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to solve, but for which a solution, once 
found, can be efficiently recognized by a 
classical computer. QMA can be seen as the 
quantum generalization of NP. All QMA-
hard problems are also NP-hard, but there 
are conjectured to be NP-hard problems 
that are not QMA-hard (see Fig. 1). Now, 
it’s reasonable to ask: once we know a 
problem is NP-hard, isn’t that hard enough? 
NP-hardness already establishes a problem 
as intractable in the worst case, at least 
under the famous ‘P ≠ NP’ conjecture. So 
why go to the additional step, as Schuch 
and Verstraete do, of proving the problem 
QMA-hard?

Here is where things get interesting. 
Suppose we consider a slight variant of the 
electron-ground-state problem, where we 
want to minimize the energy over all pure 

states, but are not interested in mixed states 
(which are thermal mixtures of pure states). 
In that case, minimizing single-electron 
energies could already be a difficult NP 
problem. If we found a fast algorithm to 
compute the universal functional, the 
consequence would be, not to solve QMA 
problems, but ‘merely’ to make the class 
QMA equal to the class NP — which is 
again considered unlikely. Thus, here we 
can get evidence that a practical problem 
is hard, but only by reasoning about a 
hypothetical collapse of ‘higher level’ 
computational classes. The conclusion 
really does depend on the fine-toothed 
distinction between QMA and NP, between 
quantum proofs and classical proofs.

In important respects, the result of 
Schuch and Verstraete is illustrative of 

quantum information science as a whole. 
This field does nothing to challenge 
the laws of quantum mechanics, the 
framework for almost all of physics since 
the 1920s. But it does ask a new set of 
questions about those laws. (In this case, 
what is the complexity of computing the 
DFT universal functional?) Because such 
questions straddle disciplines, they can 
look strange at first both to physicists and 
to computer scientists. But often enough 
they’ve turned out to have illuminating and 
non-trivial answers. ❐
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Traditional models of continuous 
media, such as fluids or elastic 
systems1,2, were developed in 

the nineteenth century. They conform, 
therefore, to the Galilean world view, 
where time and space are absolute. 
Generalizing these models to Einstein’s 
relativistic framework has been the subject 
of active research since the beginning 
of the last century (for a review, see for 
example ref. 3). Considerable progress has 
been made, but some still find a certain 
conceptual unease with present relativistic 
continuous-media theories. Writing on 
page 741 of this issue4, Jörn Dunkel, 
Peter Hänggi and Stefan Hilbert look at the 
problem from a fresh perspective and put 
forward a bold suggestion, one that should 
provide new insight, but — if taken to its 
logical conclusion — will also generate 
new questions.

Let us first consider traditional 
macroscopic continuous-media theories, 
such as non-relativistic hydrodynamics 
(one example is the Navier–Stokes model5). 
A non-relativistic continuous medium is 
a physical system which, at any given time 
t, occupies a certain region R(t) in space. 
The macroscopic attributes of the medium 
are represented by time-dependent fields 
defined over R(t). Some of these fields 
represent extensive quantities, such as 

the number of particles, the energy, the 
momentum or the entropy. Furthermore, 
we can define densities of these extensive 
quantities (particle density, energy density, 
and so on), with respect to some reference 
volume measure (or element) dV. Other 
fields represent intensive quantities, such 
as temperature or pressure, and these 
are not densities. But continuous-media 
theory never can dispense with extensive 
quantities, and all of these are represented, 
at any given time, by spatial densities, that 
is, by densities with respect to a certain 
(typically) three-dimensional (3D) spatial 
volume element. And this is where the 
potential conceptual conflict with the 
relativistic world view crops up. Indeed, 
the concept of spatial density inherently 
breaks the relativistic symmetry between 
time and space6 and it is, prima facie, not 
obvious how it should be generalized to the 
relativistic world.

Standard relativistic continuous-media 
theories address and solve this issue in 
the following way: consider an arbitrary 
observer in a relativistic continuous 
medium (which is now defined as a 
physical system that occupies a certain 
domain  of the four-dimensional (4D) 
spacetime). This observer is represented by 
a choice of 4D coordinates (ct, r), where 
c is the speed of light and r represents the 

spatial coordinates used by the observer. 
This observer thus slices the 4D region 

 into a collection of 3D subregions 
R(t), where the time parameter t typically 
belongs to a certain real-valued interval; 
the subregion R(t) is, from the point of 
view of this observer, the 3D spatial region 
occupied by the continuous medium at 
time t. The observer can now proceed and 
build continuous-media theories using, at 
each time t, spatial densities with respect 
to some reference volume element dV(t) 
defined over R(t).

Of course, the choice of slicing 
depends, by definition, on the observer 
as does, de facto, the reference volume 
element. It would thus seem that when 
relativistic theories are built in this way, 
they should depend on the observer, and 
should therefore be ruled out as objective 
models of the intrinsic (that is, observer-
independent) behaviour of a system. This 
is not so, however, because it turns out 
that all fields involved in such theories 
can nevertheless be collected into tensor 
fields3,7–9. The resulting theories are 
therefore actually observer independent, 
even though the precise interpretation — 
as opposed to predictions — of a certain 
theory does depend on the observer 
using that theory. Note that the same 
situation is encountered in Maxwellian 
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electromagnetism10, where the particle 
and current densities are spatial densities. 
They can, however, be represented as a 
tensor field, the so-called 4-current, and 
this makes the Maxwell theory compatible 
with Einstein’s theory of relativity. The 
same remark applies to all Yang–Mills 
gauge theories11,12, both quantum and 
non-quantum.

Now, because the velocity of light 
is finite, a given observer at each point 
P(t) on his or her world line — the path 
on which the observer travels trough 
spacetime — will never have access to 
the whole 3D region R(t), but only to the 
interior of their past lightcone; this is a 4D 
subdomain of the 4D spacetime, and its 
intersection with R(t) is reduced to P(t). As 
a consequence, considering fields defined 
over R(t) and densities with respect to a 3D 
volume element defined over R(t) may not 
seem really physical. Dunkel, Hänggi and 
Hilbert4 therefore suggest that R(t) should 
be replaced by the 3D past lightcone of the 
observer at point P(t). (This past lightcone 
reduces to R(t) when c tends to infinity, as 
is the case in the Galilean regime.)

This idea seems indeed reasonable 
and it has the advantage of being 
arguably more physically sound than 
the conventional procedure. But still, it 
remains to be seen where this suggestion 
will lead us. Among the open issues 
are the following: first, from a purely 
mathematical or physical perspective, there 
is no problem whatsoever with integrating 
on a lightcone. However, it is impossible 
to average on a lightcone in an intrinsic, 
observer-independent manner (this is 
because lightcones are so-called null 
surfaces13, on which the normal vectors are 
also tangent vectors — remember that the 
relativistic line-element is not necessarily 
positive). All lightcone averages therefore 
involve an extra structure, typically the 
choice of an observer, and it is not clear if 
this constitutes a severe limitation or not. 
Second, when following in the footsteps 
of Dunkel, Hänggi and Hilbert4, it is 
tempting to revisit all Yang–Mills theories 
and connect them with lightcone densities. 
Will this be possible? And will it have any 
influence on how we view quantization? 
The future will tell. ❐
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Swimming and flying are complicated 
processes to model, but at least the laws 
of fluid dynamics are known. In contrast, 
sand is a trickier medium to understand 
than water or air, because it can behave 
as a solid or as a fluid. Moreover, the 
presence of a ‘swimmer’ — such as the 
sand skink Plestiodon reynoldsi (pictured), 
seeking refuge from the heat of the 
Sun — changes the local properties of 
the sand, creating pockets of air and 
affecting the force chains between 
the granules. Consequently, there are 
no analytical equations of motion. To 
better understand the mechanism of 
swimming through a solid yet shifting 
medium, Takashi Shimada and colleagues 
have simulated the locomotion of 
a sand swimmer (Phys. Rev. E 80, 
020301; 2009), using a ‘push‑me‑pull‑
you’ model (pictured moving to the 
right) introduced by Joseph Avron and 
colleagues (New J. Phys. 7, 234; 2005).

In essence, the push‑me‑pull‑you 
model describes two disks connected 
by a spring. The disks inflate and shrink. 
To move forwards in fluid‑like sand, 
the smaller anterior disk inflates as 
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the spring lengthens. The initially fully 
inflated posterior disk acts as an anchor 
in solid‑like sand. Once the anterior disk 
is fully inflated, it then acts as the anchor 
while the posterior disk shrinks and 
moves forwards as the spring contracts. 
To complete the move, the posterior 
disk inflates again, ready for the next 
stroke. Thus, a sand swimmer must deal 
with solidification near the anchor and 
fluidization near the moving disk at the 
same time.

The simulation’s surprising result is 
that the optimal swimming frequency for 
maximum velocity is different from that 
for maximum efficiency. For example, if 
the swimmer moves too fast, the large 
voids created cause the swimmer to 
lose traction and slip. Hence the most 
efficient swimmer swims slowly. But 
move too slowly and the sand re‑
solidifies before any forward motion 
can be completed. Unexpectedly, the 
simulation also provides information on 
the fundamental time scales associated 
with granular packing.
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