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Is the dynamics of open quantum systems always linear? 
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(Received 1 December 2003; published 17 May 2004) 

We study the influence of the preparation of an open quantum system on its reduced time evolution. In 
contrast to the frequently considered case of an initial preparation where the total density matrix factorizes into 
a product of a system density matrix and a bath density matrix the time evolution generally is no longer 
governed by a linear map nor is this map affine. Put differently, the evolution is truly nonlinear and cannot be 
cast into the form of a linear map plus a term that is independent of the initial density matrix of the open 
quantum system. As a consequence, the inhomogeneity that emerges in formally exact generalized master 
equations is in fact a nonlinear term that vanishes for a factorizing initial state. The general results are 
elucidated with the example of two interacting spins prepared at thermal equilibrium with one spin subjected 
to an external field. The second spin represents the environment. The field allows the preparation of mixed 
density matrices of the first spin that can be represented as a convex combination of two limiting pure states, 
i.e., the preparable reduced density matrices make up a convex set. Moreover, the map from these reduced 
density matrices onto the corresponding density matrices of the total system is affine only for vanishing 
coupling between the spins. In general, the set of the accessible total density matrices is nonconvex. 
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Model for a damped free particle

Hamiltonian

H = HS +HB +HSB
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Quantum Langevin equation

M
d2

dt2 q+M
∫ t

t0

dsγ(t − s)
d

ds
q = ξ(t)

damping kernel and noise
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Drude model

damping kernel
γ(t) = γωDe−ωDt

Quantum Langevin equation

M
d2

dt2 q+MγωD

∫ t

t0

ds e−ωD(t−s) d

ds
q = ξ(t)

equivalent equations of motion

q̇ = v

v̇ = z

ż =−ωDz−γωDv

oscillations occur for ωD < 4γ
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A bit of thermodynamics

density of states ρ

canonical partition function Z

internal energy U entropy S

specific heat C

Z = ∫
dEρ(E)e−βE

U =−∂ lnZ

∂β
S =− ∂F

∂T
=−∂kB T lnZ

∂T

C = ∂U

∂T
C = T

∂S

∂T

β= 1

kB T
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An important difference

Route I E
.= ES = 〈HS〉 = TrS+B(HSe−βH )

TrS+B(e−βH )

Route II Z = TrS+B(e−βH )

TrB(e−βHB )
U =−∂ lnZ

∂β

⇒ U = 〈H〉−〈HB〉B

= ES +
[
〈HSB〉+ 〈HB〉−〈HB〉B

]

For finite coupling E and U differ!
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Free energy of a system strongly coupled to an environment

Thermodynamic argument:

Z = TrS+B(e−βH )

TrB(e−βHB )
−→ FS = F −F0

B

F total system free energy
FB bare bath free energy

With this form of free energy the three laws of thermodynamics 
are fulfilled.

P. Hänggi, G.-L. Ingold, P. Talkner, New J. Phys. 10, 115008 (2008)

G.-L. Ingold, P. Hänggi, P. Talkner, Phys. Rev. E 79, 061105 (2009)
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Free Brownian particle

Partition function and internal energy

undamped case

Z0 = L

ħ
(

2πm

β

)1/2

with damping

Z = Z0

∞∏
n=1
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internal energy compare with energy E

U = 1
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Specific heat from partition function

CZ

kB
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high-temperature expansion

CZ
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= 1
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− ħ2γωD

12(kBT)2 +O(T−3)

low-temperature expansion
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P. Hänggi, GLI, P. Talkner, New J. Phys. 10, 115008 (2008)

damping kernel: γ(t) = γωDe−ωDt

γ̂(z) = γωD

z+ωD
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Specific heat from the partition function

Route II
density of states ρ

canonical partition function Z = TrS+B (e−βH )

TrB (e−βHB )

internal energy U entropy S

specific heat CZ

Z = ∫
dEρ(E)e−βE

U=−∂ lnZ

∂β
S=− ∂F

∂T
=−∂kB T lnZ

∂T

C = ∂U

∂T
C = T

∂S
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kB T



782 nir. vV. S utherland on a Dyna?)dcetl T!IBO?'Y 

where /8 is th~ co~fficient of slidin g friction if there is slip 
between the d1ffusmg n10leeule and the solution. li'or N 
rnolecules of solute per c.c. o£ solution the total resistance 
will he N times this, and in the steaclv state of niffusion will 
equilibrate the driving force due to variation o£ the osmotic 
pressu.re .o~ he solutH, nnmely dp/dtn, which by the osmotic 
laws 1s RTdr:fda·, if c is the concentration of the solute at 
m and R is the gas constant. Hence 

RT 0o = 61r V naN 1 + 2?J1~~ • 
-d.'u 1 + 37]/ f3a ' -and the required fonnuln. for the coefficient of diffu~ion wit.h 

0 for the numbe1· of tnoleculos i 1 a gramme-n10lecnle is 

T 1+3"7/f3a 
= 6 7r?Ja0 1 + 2rJ/ (3a ' (3) 

If /3 = ("~ , that is, if t · slipping of !:loluHon at. stwfnee 
of Inolecule, aD js the same £or all molecules diffusing tbrongh 
a given solvent at a gb·en temperature. Now for a large 
tnolecule o£ solnte 111oving amongst srnal1er ones of solvent, 
we can: sre that the slipping is pTobably small. But in the 
other extreme case o£ a small molecule of solute moving 
amongst larger ones of solvent, an effect analogous to slipping 
will occur, since the small molecnle will travel a good deal in 
the gaps which would be left if the moleculrs of solvent wen~ 
forced almost juto permanent contact. We have thus t-wo 
extreine cases of the formula. 

Wh 0 D
_Jrr

1 en /3 = ' - 4 u·'t 'TT'T}(.t 

TIT j . . (4) 
and when Q= :t::J, D - - --

t-J - 6 'TT'TJ aU 

Thns with irie1·easing values o£ a we slwuld have aD 
dilninishing fron1 t.he upper limit RTj47Tn0, when a is small, 
to the lower limit RTjo?T?'JC, "vvhcn a is large. 'rhis js 
.analogous to the actual behaviour of B*D obtained from 
expe1·iment, B being the volume of the 1nolecnles in a gramme­
molecule of solute. The :first o£ the following tables contains 
the coefficients o£ diffusion for Yarious gases through water 
determined by HUfner *. I have reduced these aU to a tem­
perature nf 16° C., and expressed them with the second a8 unit 
o£ time instead of the day. The values of B af·e taken mostly 
fl'om '' .1hll'ther Studies on Molecular Force" (Phil. Mag. [6] 
xxxix.). In the second l t1st row are given the values of 

~' \Vied. Ann. 1807, yol. x1., n.nc1 Zf!il. f. Phyll. Clmn, xxrii. 
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explicit results

• T →∞: classical value kB/2
damping constant γ sets the temperature scale

• coupling to the environment ensures 3rd law

• less damping makes the system more classical
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