_{n=1}^{\infty} \left(\frac{p_n^2}{2m_n} + \frac{m_n}{2} \omega_n^2 (x_n - q)^2 \right)$$

Quantum Langevin equation

$$M\frac{\mathrm{d}^2}{\mathrm{d}t^2}q + M\int_{t_0}^t \mathrm{d}s\gamma(t-s)\frac{\mathrm{d}}{\mathrm{d}s}q = \xi(t)$$

CONSCIL

Quantum Brownian motion and the 3rd law

Specific heat and dissipation
Two approaches

Two approaches Microscopic model

Route I

Route II specific heat density of states

Drude model

SCHOOL STATE

damping kernel

$$\gamma(t) = \gamma \omega_{\rm D} e^{-\omega_{\rm D} t}$$

Quantum Langevin equation

$$M\frac{\mathrm{d}^2}{\mathrm{d}t^2}q + M\gamma\omega_{\mathrm{D}}\int_{t_0}^t \mathrm{d}s \,\mathrm{e}^{-\omega_{\mathrm{D}}(t-s)}\frac{\mathrm{d}}{\mathrm{d}s}q = \xi(t)$$

equivalent equations of motion

$$\dot{q} = v$$

$$\dot{v} = z$$

$$\dot{z} = -\omega_{\rm D} z - \gamma \omega_{\rm D} v$$

oscillations occur for $\omega_{\rm D}$ < 4γ

Brownian motion and the 3rd law

Specific heat and dissipation
Two approaches

Microscopic model

Route I

Route II specific heat density of states

A bit of thermodynamics

Specific heat and dissipation

Two approaches Microscopic model

Route I

Route II specific heat density of states

An important difference

Route I

$$E \doteq E_{S} = \langle H_{S} \rangle = \frac{\text{Tr}_{S+B}(H_{S}e^{-\beta H})}{\text{Tr}_{S+B}(e^{-\beta H})}$$

Route II

$$\mathcal{Z} = \frac{\operatorname{Tr}_{S+B}(e^{-\beta H})}{\operatorname{Tr}_{B}(e^{-\beta H_{B}})} \qquad U = -\frac{\partial \ln \mathcal{Z}}{\partial \beta}$$

$$\Rightarrow U = \langle H \rangle - \langle H_{B} \rangle_{B}$$

$$= E_{S} + \left[\langle H_{SB} \rangle + \left[\langle H_{B} \rangle - \langle H_{B} \rangle_{B} \right] \right]$$

For finite coupling *E* and *U* differ!

Specific heat and dissipation

Brownian

motion and

the 3rd law

Two approaches Microscopic model

Route I

Route II

specific heat density of states

Free energy of a system strongly coupled to an environment

Brownian motion and the 3rd law

Specific heat and dissipation

Two approaches Microscopic model

Route I

Route II specific heat density of states

Conclusions

Thermodynamic argument:

$$\mathcal{Z} = \frac{\text{Tr}_{S+B}(e^{-\beta H})}{\text{Tr}_{B}(e^{-\beta H_{B}})} \longrightarrow F_{S} = F - F_{B}^{0}$$

F total system free energy

 $F_{\rm B}$ bare bath free energy

With this form of free energy the three laws of thermodynamics are fulfilled.

P. Hänggi, G.-L. Ingold, P. Talkner, New J. Phys. **10**, 115008 (2008)

G.-L. Ingold, P. Hänggi, P. Talkner, Phys. Rev. E **79**, 061105 (2009)

Partition function and internal energy

undamped case

$$Z_0 = \frac{L}{\hbar} \left(\frac{2\pi m}{\beta} \right)^{1/2}$$

with damping

$$Z = Z_0 \prod_{n=1}^{\infty} \frac{v_n}{v_n + \hat{\gamma}(v_n)}$$

internal energy

$$U = \frac{1}{2\beta} \left[1 + 2 \sum_{n=1}^{\infty} \frac{\hat{\gamma}(\nu_n) - \nu_n \hat{\gamma}'(\nu_n)}{\nu_n + \hat{\gamma}(\nu_n)} \right]$$
$$= \frac{\hbar \omega_D}{2\pi} \psi \left(\frac{\hbar \beta \omega_D}{2\pi} \right) - \frac{x_+}{\beta} \psi(x_+) - \frac{x_-}{\beta} \psi(x_-) - \frac{1}{2\beta}$$

Third Law

oscillator

systems Harmonic oscillator

Free Brownian particle

Specific heat from partition function

$$\frac{C^{Z}}{k_{\rm B}} = x_1^2 \psi'(x_1) + x_2^2 \psi'(x_2) - \left(\frac{\hbar \beta \omega_{\rm D}}{2\pi}\right)^2 \psi'\left(\frac{\hbar \beta \omega_{\rm D}}{2\pi}\right) - \frac{1}{2}$$

with

$$x_{1,2} = \frac{\hbar \beta \omega_{\rm D}}{4\pi} \left(1 \pm \sqrt{1 - \frac{4\gamma}{\omega_{\rm D}}} \right)$$

high-temperature expansion

$$\frac{C^Z}{k_{\rm B}} = \frac{1}{2} - \frac{\hbar^2 \gamma \omega_{\rm D}}{12(k_{\rm B}T)^2} + \mathcal{O}(T^{-3})$$

low-temperature expansion

$$\frac{C^Z}{k_{\rm B}} = \frac{\pi}{3} \frac{k_{\rm B} T}{\hbar \gamma} \left(1 - \frac{\gamma}{\omega_{\rm D}} \right) - \frac{4\pi^3}{15} \left(\frac{k_{\rm B} T}{\hbar \gamma} \right)^3 \left[1 - 3 \frac{\gamma}{\omega_{\rm D}} - \left(\frac{\gamma}{\omega_{\rm D}} \right)^3 \right] + \mathcal{O}(T^5)$$

Quantum Brownian motion and the 3rd law

Specific heat and dissipation

Two approaches Microscopic model

Route I

Route II specific heat density of states

Specific heat of a damped free particle

Thermal Casimir forces and quantum dissipation

Introduction

Quantum dissipation

Thermal Casimir effect

Conclusions

P. Hänggi, GLI, P. Talkner, New J. Phys. 10, 115008 (2008)

damping kernel: $\gamma(t) = \gamma \omega_{\rm D} e^{-\omega_{\rm D} t}$

$$\hat{\gamma}(z) = \frac{\gamma \omega_{\rm D}}{z + \omega_{\rm D}}$$

Schematic of stochastic resonance. The cross-hatched oval represents a black-box system which receives two inputs: one weak and periodic, the other strong and random. The output is relatively regular with small fluctuations.

Bistable Model

$$\dot{x} = x - x^3 + A\cos(\Omega t + \varphi) + \xi(t)$$

$$\langle \xi(t) \rangle = 0$$

$$\langle \xi(t) \xi(t') \rangle = 2D \delta(t - t')$$

P. JUNG + P. H., PHYS. REV. A44:8032(91)

MORE NOISE - MORE SIGNAL

$$M_1 \sim \chi(\tau) = -\frac{1}{D} \frac{d}{d\tau} \langle J_{\chi(\tau)}J_{\xi}(0) \rangle$$

$$|M_1|^2 \propto 1/D^2 \exp(-2sUD)$$

SR

IN QUANTUM MECHANICS

QSR

Vo≫hωo≫hεo, kT

$$\frac{1}{2}\sum_{\alpha}\left(\frac{p_{\alpha}^{2}}{m_{\alpha}}+m_{\alpha}\omega_{\alpha}^{2}\times\frac{2}{\alpha}\right)$$

$$-C_{\alpha}\times_{\alpha}G_{z}$$
Temperature

$$\frac{\hbar \hat{\varepsilon}}{2} \cos (\Omega t) G_{z}$$

LINEAR RESPONSE & QSR

with
$$P_1 = \frac{A}{2} \chi_{gg}(\Omega) \equiv \frac{A}{2} \chi(\Omega)$$

$$\eta_1 = 4\pi |P_1|^2 = \pi A^2 |\chi(\Omega)|^2$$

$$SNR = \frac{\pi A^2 |\chi(\Omega)|^2}{S_{qq}(\Omega, A=0)} = \frac{\pi A^2 |\chi(\Omega)|^2}{Im \chi(\Omega) \hbar \omega th (\hbar \Omega \beta/2)}$$

ivalid at all temperatures!

PROBLEM: QUANTUM Zassin Sassin

LINEAR RESPONSE & QSR

with
$$P_1 = \frac{A}{2} \chi_{gg}(\Omega) \equiv \frac{A}{2} \chi(\Omega)$$

$$\eta_1 = 4\pi |P_1|^2 = \pi A^2 |\chi(\Omega)|^2$$

$$SNR = \frac{\pi A^2 |\chi(\Omega)|^2}{S_{qq}(\Omega, A=0)} = \frac{\pi A^2 |\chi(\Omega)|^2}{Im \chi(\Omega) \hbar \omega th (\hbar \Omega \beta/2)}$$

ivalid at all temperatures!

$$S_{qq}(t) = \frac{1}{2} \langle \delta \hat{q}(t) \delta \hat{q}(0) + \delta \hat{q}(0) \delta \hat{q}(t) \rangle_{S}$$

2 DIFFICULT ?

above-near crossover to thermal hopping AT LOW T

QUANTUM SR

ENDE FIN THAT'S IT

HOMEPAGE "HANGGI"

GO TO: FEATURE ARTICLES

Quantum Dissipation and Quantum Transport

http://www.physik.uni-augsburg.de/theo1/hanggi/Quantum.html

A QUESTION?

Provided for non-commercial research and education use. Not for reproduction, distribution or commercial use.

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit:

http://www.elsevier.com/copyright

DRIVEN QUANTUM TUNNELING

M. GRIFONI, P.H. PHYS. REP.

304:229-358(98)

FREE COPY

http://www.physik.uni-augsburg.de/theo1/hanggi/

QUANTUM BROWNIAN MOTION: THE FUNCTIONAL INTEGRAL APPROACH

Hermann GRABERT*¹, Peter SCHRAMM**¹ and Gert-Ludwig INGOLD*¹

Institut für Theoretische Physik, Universität Stuttgart, D-7000 Stuttgart 80, Fed. Rep. Germany

Received January 1988

Contents:

1. Introduction	117	6.4. Linear response of the momentum to an applied	
Part 1. General theory	118	force	153
The second of th	118	6.5. Further correlation functions	154
Microscopic model and preparation of the initial state 1.1. The model Hamiltonian	118	6.6. Variances	15
	119	6.7. Propagating function	158
2.2. Initial states and preparation function	117	6.8. Effect of initial correlations	16
3. Functional integral representation of the density matrix	121	7. Ohmic dissipation	162
and elimination of the environment	121	8. Relaxation of nonequilibrium initial states	16
3.1. Euclidean functional integral	70-70	8.1. Approach to equilibrium	16
3.2. Real time functional integral	122	8.2. Relaxation of expectation values	168
3.3. Integration over the environmental coordinates and	104	8.3. Relaxation of factorizing initial states	170
influence functional	124	8.4. Coherent and squeezed states	17
3.4. Reduced dynamics and propagating function	128	•	
4. Minimal action paths and damping kernel	129	Part III. Free Brownian motion	17
4.1. The potential renormalization	130	Time evolution of a damped free particle	178
4.2. Minimal action paths	135	9.1. The displacement correlation function	179
4.3. Formulation of the theory in terms of the damping		9.2. The propagating function	183
kernel	136	10. Ohmic dissipation	182
Part II. Damped harmonic oscillator	139	11. Frequency-dependent damping	185
5. Time evolution of a damped harmonic oscillator	139	11.1. Spectral density and damping coefficient	183
	139	11.2. The antisymmetrized displacement correlation	
5.1. Extremal imaginary time path and reduced equilib-	140	function	186
rium density matrix	140	11.3. The symmetrized displacement correlation function	187
5.2. Extremal real time paths and minimal effective	144	12. Relaxation of nonequilibrium initial states	191
action	900 0	12.1. Time evolution of a Gaussian density matrix	191
6. Equilibrium correlation functions and response functions	149	12.2. Asymptotic spreading of the state	192
6.1. Linear response of the coordinate to an applied force	149	12.3. Long time behaviour for arbitrary initial states at	
6.2. Coordinate autocorrelation function	151	finite temperatures	194
6.3. The fluctuation dissipation theorem	152	Control of the contro	1)

Single orders for this issue

PHYSICS REPORTS (Review Section of Physics Letters) 168, No. 3 (1988) 115-207.

Copies of this issue may be obtained at the price given below. All orders should be sent directly to the Publisher. Orders must be accompanied by check.

Single issue price Dfl. 70.00, postage included.

0 370-1573/88/\$32.55 © Elsevier Science Publishers B.V. (North-Holland Physics Publishing Division)

^{*)} Present address: Fachbereich Physik der Universität-GHS Essen, D-4300 Essen, Fed. Rep. Germany.

^{**)} Present address: Daimler-Benz AG, D-7032 Sindelfingen, Fed. Rep. Germany.

DRIVEN QUANTUM TUNNELING

Milena GRIFONI, Peter HÄNGGI

Institut für Physik, Universität Augsburg, Universitätstraße 1, D-86135 Augsburg, Germany

Specific heat from the partition function

Quantum Brownian motion and the 3rd law

Specific heat and dissipation

Two approaches Microscopic model

Microscopic mode

Route I

Route II specific heat density of states

Conclusions

782

where β is the coefficient of sliding friction if there is slip between the diffusing molecule and the solution. For N molecules of solute per c.c. of solution the total resistance will be N times this, and in the steady state of diffusion will equilibrate the driving force due to variation of the osmotic pressure of the solute, namely dp/dx, which by the osmotic laws is RTdc/dx, if c is the concentration of the solute at x and R is the gas constant. Hence

$$RT\frac{dc}{dx} = 6\pi V \eta a N \frac{1 + 2\eta/\beta a}{1 + 3\eta/\beta a}; \qquad (2)$$

and the required formula for the coefficient of diffusion with C for the number of molecules in a gramme-molecule is

$$D = \frac{RT}{6\pi\eta\alpha C} \frac{1 + 3\eta/\beta\alpha}{1 + 2\eta/\beta\alpha} . \qquad (3)$$

If $\beta = \infty$, that is, if there is no slipping of solution at surface of molecule, aD is the same for all molecules diffusing through a given solvent at a given temperature. Now for a large molecule of solute moving amongst smaller ones of solvent, we can see that the slipping is probably small. But in the other extreme case of a small molecule of solute moving amongst larger ones of solvent, an effect analogous to slipping will occur, since the small molecule will travel a good deal in the gaps which would be left if the molecules of solvent were forced almost into permanent contact. We have thus two extreme cases of the formula.

When
$$\beta = 0$$
, $D = \frac{RT}{4\pi\eta a C}$ and when $\beta = \infty$, $D = \frac{RT}{6\pi\eta a C}$ (4)

Thus with increasing values of a we should have aD diminishing from the upper limit $RT/4\pi\eta C$, when a is small, to the lower limit $RT/6\pi\eta C$, when a is large. This is analogous to the actual behaviour of $B^{\frac{1}{2}}D$ obtained from experiment, B being the volume of the molecules in a gramme-molecule of solute. The first of the following tables contains the coefficients of diffusion for various gases through water determined by Hüfner *. I have reduced these all to a temperature of 16° C., and expressed them with the second as unit of time instead of the day. The values of B are taken mostly from "Further Studies on Molecular Force" (Phil. Mag. [6] xxxix.). In the second last row are given the values of

^{*} Wied. Ann. 1897, vol. xl., and Zeit. f. Phys. Chem. xxvii.

SYNOPSIS

LINEAR RESPONSE THEORY & QUANTUM-FDT

$$\hat{H}(t) = \hat{H}_{o} - F(t)\hat{A}; g_{\rho} = Z \exp(-\beta \hat{H}_{o})$$

$$\langle \hat{B}(t) \rangle - \langle \hat{B}(t) \rangle_{a} = \langle \delta \hat{B}(t) \rangle = \int_{b}^{t} \chi(t-s) F(s) ds$$

$$KUBO: \chi_{BA}(\tau) = \Theta(\tau) \frac{i}{\hbar} \langle [\hat{B}(\tau), \hat{A}(0)] \rangle_{B}$$

$$= -\Theta(\tau) \int_{a}^{t} \langle \hat{A}(-i\hbar\lambda) \hat{B}(\tau) \rangle_{a} d\lambda$$

$$classical limit \rightarrow -\Theta(\tau) \beta \langle \hat{B}(\tau) A(0) \rangle_{a}$$

Specific heat of a damped free particle

- $T \rightarrow \infty$: classical value $k_B/2$ damping constant γ sets the temperature scale
- coupling to the environment ensures 3rd law
- less damping makes the system more classical

Quantum Brownian motion and the 3rd law

Specific heat and dissipation

Two approaches

Two approaches Microscopic model

Route II

specific heat density of states

Conclusions

$U(q) = \frac{M_0}{2} \omega_0^2 q^2$, Ohmic friction $-\gamma \dot{q}$

Rise borough, P.H., U. Weiss, Phys. Rev. 431,471 (85)

$$\hat{\chi}(z) = \int_{0}^{\infty} \exp(-zt) \chi(t) dt$$

OHMIC DISSIPATION

$$J(\omega) = \chi \omega \exp(-\omega/\omega_e)$$

$$cut - off frequency$$

$$KONDO - PARAMETER, \qquad \omega_c >> \omega_o, \omega_b$$

$$= (2\pi \hbar/a^2) \propto \omega \exp(-\omega/\omega_c)$$

$$= (2\pi \hbar/a^2) \propto \omega \exp(-\omega/\omega_c)$$

$$= \chi$$

$$\alpha = 2 q_a : tunneling length$$