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First thermometer & temperature scales
1638: Robert Fludd – air thermometer &scale
~1700: linseed oil thermometer by Newton
1701: red wine as temperature indicator by Rømer1701: red wine as temperature indicator by Rømer
1702: Guillaume Amontons:  Absolute zero temperature? 
1714: mercury and alcohol thermometer by Fahrenheit

D fi iti f t t lDefinition of temperature scales

Olaf Christensen Daniel Gabriel A d C l iSir Isaac Newton René Antoine 
Römer

(1644 – 1710)

Daniel Gabriel 
Fahrenheit

(1686 – 1736) 

Anders Celsius
(1701 – 1744) 

Sir Isaac Newton
(1643  – 1727) Ferchault de 

Réaumur
(1683 – 1757)



Typical temperature values [°C]Typical temperature values [ C]
Boiling point of Nitrogen ‐195.79

Lowest recorded surface temperature on Earth
(Vostok, Antarctica – July 21, 1983)

‐89

Highest  recorded surface temperature on Earth
(Al’ Aziziyah, Libya – September 13, 1922)

58

Temperature in the Earth’s Thermosphere   ~  1500
(80 ‐ 650 km above the surface) 

Melting point of diamond 3547

Surface temperature of the sun (photosphere) ~ 5526

Temperature in the interior of the sun ~ 15∙106



Absolute Zero 

p V = N kB TIdeal gas law: p

V

William Thomson 
Lord Kelvin

1848: Kelvin postulates an 
absolute zero temperature 

V = 0 , T = 0

It is impossible by any procedure to reduce the temperature of

― Lord Kelvin
(1824 – 1907) T

−273.15 ◦C
It is impossible by any procedure to reduce the temperature of 

a system to zero in a finite number of operations.



How to determine the absolute 
h dthermodynamic temperature

log
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T
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dt

¢
p
dt³
dt
´

T0

Z
t0 v + c0p
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´
t : arbitrary temperature scale

v : volume

c0p : specific heat at constant pressure

“ ... wo nun wieder unter dem Integralzeichen lauter direkt undg
verhältnismäßig bequem meßbare Größen stehen. ...”  

M. Planck



Low temperature milestonesLow temperature milestones

1908: liquid helium; 5 K
Heike Kamerlingh 

Onnes1908: liquid helium; 5 K Onnes
(1853 – 1926)

1995: Bose‐Einstein‐1995: Bose Einstein
Condensate; 20 nK

Wolfgang KetterleEric  A. Cornell
Carl E. Wieman

2003: BEC; 450 pK – W. Ketterle 



Temperature ExtremaTemperature Extrema

p + n > quark gluon plasmap + n ‐> quark gluon plasma
with gold ion collisions in 
Relativistic Heavy Ion Collider (RHIC)

4 x 1012 °C



Planck unitsPlanck units
Name Expression SI equivalents

Planck temperature  1.41168∙ 1032 KTP =
√
h̄c5G−1k−2

Planck  length 1.61625∙ 10‐35 m

Planck mass 2.17644∙ 10‐8  kg

Planck time 5 39124 10‐44 s

lP =
√
h̄Gc−3

mP =
√
h̄cG−1

t
√
h̄G −5Planck  time 5.39124∙ 10 44 stP =

√
hGc−5

… ihre Bedeutung für alle Zeiten und für alle, auch
außerirdische und außermenschliche Kulturen notwendigaußerirdische und außermenschliche Kulturen notwendig
behalten unnd welche daher als natürliche Maßeinheiten

bezeichnet werden können …

… These necessarily retain their meaning for all times and for 
all civilizations, even extraterrestrial and non‐human ones, 

d h f b d i d l iand can therefore be designated as natural units …

(Planck, 1899)  



The highest temperature 
you can see

Lightning:    

30 000 °C

Fuse soil or sand into glas





Gas ThermometersGas Thermometers

Id l

T =

µ
V

¶
p

Ideal gas:

T =

µ
N kB

¶
p



Galilei Thermometer

Volume change of water

Upon increasing T → 4°C Water volume shrinks



Linneaus thermometer

Carl von Linné 
(1707 – 1778)

R d th C l i lReversed the Celsius scale

1744: broken on delivery

Anders Celsius 

1744: broken on delivery
1745: botanical garden in Uppsala



Noise ThermometerNoise Thermometer
or

Johnson – Nyquist noise

Re
si
st
o

V PSDV (ω) = 2kBTR

classical regime only

O
hm

ic

PSDV : power spectral density

-- classical regime only --

O PSDV : power spectral density

of the voltage signal

kB : Boltzmann constantkB : Boltzmann constant

R : resistance



Quantum Q
fluctuation‐dissipation theorem
PSDI(ω) = h̄ω coth

µ
h̄ω

2k T

¶
ReY (ω)I( )

µ
2kBT

¶
( )

2

µ
h̄ω h̄ω

¶
R Y ( )= 2

µ
2
+
exp(βh̄ω)− 1

¶
ReY (ω)

kBT À h̄ω k T h̄kBT À hω kBT ¿ h̄ω

PSDI(ω) = 2kBT ReY (ω) PSDI(ω) = h̄ωReY (ω)PSDI(ω) = 2kBT ReY (ω) PSDI(ω) = hωReY (ω)



Black body radiationBlack body radiation

Planck’s law [1901]: u(λ T ) =
8πhc 1

Planck s law [1901]: u(λ, T ) =
λ5 exp( hc

λ kBT
)− 1

u(λ, T ) : spectral energy density

λ : wavelength

h : Planck constant

c : speed of light

kB : Boltzmann constantB

Stefan – Boltzmann law:  

E ∝ T 4
Thermometer !

E ∝ T



Cosmic background temperatureCosmic background temperature

T = 2.725 ± …. K 



Four Grand Laws ofFour Grand Laws of 
ThermodynamicsThermodynamics



Zeroth LawZeroth Law

Transitivity !

A in equilibrium with B: fAB(pA, VA; pB, VB, ...) = 0A in equilibrium with B: fAB(pA, VA; pB, VB, ...) 0

B in equilibrium with C: fBC(pB, VB; pC, VC, ...) = 0

⇒ A in equilibrium with C⇔ fAC(pA VA; pC VC ) = 0⇒ A in equilibrium with C⇔ fAC(pA, VA; pC, VC, ...) = 0

Allows the formal introduction of a temperature:

T = TA(pA, VA; ...) = TB(pB, VB; ...) = TC(pC, VC; ...)



First LawFirst Law

Julius Robert 
von Mayer

James Prescott  
Joule

Hermann von 
Helmholtzvon Mayer

(1814 – 1878)
Joule

(1818 – 1889)
Helmholtz

(1821 – 1894)



Fi t L E C tiFirst Law – Energy Conservation

∆U = Q+ W∆U = Q+ W
∆U change in internal energy

4Q heat added on the system

4W k d h4W work done on the system

H. von Helmholtz: “Über die Erhaltung der Kraft” (1847)

∆U (T∆S) ( ∆V )∆U = (T∆S)quasi-static − (p∆V )quasi-static



Second LawSecond Law

d lf li l l iRudolf Julius Emanuel Clausius
(1822 – 1888)

Heat generally cannot

William Thomson alias Lord Kelvin
(1824 – 1907)

No cyclic process exists whose soleHeat generally cannot 
spontaneously flow from a 
material at lower temperature to 

i l hi h

No cyclic process exists whose sole 
effect is to extract heat from a 
single heat bath at temperature T 
d i i l ka material at higher temperature. and convert it entirely to work.  

δQ = TdS (Zürich, 1865)



The famous Laws
Equilibrium Principle -- minus first Law

An isolated, macroscopic system which is placed in an arbitrary
initial state within a finite fixed volume will attain a unique
state of equilibrium.

Second Law (Clausius)
For a non-quasi-static process occurring in a thermally isolated
system, the entropy change between two equilibrium states is
non-negative.

Second Law (Kelvin)
No work can be extracted from a closed equilibrium system
during a cyclic variation of a parameter by an external source.



MINUS FIRST LAW vs. SECOND LAW

-1st Law

2nd Law



Thermodynamic Temperaturee ody a e pe a u e

δQrev = T dS ← thermodynamic entropy

S = S(E, V,N1, N2, ...;M,P, ...)

S(E ) ( ti ) & diff ti bl dS(E, ...): (continuous) & differentiable and

monotonic function of the internal energy Eµ
∂S

∂E

¶
=
1

T

µ
∂E

¶
... T



Entropy S – content of transformation
„Verwandlungswert“

dS = δQrev T ; δQirrev < δQrev
V TV2, T2

Γrev Γirrev
δQ

T
≤ 0irrev

C T
C = Γ e + Γ

−1
i

V1, T1 Z
δQ

C = Γrev + Γirrev

,
S(V2, T2)− S(V1, T1) ≥

Z
Γirrev

δQ

TZ
δQrev

∂S

∂
≥ 0 NO !

S(V2, T2)− S(V1, T1) =
Z
Γrev

δQrev

T
∂t

≥ 0 O



CHAPTER XIV. 

DISCUSSION OF THERMODYNAMIC ANALOGIES. 

IF we wish to find in rational mechanics an a priori founda-

tion for the principles of thermodynamics, we must seek 

mechanical definitions of temperature and entropy. The 

quantities thus defined must satisfy (under conditions and 

with limitations which again must be specified in the language 

of mechanics) the differential equation 

dE= TdrJ- A1 da1 - A2 da2 - etc., (482) 

where <, T, and 7J denote the energy, temperature, and entropy 

of the system considered, and A
1 
da1, etc., the mechanical work 

(in the narrower sense in which the term is used in thermo-

dynamics, i. e., with exclusion of thermal action) done upon 

external bodies. 

This implies that we are able to distinguish in mechanical 

terms the thermal action of one system on another from that 

which we call mechanical in the narrower sense, if not indeed 

in every case in which the two may be combined, at least so as 

to specify cases of thermal action and cases of mechanical 

action. 

Such a differential equation moreover implies a finite equa-

tion between <, 7J, and a1, a2, etc., which may be regarded 

as fundamental in regard to those properties of the system 

which we call thermodynamic, or which may be called so from 

analogy. This fundamental thermodynamic equation is de-

termined by the fundamental mechanical equation which 

expresses the energy of the system as function of its mo-

menta and coOrdinates with those external coordinates ( al' a
2

, 

etc.) which appear in the differential expression of the work 

done on external bodies. We have to show Lhe mathematical 

opemtions by which the fundamental thermodynamic equation, 

JOSIAH Wll.;LARD. 

Elementary principles 
in statistical mechanics 

Scrjbner's sons 
. II ! 

I I 

New lri.Jrk 1 
111 i r 1 r 1 

JOSIAH Wll.;LARD. 

Elementary principles 
in statistical mechanics 

Scrjbner's sons 
. II ! 

I I 

New lri.Jrk 1 
111 i r 1 r 1 

CHAPTER VIII. 

ON BfPORTANT FL'NCTIONS OF THE 

ENERGIES OF A SYSTEM. 

IN order to consiuer more particularly the distribution of a 

canonical ensemble in energy, and for other purposes, it will 

be convenient to use the following definitions and notations. 

Let us Jenote by V the extension-in-phase below a certain 

limit of energy which we shall call e. That is, let 

v = f· 0 .j'dp, 0 0 • dq,., (265) 

the integration being extended (with constant values of the 

external coordinates) over all phases for which the energy is 

less than the limit e. We shall suppose that the value of this 

integral is not infinite, except for an infinite value of the lim-

iting energy. This will not exclude any kind of system to 

which the canonical distribution is applicable. For if 

f ... Je- dp
1 

• •• dqn 

taken without limits has a finite value,* the less value repre-

sented by 
• 

e-0 J ... Jdp1 ••• dq,. 

taken below a limiting value of E, and with the E before the 

integral sign repreRenting that limiting value, will also be 

finite. Therefore the value of V, which differs only by a 

constant factor, will also be finite, for finite e. It is a func-

tion of e and the external coordinates, a continuous increasing 

* This is a necessary condition of the canonical distributioiL See 
Chapter IV, p. 35. 

170 TIJERJIODLVAJJIC A.V.1LOGIES. 

whieh has been demonstrated in Chapter X, and which relates to 

a mierocanonilal cu,;eruble, -::I;l. uenoting tlw average value of 

A
1 

in an ensemble, cone:-;pomb preci;,;ely tu tl1e thennody-

uamie eq uatlon, except for tlw sign of avemge applied to the 

external forces. But as the:;e forces are not cutirely deter-

mined by the energy with the external coordinates, the use of 

average values i,; entire] y germane to the subject, aud affords 

the reauiest means of getting perfeetly determined quantities. 

These averages, which are taken for a microcanonical ensemble, 

may seem from some points of view a more simple and natural 

conception than those \vhich relate to a canonical ensemble. 

Moreover, the energy, and the quantity corresponding to en-

tropy, are free from the sign of ltvemge in this equation. 

The quantity in the equation which corresponds to entropy 

is log V, the quantity V being defined as the exten>;ion-in-

phase within which the energy is less than a certain limiting 

value (E). This is certainly a more simple conception than the 

average value in a canonical ensemble of the index: of probabil-

ity of phase. Log V has the property that when it is constant 

de=- AJ. da1- A 2 l• aa2 + etc., ( 48{)) 

which closely corresponds to the thermodynamic property of 

entropy, that when it is constant 

(487) 

The quantity in the equation which corresponds to tem-

perature is ,--.P V, or defcllog V: In a canonical ensemble, the 

avemge value of this quantity is equal to the modulus, as has 

been shown by different methods in Chapters IX and X. 

In Chapter X it has also been shown that if the systems 

of a microcanonical ensemble consist of parts with separate 

energies, the average value of e-<I>Vfor any part is equal t0 its 

average value for any other part, and to the unifmm value 

of the same expression for the whole ensemble. This corre-

sponds to the theorem in the theory of heat that in case of 

thermal equilibrium the temperatures of the parts of a hnrly 

are equal to one another and to that of the whole body. 



Entropy in Stat. Mech. 

S = kB ln(E; V; :::)

Gibbs: G =

µ
1

N ! hDOF

¶Z
d¡ £

¡
E ¡H(q; p; V; :::)

¢

Boltzmann: B = ²0
@ G

@E
/
Z

d¡ ±
¡
E ¡H(q; p; V; :::)

¢

density of states 

QM: G(E; V; :::) =
X

0·Ei·E

1

classical 



Third LawThird Law



… and Planck’s version… and Planck s version



THIRD LAW AND PLANCKTHIRD LAW AND PLANCK

1913

Beim Nullpunkt der absoluten Temperatur besitzt 
die Entropie eines jeden chemisch homogenen festen 
oder flüssigen Körpers den Wert Null.

see
Hervorheben
Beim Nullpunkt der absoluten Temperatur besitztdie Entropie eines jeden chemisch homogenen festenoder flüssigen Körpers den Wert Null.



 



Temperature Fluctuations –
An Oxymoron

Ch. Kittel, Physics Today, May 1988, p. 93

Nano‐system BATH β =
1

kBT

Ch. Kittel, Physics Today, May 1988, p. 93

BATH kBT

T does NOT fluctuate!

“…Temperature is precisely defined only for a system in thermal 

|∆U | |∆β| = 1↔ |∆U | |∆T | = kBT 2 NO!

p p y y y
equilibrium with a heat bath: The temperature of a system A, however 
small, is defined as equal to the temperature of a very large heat 
reservoir B with which the system is in equilibrium and in thermalreservoir B with which the system is in equilibrium and in thermal 
contact. Thermal contact means that A and B can exchange energy, 
although insulated from the outer World. …” 





Estimate of temperature and its uncertainty in small systems
M. Falcioni, D. Villamaina, and A. Vulpiani
Dipartimento di Fisica, Università La Sapienza, p. le Aldo Moro 2, 00185 Roma, Italy

A. Puglisi and A. Sarracino
ISC-CNR and Dipartimento di Fisica, Università La Sapienza, p. le Aldo Moro 2, 00185 Roma, Italy

Received 30 September 2010; accepted 12 February 2011

The energy of a finite system thermally connected to a thermal reservoir may fluctuate, while the
temperature is a constant representing a thermodynamic property of the reservoir. The finite system
can also be used as a thermometer for the reservoir. From such a perspective, the temperature has
an uncertainty, which can be treated within the framework of estimation theory. We review the main
results of this theory and clarify some controversial issues regarding temperature fluctuations. We
also offer a simple example of a thermometer with a small number of particles. We discuss the
relevance of the total observation time, which must be much longer than the decorrelation time.
© 2011 American Association of Physics Teachers.
DOI: 10.1119/1.3563046
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? Negative Temperature ?? Negative Temperature ?

Spin system:  |~S| = 1/2 ; ~μ = γ ~S ; H = −
X

~μi · ~Bp y | | / ; μ γ ;
X

μi

~S k ~B ⇒ Two State System: ² = −1γB < ² = +
1
γB = μBS k B ⇒ Two-State-System: ²g = −

2
γB < ²e = +

2
γB = μB

N = ng + ne & E = μB(ne − ng) , typically E < 0g e μ ( e g) , yp y

Ω =
N ! ⇒ S = kB lnΩ

ng =
1

2

µ
N − E

μB

¶
1
µ

E
¶

Ω =
ng!ne!

⇒ S = kB lnΩ

1 ∂S
ne =

1

2

µ
N +

E

μB

¶
⇒ 1

T
=

∂S

∂E



Negative (Spin)‐Temperature!



Entropy in Stat. Mech. 

S = kB ln(E; V; :::)

Gibbs: G =

µ
1

N ! hDOF

¶Z
d¡ £

¡
E ¡H(q; p; V; :::)

¢

Boltzmann: B = ²0
@ G

@E
/
Z

d¡ ±
¡
E ¡H(q; p; V; :::)

¢

density of states 



In[1]:= SW@x_, n_, m_, B_D :=
n Log@2D - n ê 2 H1 + x ê Hm B nLL Log@1 + x ê Hm B nLD - n ê 2 H1 - x ê Hm B nLL Log@1 - x ê Hm B nLD

W@x_, n_, m_, B_D := Exp@SW@x, n, m, BDD
W@x_, n_, m_, B_D := Exp@SW@x, n, m, BDD ê H2 m BL
We@x_, n_, m_, B_D := Derivative@1, 0, 0, 0D@WD@x, n, m, BD
WB@x_, n_, m_, B_D := Derivative@0, 0, 0, BD@WD@x, n, m, BD
F@x_, n_, m_, B_D := NIntegrate@W@y, n, m, BD, 8y, -n m B, x<D
FB@x_, n_, m_, B_D := NIntegrate@WB@y, n, m, BD, 8y, -n m B, x<D
S@x_, n_, m_, B_D := Log@F@x, n, m, BDD
T@x_, n_, m_, B_D := F@x, n, m, BD ê W@x, n, m, BD
TW@x_, n_, m_, B_D := W@x, n, m, BD ê We@x, n, m, BD
MW@x_, n_, m_, B_D := WB@x, n, m, BD ê We@x, n, m, BD
M@x_, n_, m_, B_D := -x ê B

In[22]:= n = 10^2;
m = 10^8;
Plot@8SW@e n, n, 1, 1D ê n, S@e n, n, 1, 1D ê n<, 8e, -1, 1<D
Plot@8SW@e m, m, 1, 1D ê m, S@e m, m, 1, 1D ê m<, 8e, -1, 1<D
Plot@8TW@e n, n, 1, 1D, T@e n, n, 1, 1D<, 8e, -1, 1<, PlotRange Ø 8-100, 100<D
Plot@8TW@e m, m, 1, 1D, T@e m, m, 1, 1D<, 8e, -1, 1<, PlotRange Ø 8-100, 100<D
Plot@8MW@e n, n, 1, 1D ê n, M@e n, n, 1, 1D ê n<, 8e, -1, 1<D
Plot@8MW@e m, m, 1, 1D ê m, M@e m, m, 1, 1D ê m<, 8e, -1, 1<D
Clear@n, mD
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Inconsistent thermostatistics 
and

 negative absolute temperatures

Jorn Dunkel (DAMTP)

arxiv: 1304.2066



Example 1:    Classical ideal gas

Using simply the properties of the MC density operator, one derives [? ] from the above
requirements that the MC entropy S equals the Gibbs entropy SG:

aµ = −Tr

[(
∂H

∂Aµ

)
δ(E −H)

ω

]
= − 1

ω
Tr

[
− ∂

∂Aµ
Θ(E −H)

]

=
1

ω

∂

∂Aµ
Tr

[
Θ(E −H)

]
= TG

(
∂SG

∂Aµ

)
.

(12)

This proves that only the pair (ρ, SG) constitutes a consistent thermostatistical model based on
the MC density ρ. As a corollary, the Boltzmann SB is not a thermodynamic entropy of the MC
ensemble.

In a similar way, one can show by a straightforward calculation that, for standard classical
Hamiltonian systems, only the Gibbs temperature TG satisfies the mathematically rigorous10

equipartition theorem [9]
〈

ξi
∂H

∂ξj

〉
≡ Tr

[(
ξi

∂H

∂ξj

)
ρ

]
= kBTG δij (13)

for all canonical coordinates ξ = (ξ1, . . .). Equation (13) is essentially a phase-space version
of Stokes’ theorem, relating a surface (flux) integral on the energy shell to the enclosed phase
space volume.

1.3 Basic examples
Ideal gas. The differences between SB and SG are negligible for most macroscopic systems
with monotonic DoS ω, but can be significant for small systems. This can already be seen for a
classical ideal gas in d-space dimensions, where [13]

Ω(E, V ) = αEdN/2V N , α =
(2πm)dN/2

N !hdΓ(dN/2 + 1)
, (14)

for N identical particles of mass m and Planck constant h. From this, one finds that only the
Gibbs temperature yields exact equipartition

E =

(
dN

2
− 1

)
kBTB, (15)

E =
dN

2
kBTG. (16)

Note that Eq. (15) yields a paradoxical results for dN = 1, where it predicts a negative tem-
perature TB < 0 and heat capacity, and also for dN = 2, where the temperature TB must be

10The direct proof of (13) requires mild assumptions such as confined trajectories and a finite groundstate en-
ergy. The key steps are very similar to those in (12), i.e., one merely needs to exploit the chain rule relation
∂Θ(E −H)/∂λ = −(∂H/∂λ)δ(E −H), which holds for any variable λ appearing in the Hamiltonian H .

6

Using simply the properties of the MC density operator, one derives [? ] from the above
requirements that the MC entropy S equals the Gibbs entropy SG:

aµ = −Tr

[(
∂H

∂Aµ

)
δ(E −H)

ω

]
= − 1

ω
Tr

[
− ∂

∂Aµ
Θ(E −H)

]

=
1

ω

∂

∂Aµ
Tr

[
Θ(E −H)

]
= TG

(
∂SG

∂Aµ

)
.

(12)

This proves that only the pair (ρ, SG) constitutes a consistent thermostatistical model based on
the MC density ρ. As a corollary, the Boltzmann SB is not a thermodynamic entropy of the MC
ensemble.

In a similar way, one can show by a straightforward calculation that, for standard classical
Hamiltonian systems, only the Gibbs temperature TG satisfies the mathematically rigorous10

equipartition theorem [9]
〈

ξi
∂H

∂ξj

〉
≡ Tr

[(
ξi

∂H

∂ξj

)
ρ

]
= kBTG δij (13)

for all canonical coordinates ξ = (ξ1, . . .). Equation (13) is essentially a phase-space version
of Stokes’ theorem, relating a surface (flux) integral on the energy shell to the enclosed phase
space volume.

1.3 Basic examples
Ideal gas. The differences between SB and SG are negligible for most macroscopic systems
with monotonic DoS ω, but can be significant for small systems. This can already be seen for a
classical ideal gas in d-space dimensions, where [13]

Ω(E, V ) = αEdN/2V N , α =
(2πm)dN/2

N !hdΓ(dN/2 + 1)
, (14)

for N identical particles of mass m and Planck constant h. From this, one finds that only the
Gibbs temperature yields exact equipartition

E =

(
dN

2
− 1

)
kBTB, (15)

E =
dN

2
kBTG. (16)

Note that Eq. (15) yields a paradoxical results for dN = 1, where it predicts a negative tem-
perature TB < 0 and heat capacity, and also for dN = 2, where the temperature TB must be

10The direct proof of (13) requires mild assumptions such as confined trajectories and a finite groundstate en-
ergy. The key steps are very similar to those in (12), i.e., one merely needs to exploit the chain rule relation
∂Θ(E −H)/∂λ = −(∂H/∂λ)δ(E −H), which holds for any variable λ appearing in the Hamiltonian H .
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1.1 Entropy and temperature definitions
To make the discussion more specific, let us consider a (quantum or classical) system with
microscopic variables ξ governed by the Hamiltonian H = H(ξ; V, A), where V denotes vol-
ume and A = (A1, . . .) summarizes other external parameters. Assuming that the dynamics
conserves the energy, E = H , all thermostatistical properties are contained in the MC density
operator5

ρ(ξ; E, V,A) =
δ(E −H)

ω
, (1)

which is normalized by the DoS

ω(E, V,A) = Tr[δ(E −H)]. (2)

For classical systems, the trace simply becomes a phase-space integral over ξ. For brevity, we
denote averages of some quantity F with respect to the MC density operator ρ by 〈F 〉 ≡ Tr[Fρ].

We also define the integrated DoS6

Ω(E, V,A) = Tr[Θ(E −H)], (3)

which is related to the DoS ω by differentiation with respect to energy,

ω =
∂Ω

∂E
≡ Ω′. (4)

Given the MC density operator (1), one can find two competing definitions for the MC
entropy in the literature [9, 10, 13, 15, 16, 17]

SB(E, V,A) = kB ln[εω(E)], (5)
SG(E, V,A) = kB ln[Ω(E)], (6)

where ε is a constant with dimensions of energy, required to make the argument of the logarithm
dimensionless7. The first proposal, SB, usually referred to as Boltzmann entropy, is advocated
by the majority of modern textbooks [16] and used by most authors nowadays. The second
candidate SG is often attributed to P. Hertz8 [18] but was in fact already derived by J. W. Gibbs
in 1902 in his discussion of thermodynamic analogies [10, Chapter XIV]. For this reason, we

5As usual, we assume that, in the case of quantum systems, Eq. (1) has a well-defined operator interpretation,
e.g., as a limit of an operator series.

6Intuitively, for a quantum system with spectrum {En}, the quantity Ω(En, V, A) counts the number of eigen-
states with energy less or equal to En.

7Apart from other more severe shortcomings of SB, it is aesthetically displeasing that its definition requires
the !  "#$ introduction of some undetermined constant.

8Hertz proved in 1910 that SG is an adiabatic invariant [18]. His work was highly commended by Planck [19]
and Einstein, who closes his comment [20] on Hertz’s work with the famous statement that he himself would not
have published certain papers, had he been aware of Gibbs’ comprehensive treatise [10].
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Using simply the properties of the MC density operator, one derives [? ] from the above
requirements that the MC entropy S equals the Gibbs entropy SG:
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)
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This proves that only the pair (ρ, SG) constitutes a consistent thermostatistical model based on
the MC density ρ. As a corollary, the Boltzmann SB is not a thermodynamic entropy of the MC
ensemble.

In a similar way, one can show by a straightforward calculation that, for standard classical
Hamiltonian systems, only the Gibbs temperature TG satisfies the mathematically rigorous10
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= kBTG δij (13)

for all canonical coordinates ξ = (ξ1, . . .). Equation (13) is essentially a phase-space version
of Stokes’ theorem, relating a surface (flux) integral on the energy shell to the enclosed phase
space volume.

1.3 Basic examples
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for N identical particles of mass m and Planck constant h. From this, one finds that only the
Gibbs temperature yields exact equipartition

E =
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kBTB, (15)

E =
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2
kBTG. (16)

Note that Eq. (15) yields a paradoxical results for dN = 1, where it predicts a negative tem-
perature TB < 0 and heat capacity, and also for dN = 2, where the temperature TB must be

10The direct proof of (13) requires mild assumptions such as confined trajectories and a finite groundstate en-
ergy. The key steps are very similar to those in (12), i.e., one merely needs to exploit the chain rule relation
∂Θ(E −H)/∂λ = −(∂H/∂λ)δ(E −H), which holds for any variable λ appearing in the Hamiltonian H .
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Example 1:    Classical ideal gas
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1.1 Entropy and temperature definitions
To make the discussion more specific, let us consider a (quantum or classical) system with
microscopic variables ξ governed by the Hamiltonian H = H(ξ; V, A), where V denotes vol-
ume and A = (A1, . . .) summarizes other external parameters. Assuming that the dynamics
conserves the energy, E = H , all thermostatistical properties are contained in the MC density
operator5

ρ(ξ; E, V,A) =
δ(E −H)

ω
, (1)

which is normalized by the DoS

ω(E, V,A) = Tr[δ(E −H)]. (2)

For classical systems, the trace simply becomes a phase-space integral over ξ. For brevity, we
denote averages of some quantity F with respect to the MC density operator ρ by 〈F 〉 ≡ Tr[Fρ].

We also define the integrated DoS6

Ω(E, V,A) = Tr[Θ(E −H)], (3)

which is related to the DoS ω by differentiation with respect to energy,

ω =
∂Ω

∂E
≡ Ω′. (4)

Given the MC density operator (1), one can find two competing definitions for the MC
entropy in the literature [9, 10, 13, 15, 16, 17]

SB(E, V,A) = kB ln[εω(E)], (5)
SG(E, V,A) = kB ln[Ω(E)], (6)

where ε is a constant with dimensions of energy, required to make the argument of the logarithm
dimensionless7. The first proposal, SB, usually referred to as Boltzmann entropy, is advocated
by the majority of modern textbooks [16] and used by most authors nowadays. The second
candidate SG is often attributed to P. Hertz8 [18] but was in fact already derived by J. W. Gibbs
in 1902 in his discussion of thermodynamic analogies [10, Chapter XIV]. For this reason, we

5As usual, we assume that, in the case of quantum systems, Eq. (1) has a well-defined operator interpretation,
e.g., as a limit of an operator series.

6Intuitively, for a quantum system with spectrum {En}, the quantity Ω(En, V, A) counts the number of eigen-
states with energy less or equal to En.

7Apart from other more severe shortcomings of SB, it is aesthetically displeasing that its definition requires
the !  "#$ introduction of some undetermined constant.

8Hertz proved in 1910 that SG is an adiabatic invariant [18]. His work was highly commended by Planck [19]
and Einstein, who closes his comment [20] on Hertz’s work with the famous statement that he himself would not
have published certain papers, had he been aware of Gibbs’ comprehensive treatise [10].
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Example 3:    1-dim 1-particle quantum gas

1.1 Entropy and temperature definitions
To make the discussion more specific, let us consider a (quantum or classical) system with
microscopic variables ξ governed by the Hamiltonian H = H(ξ; V, A), where V denotes vol-
ume and A = (A1, . . .) summarizes other external parameters. Assuming that the dynamics
conserves the energy, E = H , all thermostatistical properties are contained in the MC density
operator5

ρ(ξ; E, V,A) =
δ(E −H)

ω
, (1)

which is normalized by the DoS

ω(E, V,A) = Tr[δ(E −H)]. (2)

For classical systems, the trace simply becomes a phase-space integral over ξ. For brevity, we
denote averages of some quantity F with respect to the MC density operator ρ by 〈F 〉 ≡ Tr[Fρ].

We also define the integrated DoS6

Ω(E, V,A) = Tr[Θ(E −H)], (3)

which is related to the DoS ω by differentiation with respect to energy,

ω =
∂Ω

∂E
≡ Ω′. (4)

Given the MC density operator (1), one can find two competing definitions for the MC
entropy in the literature [9, 10, 13, 15, 16, 17]

SB(E, V,A) = kB ln[εω(E)], (5)
SG(E, V,A) = kB ln[Ω(E)], (6)

where ε is a constant with dimensions of energy, required to make the argument of the logarithm
dimensionless7. The first proposal, SB, usually referred to as Boltzmann entropy, is advocated
by the majority of modern textbooks [16] and used by most authors nowadays. The second
candidate SG is often attributed to P. Hertz8 [18] but was in fact already derived by J. W. Gibbs
in 1902 in his discussion of thermodynamic analogies [10, Chapter XIV]. For this reason, we

5As usual, we assume that, in the case of quantum systems, Eq. (1) has a well-defined operator interpretation,
e.g., as a limit of an operator series.

6Intuitively, for a quantum system with spectrum {En}, the quantity Ω(En, V, A) counts the number of eigen-
states with energy less or equal to En.

7Apart from other more severe shortcomings of SB, it is aesthetically displeasing that its definition requires
the !  "#$ introduction of some undetermined constant.

8Hertz proved in 1910 that SG is an adiabatic invariant [18]. His work was highly commended by Planck [19]
and Einstein, who closes his comment [20] on Hertz’s work with the famous statement that he himself would not
have published certain papers, had he been aware of Gibbs’ comprehensive treatise [10].
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by another elementary example. Considering a quantum particle in a one-dimensional infinite
square-well of length L, the spectral formula

En = an2/L2, a = !2π2/(2m), n = 1, 2, . . . ,∞ (20)

implies Ω = n = L
√

E/a. In this case, the Gibbs entropy SG = kB ln Ω gives

kBTG = 2E, pG ≡ TG

(
∂SG

∂L

)
=

2E

L
, (21)

as well as the heat capacity C = kB/2, in agreement with physical intuition. In particular, the
pressure equation consistent with condition (10), as can be seen by differentiating (20) with
respect to L,

p ≡ −∂E

∂L
=

2E

L
= pG. (22)

By contrast, we find from SB = kB ln(εω) with ω = L/(2
√

Ea) for the Boltzmann temper-
ature13

kBTB = −2E < 0. (23)

While this result in itself seems questionable14, it also implies a violation of Eq. (10), since

pB ≡ TB

(
∂SB

∂L

)
= −2E

L
%= p. (24)

This contradiction corroborates that SB cannot be the correct entropy for quantum systems.

We hope that the arguments and examples presented thus far suffice to convince the reader
that the Boltzmann entropy SB is not a consistent thermodynamic entropy, neither for classical
nor for quantum systems, whereas the Gibbs entropy SG provides a consistent thermodynamic
formalism in the low energy limit (small quantum systems) and in the high-energy limit (clas-
sical systems).

Unfortunately, the Boltzmann entropy has become so widely accepted nowadays that, even
when its application to exotic new states leads to spectacular claims, these are hardly ever
questioned anymore. In Sec. 2, we demonstrate by means of a slightly more elaborate example,
how naive usage of SB can lead to ‘negative temperatures that are hotter than the hottest positive
temperatures’15.

13One sometimes encounters the � � � � �convention that, because the spectrum (20) is non-degenerate, the
‘thermodynamic’ entropy should be zero, SB = 0, for all states. However, this postulate leads to several other
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Example 3:    1-dim 1-particle quantum gas

1.1 Entropy and temperature definitions
To make the discussion more specific, let us consider a (quantum or classical) system with
microscopic variables ξ governed by the Hamiltonian H = H(ξ; V, A), where V denotes vol-
ume and A = (A1, . . .) summarizes other external parameters. Assuming that the dynamics
conserves the energy, E = H , all thermostatistical properties are contained in the MC density
operator5

ρ(ξ; E, V,A) =
δ(E −H)

ω
, (1)

which is normalized by the DoS

ω(E, V,A) = Tr[δ(E −H)]. (2)

For classical systems, the trace simply becomes a phase-space integral over ξ. For brevity, we
denote averages of some quantity F with respect to the MC density operator ρ by 〈F 〉 ≡ Tr[Fρ].

We also define the integrated DoS6

Ω(E, V,A) = Tr[Θ(E −H)], (3)

which is related to the DoS ω by differentiation with respect to energy,

ω =
∂Ω

∂E
≡ Ω′. (4)

Given the MC density operator (1), one can find two competing definitions for the MC
entropy in the literature [9, 10, 13, 15, 16, 17]

SB(E, V,A) = kB ln[εω(E)], (5)
SG(E, V,A) = kB ln[Ω(E)], (6)

where ε is a constant with dimensions of energy, required to make the argument of the logarithm
dimensionless7. The first proposal, SB, usually referred to as Boltzmann entropy, is advocated
by the majority of modern textbooks [16] and used by most authors nowadays. The second
candidate SG is often attributed to P. Hertz8 [18] but was in fact already derived by J. W. Gibbs
in 1902 in his discussion of thermodynamic analogies [10, Chapter XIV]. For this reason, we

5As usual, we assume that, in the case of quantum systems, Eq. (1) has a well-defined operator interpretation,
e.g., as a limit of an operator series.

6Intuitively, for a quantum system with spectrum {En}, the quantity Ω(En, V, A) counts the number of eigen-
states with energy less or equal to En.

7Apart from other more severe shortcomings of SB, it is aesthetically displeasing that its definition requires
the !  "#$ introduction of some undetermined constant.

8Hertz proved in 1910 that SG is an adiabatic invariant [18]. His work was highly commended by Planck [19]
and Einstein, who closes his comment [20] on Hertz’s work with the famous statement that he himself would not
have published certain papers, had he been aware of Gibbs’ comprehensive treatise [10].
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by another elementary example. Considering a quantum particle in a one-dimensional infinite
square-well of length L, the spectral formula

En = an2/L2, a = !2π2/(2m), n = 1, 2, . . . ,∞ (20)

implies Ω = n = L
√

E/a. In this case, the Gibbs entropy SG = kB ln Ω gives

kBTG = 2E, pG ≡ TG

(
∂SG

∂L

)
=

2E

L
, (21)

as well as the heat capacity C = kB/2, in agreement with physical intuition. In particular, the
pressure equation consistent with condition (10), as can be seen by differentiating (20) with
respect to L,

p ≡ −∂E

∂L
=

2E

L
= pG. (22)

By contrast, we find from SB = kB ln(εω) with ω = L/(2
√

Ea) for the Boltzmann temper-
ature13

kBTB = −2E < 0. (23)

While this result in itself seems questionable14, it also implies a violation of Eq. (10), since

pB ≡ TB

(
∂SB

∂L

)
= −2E

L
%= p. (24)

This contradiction corroborates that SB cannot be the correct entropy for quantum systems.

We hope that the arguments and examples presented thus far suffice to convince the reader
that the Boltzmann entropy SB is not a consistent thermodynamic entropy, neither for classical
nor for quantum systems, whereas the Gibbs entropy SG provides a consistent thermodynamic
formalism in the low energy limit (small quantum systems) and in the high-energy limit (clas-
sical systems).

Unfortunately, the Boltzmann entropy has become so widely accepted nowadays that, even
when its application to exotic new states leads to spectacular claims, these are hardly ever
questioned anymore. In Sec. 2, we demonstrate by means of a slightly more elaborate example,
how naive usage of SB can lead to ‘negative temperatures that are hotter than the hottest positive
temperatures’15.

13One sometimes encounters the � � � � �convention that, because the spectrum (20) is non-degenerate, the
‘thermodynamic’ entropy should be zero, SB = 0, for all states. However, this postulate leads to several other
inconsistencies, which are discussed in more detail in Sec. 3. Focussing on the example at hand for the moment,
let us just note that SB = 0 would again imply the nonsensical result TB = ∞, misrepresenting the physical fact
that also a single degree of freedom in a box-like confinement can store heat in finite amounts.

14Unless one believes that a quantum particle in a one-dimensional box is a Dark Energy candidate.
15Spurious arguments, often encountered in attempts to proclaim SB as superior to the Gibbs proposal SG, will

be addressed in Sec 3.
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pressure equation consistent with condition (10), as can be seen by differentiating (20) with
respect to L,

p ≡ −∂E

∂L
=

2E

L
= pG. (22)

By contrast, we find from SB = kB ln(εω) with ω = L/(2
√

Ea) for the Boltzmann temper-
ature13

kBTB = −2E < 0. (23)

While this result in itself seems questionable14, it also implies a violation of Eq. (10), since

pB ≡ TB

(
∂SB

∂L

)
= −2E

L
%= p. (24)

This contradiction corroborates that SB cannot be the correct entropy for quantum systems.

We hope that the arguments and examples presented thus far suffice to convince the reader
that the Boltzmann entropy SB is not a consistent thermodynamic entropy, neither for classical
nor for quantum systems, whereas the Gibbs entropy SG provides a consistent thermodynamic
formalism in the low energy limit (small quantum systems) and in the high-energy limit (clas-
sical systems).

Unfortunately, the Boltzmann entropy has become so widely accepted nowadays that, even
when its application to exotic new states leads to spectacular claims, these are hardly ever
questioned anymore. In Sec. 2, we demonstrate by means of a slightly more elaborate example,
how naive usage of SB can lead to ‘negative temperatures that are hotter than the hottest positive
temperatures’15.

13One sometimes encounters the ad hoc convention that, because the spectrum (20) is non-degenerate, the
‘thermodynamic’ entropy should be zero, SB = 0, for all states. However, this postulate leads to several other
inconsistencies, which are discussed in more detail in Sec. 3. Focussing on the example at hand for the moment,
let us just note that SB = 0 would again imply the nonsensical result TB = ∞, misrepresenting the physical fact
that also a single degree of freedom in a box-like confinement can store heat in finite amounts.

14Unless one believes that a quantum particle in a one-dimensional box is a Dark Energy candidate.
15Spurious arguments, often encountered in attempts to proclaim SB as superior to the Gibbs proposal SG, will

be addressed in Sec 3.
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Consistency requirements

Consistent thermostatistical model             must fulfill

shall refer to SG as Gibbs entropy in the remainder. Denoting partial derivatives of Ω and ω
with respect to E by a prime, the associated temperatures are given by

TB(E, V,A) =

(
∂SB

∂E

)−1

=
1

kB

ω

ω′ =
1

kB

Ω′

Ω′′ , (7)

TG(E, V,A) =

(
∂SG

∂E

)−1

=
1

kB

Ω

Ω′ =
1

kB

Ω

ω
. (8)

Note that TB becomes negative if ω′ < 0, that is, if the DoS is non-monotic (Fig. 1), whereas
TG is always non-negative, since Ω is a monotonic function of E.

1.2 Consistency requirements
The fundamental thermodynamic potential of the MC ensemble is the entropy S, from which
secondary thermodynamic observables, such as temperature T or pressure p, are obtained by
differentiation with respect to the natural variables E, V , and A, i.e., the control parameters of
the ensemble. The fundamental relation between entropy, control paramerers, and secondary
thermodynamic variables can be expressed by

dS =

(
∂S

∂E

)
dE +

(
∂S

∂V

)
dV +

∑

i

(
∂S

∂Ai

)
dAi,

≡ 1

T
dE +

p

T
dV +

∑

i

ai

T
dAi.

(9)

To form a consistent thermostatistical model (ρ, S), the entropy S must be defined such that the
fundamental differential relation (9) is fulfilled9.

Equation (9) imposes stringent constraints on possible entropy candidates. For example, for
an adiabatic (i.e., isentropic) volume change with dS = 0 and other parameters fixed (dAi = 0),
one finds the consistency condition

p = T

(
∂S

∂V

)
= −

(
∂E

∂V

)
. (10)

More generally, for any parameter Aµ ∈ {V, Ai} of the Hamiltonian H , one must have

aµ ≡ −
〈

∂H

∂Aµ

〉
≡ −Tr

[(
∂H

∂Aµ

)
ρ

]
!
= T

(
∂S

∂Aµ

)
, (11)

where T ≡ (∂S/∂E)−1. These conditions not only ensure that the thermodynamic potential S
fulfills the fundamental differential relation (9). They can also be used to separate consistent
entropy definitions from inconsistent ones.

9Our discussion is based on the premise that any acceptable thermostatistical model, corresponding to a pair
(ρ, S) where ρ is a probability density and S an entropy potential, must satisfy Eq. (9). If one is willing to abandon
this requirement, then any relation to thermodynamics is lost.
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where

Check

Using simply the properties of the MC density operator, one derives [? ] from the above
requirements that the MC entropy S equals the Gibbs entropy SG:

aµ = −Tr

[(
∂H

∂Aµ

)
δ(E −H)

ω

]
= − 1

ω
Tr

[
− ∂

∂Aµ
Θ(E −H)

]

=
1

ω

∂

∂Aµ
Tr

[
Θ(E −H)

]
= TG

(
∂SG

∂Aµ

)
.

(12)

This proves that only the pair (ρ, SG) constitutes a consistent thermostatistical model based on
the MC density ρ. As a corollary, the Boltzmann SB is not a thermodynamic entropy of the MC
ensemble.

In a similar way, one can show by a straightforward calculation that, for standard classical
Hamiltonian systems, only the Gibbs temperature TG satisfies the mathematically rigorous10

equipartition theorem [9]
〈

ξi
∂H

∂ξj

〉
≡ Tr

[(
ξi

∂H

∂ξj

)
ρ

]
= kBTG δij (13)

for all canonical coordinates ξ = (ξ1, . . .). Equation (13) is essentially a phase-space version
of Stokes’ theorem, relating a surface (flux) integral on the energy shell to the enclosed phase
space volume.

1.3 Basic examples
Ideal gas. The differences between SB and SG are negligible for most macroscopic systems
with monotonic DoS ω, but can be significant for small systems. This can already be seen for a
classical ideal gas in d-space dimensions, where [13]

Ω(E, V ) = αEdN/2V N , α =
(2πm)dN/2

N !hdΓ(dN/2 + 1)
, (14)

for N identical particles of mass m and Planck constant h. From this, one finds that only the
Gibbs temperature yields exact equipartition

E =

(
dN

2
− 1

)
kBTB, (15)

E =
dN

2
kBTG. (16)

Note that Eq. (15) yields a paradoxical results for dN = 1, where it predicts a negative tem-
perature TB < 0 and heat capacity, and also for dN = 2, where the temperature TB must be

10The direct proof of (13) requires mild assumptions such as confined trajectories and a finite groundstate en-
ergy. The key steps are very similar to those in (12), i.e., one merely needs to exploit the chain rule relation
∂Θ(E −H)/∂λ = −(∂H/∂λ)δ(E −H), which holds for any variable λ appearing in the Hamiltonian H .
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〈
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∂Aµ

〉
≡ −Tr

[(
∂H

∂Aµ

)
ρ

]
, (11)

where T ≡ (∂S/∂E)−1. These consistency conditions not only ensure that the thermodynamic
potential S fulfills the fundamental differential relation (9). For a given density operator ρ, they
can also be used to separate consistent entropy definitions from inconsistent ones.

Demanding additivity of entropy S for non-interacting systems and using only the mathe-
matical properties of the MC density operator (1), one finds [22] from the condition (11) that
the MC entropy S must equal the Gibbs entropy SG, since

TG

(
∂SG

∂Aµ

)
=

1

ω

∂

∂Aµ
Tr

[
Θ(E −H)

]

= − 1

ω
Tr

[
− ∂

∂Aµ
Θ(E −H)

]

= −Tr

[(
∂H

∂Aµ

)
δ(E −H)

ω

]
= −

〈
∂H

∂Aµ

〉
.

(12)

This proves that only the pair (ρ, SG) constitutes a consistent thermostatistical model in the case
of the MC density operator ρ. As a corollary, the Boltzmann entropy SB is not a thermodynamic
entropy, implying that it is inconsistent to insert the Boltzmann ‘temperature’ TB into equation-
of-states or efficiency formulas that assume validity of the thermodynamic relations (9).

Similarly to Eq. (12), it is straightforward to show that, for standard classical Hamiltonian
systems, only the Gibbs temperature TG satisfies the mathematically rigorous equipartition the-
orem [10] 〈
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〉
≡ Tr

[(
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∂H

∂ξj

)
ρ

]
= kBTG δij (13)

for all canonical coordinates ξ = (ξ1, . . .). The direct proof of Eq. (13) requires mild as-
sumptions such as confined trajectories and a finite groundstate energy. The key steps are
identical to those in (12), i.e., one merely exploits the chain rule relation ∂Θ(E − H)/∂λ =
−(∂H/∂λ)δ(E − H), which holds for any variable λ in the Hamiltonian H . Equation (13) is
essentially a phase-space version of Stokes’ theorem [10], relating a surface (flux) integral on
the energy shell to the enclosed phase space volume.

Small systems
Differences between SB and SG are negligible for most macroscopic systems with monotonic
DoS ω, but can be significant for small systems [10]. This can already be seen for a classical
ideal gas in d-space dimensions, where [15]

Ω(E, V ) = αEdN/2V N , α =
(2πm)dN/2

N !hdΓ(dN/2 + 1)
, (14)
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Motional Degrees of Freedom
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Absolute temperature is usually bound to be positive. Under special conditions, however,
negative temperatures—in which high-energy states are more occupied than low-energy
states—are also possible. Such states have been demonstrated in localized systems with finite,
discrete spectra. Here, we prepared a negative temperature state for motional degrees of
freedom. By tailoring the Bose-Hubbard Hamiltonian, we created an attractively interacting
ensemble of ultracold bosons at negative temperature that is stable against collapse for
arbitrary atom numbers. The quasimomentum distribution develops sharp peaks at the upper
band edge, revealing thermal equilibrium and bosonic coherence over several lattice sites.
Negative temperatures imply negative pressures and open up new parameter regimes for
cold atoms, enabling fundamentally new many-body states.

Absolute temperature T is one of the cen-
tral concepts of statistical mechanics and
is a measure of, for example, the amount

of disordered motion in a classical ideal gas. There-
fore, nothing can be colder than T = 0, where
classical particles would be at rest. In a thermal
state of such an ideal gas, the probabilityPi for a
particle to occupy a state i with kinetic energy Ei
is proportional to the Boltzmann factor

Pi º e−Ei=kBT ð1Þ

where kB is Boltzmann’s constant. An ensemble
at positive temperature is described by an occu-
pation distribution that decreases exponentially

with energy. If we were to extend this formula to
negative absolute temperatures, exponentially in-
creasing distributions would result. Because the
distribution needs to be normalizable, at positive
temperatures a lower bound in energy is re-
quired, as the probabilities Pi would diverge for
Ei → –∞. Negative temperatures, on the other
hand, demand an upper bound in energy (1, 2). In
daily life, negative temperatures are absent, be-
cause kinetic energy in most systems, including
particles in free space, only provides a lower en-
ergy bound. Even in lattice systems, where kinet-
ic energy is split into distinct bands, implementing
an upper energy bound for motional degrees of
freedom is challenging, because potential and in-
teraction energy need to be limited as well (3, 4).
So far, negative temperatures have been realized
in localized spin systems (5–7), where the finite,
discrete spectrum naturally provides both lower
and upper energy bounds. Here, we were able to
realize a negative temperature state for motional
degrees of freedom.

In Fig. 1A, we schematically show the rela-
tion between entropy S and energy E for a ther-
mal system possessing both lower and upper
energy bounds. Starting atminimumenergy,where
only the ground state is populated, an increase in
energy leads to an occupation of a larger number
of states and therefore an increase in entropy. As
the temperature approaches infinity, all states be-
come equally populated and the entropy reaches
its maximum possible value Smax. However,
the energy can be increased even further if high-
energy states are more populated than low-energy
ones. In this regime, the entropy decreases with
energy, which, according to the thermodynamic
definition of temperature (8) (1/T = ∂S/∂E), re-
sults in negative temperatures. The temperature is
discontinuous at maximum entropy, jumping from
positive to negative infinity. This is a consequence
of the historic definition of temperature. A con-
tinuous and monotonically increasing tempera-
ture scale would be given by −b = −1/kBT, also
emphasizing that negative temperature states are
hotter than positive temperature states, i.e., in
thermal contact, heat would flow from a negative
to a positive temperature system.

Because negative temperature systems can ab-
sorb entropy while releasing energy, they give
rise to several counterintuitive effects, such as
Carnot engines with an efficiency greater than
unity (4). Through a stability analysis for thermo-
dynamic equilibrium, we showed that negative
temperature states of motional degrees of free-
dom necessarily possess negative pressure (9) and
are thus of fundamental interest to the description
of dark energy in cosmology, where negative pres-
sure is required to account for the accelerating
expansion of the universe (10).

Cold atoms in optical lattices are an ideal
system to create negative temperature states be-
cause of the isolation from the environment and
independent control of all relevant parameters
(11). Bosonic atoms in the lowest band of a
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sufficiently deep optical lattice are described by
the Bose-Hubbard Hamiltonian (12)

H ¼ −J ∑
〈i;j〉

b%
†
i b
%
j þ

U
2
∑
i
n%iðn%i − 1Þ þ V∑

i
r2i n% i ð2Þ

Here, J is the tunneling matrix element be-
tween neighboring lattice sites 〈i, j〉, and b%i and
b%
†
i are the annihilation and creation operator,
respectively, for a boson on site i,U is the on-site
interaction energy, n% i ¼ b%

†
i b
%
i is the local number

operator, and V º w2 describes the external har-
monic confinement, with ri denoting the posi-

tion of site i with respect to the trap center andw
the trap frequency.

In Fig. 1B, we show how lower and upper
bounds can be realized for the three terms in the
Hubbard Hamiltonian. The restriction to a single
band naturally provides lower and upper bounds
for the kinetic energy Ekin, but the interaction
term Eint presents a challenge: Because in prin-
ciple all bosons could occupy the same lattice
site, the interaction energy can diverge in the
thermodynamic limit. For repulsive interactions
(U > 0), the interaction energy is only bounded

from below but not from above, thereby limiting
the system to positive temperatures; in contrast,
for attractive interactions (U < 0), only an upper
bound for the interaction energy is established,
rendering positive temperature ensembles unsta-
ble. The situation is different for the Fermi-Hubbard
model, where the Pauli principle enforces an up-
per limit on the interaction energy per atom of
U/2 and thereby allows negative temperatures
even in the repulsive case (13, 14). Similarly, a
trapping potential V > 0 only provides a lower
bound for the potential energy Epot, whereas an

Fig. 1. Negative absolute temperature in optical lattices. (A) Sketch of entropy
as a function of energy in a canonical ensemble possessing both lower (Emin) and
upper (Emax) energy bounds. (Insets) Sample occupation distributions of single-
particle states for positive, infinite, and negative temperature, assuming a weakly
interacting ensemble. (B) Energy bounds of the three terms of the 2D Bose-
Hubbard Hamiltonian: kinetic (Ekin), interaction (Eint), and potential (Epot) energy.
(C) Measured momentum distributions (TOF images) for positive (left) and neg-
ative (right) temperature states. Both images are averages of about 20 shots;
both optical densities (OD) are individually scaled. The contour plots below show
the tight-binding dispersion relation; momenta with large occupation are high-
lighted. The white square in the center indicates the first Brillouin zone.

Fig. 2. Experimental sequence and TOF images. (A) Top to bottom: lattice
depth, horizontal trap frequency, and scattering length as a function of
time. Blue indicates the sequence for positive, red for negative temper-
ature of the final state. (B) TOF images of the atomic cloud at various times
t in the sequence. Blue borders indicate positive, red negative temper-

atures. The initial picture in a shallow lattice at t = 6.8 ms is taken once for
a scattering length of a = 309(5) a0 (top) as in the sequence, and once for
a = 33(1) a0 (bottom; OD rescaled by a factor of 0.25), comparable to the
final images. All images are averages of about 20 individual shots. See
also Fig. 1C.
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sufficiently deep optical lattice are described by
the Bose-Hubbard Hamiltonian (12)

H ¼ −J ∑
〈i;j〉

b%
†
i b
%
j þ

U
2
∑
i
n%iðn%i − 1Þ þ V∑

i
r2i n% i ð2Þ

Here, J is the tunneling matrix element be-
tween neighboring lattice sites 〈i, j〉, and b%i and
b%
†
i are the annihilation and creation operator,
respectively, for a boson on site i,U is the on-site
interaction energy, n% i ¼ b%

†
i b
%
i is the local number

operator, and V º w2 describes the external har-
monic confinement, with ri denoting the posi-

tion of site i with respect to the trap center andw
the trap frequency.

In Fig. 1B, we show how lower and upper
bounds can be realized for the three terms in the
Hubbard Hamiltonian. The restriction to a single
band naturally provides lower and upper bounds
for the kinetic energy Ekin, but the interaction
term Eint presents a challenge: Because in prin-
ciple all bosons could occupy the same lattice
site, the interaction energy can diverge in the
thermodynamic limit. For repulsive interactions
(U > 0), the interaction energy is only bounded

from below but not from above, thereby limiting
the system to positive temperatures; in contrast,
for attractive interactions (U < 0), only an upper
bound for the interaction energy is established,
rendering positive temperature ensembles unsta-
ble. The situation is different for the Fermi-Hubbard
model, where the Pauli principle enforces an up-
per limit on the interaction energy per atom of
U/2 and thereby allows negative temperatures
even in the repulsive case (13, 14). Similarly, a
trapping potential V > 0 only provides a lower
bound for the potential energy Epot, whereas an

Fig. 1. Negative absolute temperature in optical lattices. (A) Sketch of entropy
as a function of energy in a canonical ensemble possessing both lower (Emin) and
upper (Emax) energy bounds. (Insets) Sample occupation distributions of single-
particle states for positive, infinite, and negative temperature, assuming a weakly
interacting ensemble. (B) Energy bounds of the three terms of the 2D Bose-
Hubbard Hamiltonian: kinetic (Ekin), interaction (Eint), and potential (Epot) energy.
(C) Measured momentum distributions (TOF images) for positive (left) and neg-
ative (right) temperature states. Both images are averages of about 20 shots;
both optical densities (OD) are individually scaled. The contour plots below show
the tight-binding dispersion relation; momenta with large occupation are high-
lighted. The white square in the center indicates the first Brillouin zone.

Fig. 2. Experimental sequence and TOF images. (A) Top to bottom: lattice
depth, horizontal trap frequency, and scattering length as a function of
time. Blue indicates the sequence for positive, red for negative temper-
ature of the final state. (B) TOF images of the atomic cloud at various times
t in the sequence. Blue borders indicate positive, red negative temper-

atures. The initial picture in a shallow lattice at t = 6.8 ms is taken once for
a scattering length of a = 309(5) a0 (top) as in the sequence, and once for
a = 33(1) a0 (bottom; OD rescaled by a factor of 0.25), comparable to the
final images. All images are averages of about 20 individual shots. See
also Fig. 1C.
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1.1 Entropy and temperature definitions
To make the discussion more specific, let us consider a (quantum or classical) system with
microscopic variables ξ governed by the Hamiltonian H = H(ξ; V, A), where V denotes vol-
ume and A = (A1, . . .) summarizes other external parameters. Assuming that the dynamics
conserves the energy, E = H , all thermostatistical properties are contained in the MC density
operator5

ρ(ξ; E, V,A) =
δ(E −H)

ω
, (1)

which is normalized by the DoS

ω(E, V,A) = Tr[δ(E −H)]. (2)

For classical systems, the trace simply becomes a phase-space integral over ξ. For brevity, we
denote averages of some quantity F with respect to the MC density operator ρ by 〈F 〉 ≡ Tr[Fρ].

We also define the integrated DoS6

Ω(E, V,A) = Tr[Θ(E −H)], (3)

which is related to the DoS ω by differentiation with respect to energy,

ω =
∂Ω

∂E
≡ Ω′. (4)

Given the MC density operator (1), one can find two competing definitions for the MC
entropy in the literature [9, 10, 13, 15, 16, 17]

SB(E, V,A) = kB ln[εω(E)], (5)
SG(E, V,A) = kB ln[Ω(E)], (6)

where ε is a constant with dimensions of energy, required to make the argument of the logarithm
dimensionless7. The first proposal, SB, usually referred to as Boltzmann entropy, is advocated
by the majority of modern textbooks [16] and used by most authors nowadays. The second
candidate SG is often attributed to P. Hertz8 [18] but was in fact already derived by J. W. Gibbs
in 1902 in his discussion of thermodynamic analogies [10, Chapter XIV]. For this reason, we

5As usual, we assume that, in the case of quantum systems, Eq. (1) has a well-defined operator interpretation,
e.g., as a limit of an operator series.

6Intuitively, for a quantum system with spectrum {En}, the quantity Ω(En, V, A) counts the number of eigen-
states with energy less or equal to En.

7Apart from other more severe shortcomings of SB, it is aesthetically displeasing that its definition requires
the ad hoc introduction of some undetermined constant.

8Hertz proved in 1910 that SG is an adiabatic invariant [18]. His work was highly commended by Planck [19]
and Einstein, who closes his comment [20] on Hertz’s work with the famous statement that he himself would not
have published certain papers, had he been aware of Gibbs’ comprehensive treatise [10].

4

shall refer to SG as Gibbs entropy in the remainder. Denoting partial derivatives of Ω and ω
with respect to E by a prime, the associated temperatures are given by

TB(E, V,A) =

(
∂SB

∂E

)−1

=
1

kB

ω

ω′ =
1

kB

Ω′

Ω′′ , (7)

TG(E, V,A) =

(
∂SG

∂E

)−1

=
1

kB

Ω

Ω′ =
1

kB

Ω

ω
. (8)

Note that TB becomes negative if ω′ < 0, that is, if the DoS is non-monotic (Fig. 1), whereas
TG is always non-negative, since Ω is a monotonic function of E.

1.2 Consistency requirements
The fundamental thermodynamic potential of the MC ensemble is the entropy S, from which
secondary thermodynamic observables, such as temperature T or pressure p, are obtained by
differentiation with respect to the natural variables E, V , and A, i.e., the control parameters of
the ensemble. The fundamental relation between entropy, control paramerers, and secondary
thermodynamic variables can be expressed by

dS =

(
∂S

∂E

)
dE +

(
∂S

∂V

)
dV +

∑

i

(
∂S

∂Ai

)
dAi,

≡ 1

T
dE +

p

T
dV +

∑

i

ai

T
dAi.

(9)

To form a consistent thermostatistical model (ρ, S), the entropy S must be defined such that the
fundamental differential relation (9) is fulfilled9.

Equation (9) imposes stringent constraints on possible entropy candidates. For example, for
an adiabatic (i.e., isentropic) volume change with dS = 0 and other parameters fixed (dAi = 0),
one finds the consistency condition

p = T

(
∂S

∂V

)
= −

(
∂E

∂V

)
. (10)

More generally, for any parameter Aµ ∈ {V, Ai} of the Hamiltonian H , one must have

aµ ≡ −
〈

∂H

∂Aµ

〉
≡ −Tr

[(
∂H

∂Aµ

)
ρ

]
!
= T

(
∂S

∂Aµ

)
, (11)

where T ≡ (∂S/∂E)−1. These conditions not only ensure that the thermodynamic potential S
fulfills the fundamental differential relation (9). They can also be used to separate consistent
entropy definitions from inconsistent ones.

9Our discussion is based on the premise that any acceptable thermostatistical model, corresponding to a pair
(ρ, S) where ρ is a probability density and S an entropy potential, must satisfy Eq. (9). If one is willing to abandon
this requirement, then any relation to thermodynamics is lost.

5
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Absolute temperature is usually bound to be positive. Under special conditions, however,
negative temperatures—in which high-energy states are more occupied than low-energy
states—are also possible. Such states have been demonstrated in localized systems with finite,
discrete spectra. Here, we prepared a negative temperature state for motional degrees of
freedom. By tailoring the Bose-Hubbard Hamiltonian, we created an attractively interacting
ensemble of ultracold bosons at negative temperature that is stable against collapse for
arbitrary atom numbers. The quasimomentum distribution develops sharp peaks at the upper
band edge, revealing thermal equilibrium and bosonic coherence over several lattice sites.
Negative temperatures imply negative pressures and open up new parameter regimes for
cold atoms, enabling fundamentally new many-body states.

Absolute temperature T is one of the cen-
tral concepts of statistical mechanics and
is a measure of, for example, the amount

of disordered motion in a classical ideal gas. There-
fore, nothing can be colder than T = 0, where
classical particles would be at rest. In a thermal
state of such an ideal gas, the probabilityPi for a
particle to occupy a state i with kinetic energy Ei
is proportional to the Boltzmann factor

Pi º e−Ei=kBT ð1Þ

where kB is Boltzmann’s constant. An ensemble
at positive temperature is described by an occu-
pation distribution that decreases exponentially

with energy. If we were to extend this formula to
negative absolute temperatures, exponentially in-
creasing distributions would result. Because the
distribution needs to be normalizable, at positive
temperatures a lower bound in energy is re-
quired, as the probabilities Pi would diverge for
Ei → –∞. Negative temperatures, on the other
hand, demand an upper bound in energy (1, 2). In
daily life, negative temperatures are absent, be-
cause kinetic energy in most systems, including
particles in free space, only provides a lower en-
ergy bound. Even in lattice systems, where kinet-
ic energy is split into distinct bands, implementing
an upper energy bound for motional degrees of
freedom is challenging, because potential and in-
teraction energy need to be limited as well (3, 4).
So far, negative temperatures have been realized
in localized spin systems (5–7), where the finite,
discrete spectrum naturally provides both lower
and upper energy bounds. Here, we were able to
realize a negative temperature state for motional
degrees of freedom.

In Fig. 1A, we schematically show the rela-
tion between entropy S and energy E for a ther-
mal system possessing both lower and upper
energy bounds. Starting atminimumenergy,where
only the ground state is populated, an increase in
energy leads to an occupation of a larger number
of states and therefore an increase in entropy. As
the temperature approaches infinity, all states be-
come equally populated and the entropy reaches
its maximum possible value Smax. However,
the energy can be increased even further if high-
energy states are more populated than low-energy
ones. In this regime, the entropy decreases with
energy, which, according to the thermodynamic
definition of temperature (8) (1/T = ∂S/∂E), re-
sults in negative temperatures. The temperature is
discontinuous at maximum entropy, jumping from
positive to negative infinity. This is a consequence
of the historic definition of temperature. A con-
tinuous and monotonically increasing tempera-
ture scale would be given by −b = −1/kBT, also
emphasizing that negative temperature states are
hotter than positive temperature states, i.e., in
thermal contact, heat would flow from a negative
to a positive temperature system.

Because negative temperature systems can ab-
sorb entropy while releasing energy, they give
rise to several counterintuitive effects, such as
Carnot engines with an efficiency greater than
unity (4). Through a stability analysis for thermo-
dynamic equilibrium, we showed that negative
temperature states of motional degrees of free-
dom necessarily possess negative pressure (9) and
are thus of fundamental interest to the description
of dark energy in cosmology, where negative pres-
sure is required to account for the accelerating
expansion of the universe (10).

Cold atoms in optical lattices are an ideal
system to create negative temperature states be-
cause of the isolation from the environment and
independent control of all relevant parameters
(11). Bosonic atoms in the lowest band of a

1Fakultät für Physik, Ludwig-Maximilians-Universität München,
Schellingstraße 4, 80799Munich, Germany.2Max-Planck-Institut
für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching,
Germany.

*To whom correspondence should be addressed. E-mail:
ulrich.schneider@lmu.de.

4 JANUARY 2013 VOL 339 SCIENCE www.sciencemag.org52

REPORTS

 o
n
 J

a
n
u
a
ry

 3
, 
2
0
1
3

w
w

w
.s

c
ie

n
c
e
m

a
g
.o

rg
D

o
w

n
lo

a
d
e
d
 f
ro

m
 

sufficiently deep optical lattice are described by
the Bose-Hubbard Hamiltonian (12)

H ¼ −J ∑
〈i;j〉

b%
†
i b
%
j þ

U
2
∑
i
n%iðn%i − 1Þ þ V∑

i
r2i n% i ð2Þ

Here, J is the tunneling matrix element be-
tween neighboring lattice sites 〈i, j〉, and b%i and
b%
†
i are the annihilation and creation operator,
respectively, for a boson on site i,U is the on-site
interaction energy, n% i ¼ b%

†
i b
%
i is the local number

operator, and V º w2 describes the external har-
monic confinement, with ri denoting the posi-

tion of site i with respect to the trap center andw
the trap frequency.

In Fig. 1B, we show how lower and upper
bounds can be realized for the three terms in the
Hubbard Hamiltonian. The restriction to a single
band naturally provides lower and upper bounds
for the kinetic energy Ekin, but the interaction
term Eint presents a challenge: Because in prin-
ciple all bosons could occupy the same lattice
site, the interaction energy can diverge in the
thermodynamic limit. For repulsive interactions
(U > 0), the interaction energy is only bounded

from below but not from above, thereby limiting
the system to positive temperatures; in contrast,
for attractive interactions (U < 0), only an upper
bound for the interaction energy is established,
rendering positive temperature ensembles unsta-
ble. The situation is different for the Fermi-Hubbard
model, where the Pauli principle enforces an up-
per limit on the interaction energy per atom of
U/2 and thereby allows negative temperatures
even in the repulsive case (13, 14). Similarly, a
trapping potential V > 0 only provides a lower
bound for the potential energy Epot, whereas an

Fig. 1. Negative absolute temperature in optical lattices. (A) Sketch of entropy
as a function of energy in a canonical ensemble possessing both lower (Emin) and
upper (Emax) energy bounds. (Insets) Sample occupation distributions of single-
particle states for positive, infinite, and negative temperature, assuming a weakly
interacting ensemble. (B) Energy bounds of the three terms of the 2D Bose-
Hubbard Hamiltonian: kinetic (Ekin), interaction (Eint), and potential (Epot) energy.
(C) Measured momentum distributions (TOF images) for positive (left) and neg-
ative (right) temperature states. Both images are averages of about 20 shots;
both optical densities (OD) are individually scaled. The contour plots below show
the tight-binding dispersion relation; momenta with large occupation are high-
lighted. The white square in the center indicates the first Brillouin zone.

Fig. 2. Experimental sequence and TOF images. (A) Top to bottom: lattice
depth, horizontal trap frequency, and scattering length as a function of
time. Blue indicates the sequence for positive, red for negative temper-
ature of the final state. (B) TOF images of the atomic cloud at various times
t in the sequence. Blue borders indicate positive, red negative temper-

atures. The initial picture in a shallow lattice at t = 6.8 ms is taken once for
a scattering length of a = 309(5) a0 (top) as in the sequence, and once for
a = 33(1) a0 (bottom; OD rescaled by a factor of 0.25), comparable to the
final images. All images are averages of about 20 individual shots. See
also Fig. 1C.
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Negative Absolute Temperature for
Motional Degrees of Freedom
S. Braun,1,2 J. P. Ronzheimer,1,2 M. Schreiber,1,2 S. S. Hodgman,1,2 T. Rom,1,2

I. Bloch,1,2 U. Schneider1,2*

Absolute temperature is usually bound to be positive. Under special conditions, however,
negative temperatures—in which high-energy states are more occupied than low-energy
states—are also possible. Such states have been demonstrated in localized systems with finite,
discrete spectra. Here, we prepared a negative temperature state for motional degrees of
freedom. By tailoring the Bose-Hubbard Hamiltonian, we created an attractively interacting
ensemble of ultracold bosons at negative temperature that is stable against collapse for
arbitrary atom numbers. The quasimomentum distribution develops sharp peaks at the upper
band edge, revealing thermal equilibrium and bosonic coherence over several lattice sites.
Negative temperatures imply negative pressures and open up new parameter regimes for
cold atoms, enabling fundamentally new many-body states.

Absolute temperature T is one of the cen-
tral concepts of statistical mechanics and
is a measure of, for example, the amount

of disordered motion in a classical ideal gas. There-
fore, nothing can be colder than T = 0, where
classical particles would be at rest. In a thermal
state of such an ideal gas, the probabilityPi for a
particle to occupy a state i with kinetic energy Ei
is proportional to the Boltzmann factor

Pi º e−Ei=kBT ð1Þ

where kB is Boltzmann’s constant. An ensemble
at positive temperature is described by an occu-
pation distribution that decreases exponentially

with energy. If we were to extend this formula to
negative absolute temperatures, exponentially in-
creasing distributions would result. Because the
distribution needs to be normalizable, at positive
temperatures a lower bound in energy is re-
quired, as the probabilities Pi would diverge for
Ei → –∞. Negative temperatures, on the other
hand, demand an upper bound in energy (1, 2). In
daily life, negative temperatures are absent, be-
cause kinetic energy in most systems, including
particles in free space, only provides a lower en-
ergy bound. Even in lattice systems, where kinet-
ic energy is split into distinct bands, implementing
an upper energy bound for motional degrees of
freedom is challenging, because potential and in-
teraction energy need to be limited as well (3, 4).
So far, negative temperatures have been realized
in localized spin systems (5–7), where the finite,
discrete spectrum naturally provides both lower
and upper energy bounds. Here, we were able to
realize a negative temperature state for motional
degrees of freedom.

In Fig. 1A, we schematically show the rela-
tion between entropy S and energy E for a ther-
mal system possessing both lower and upper
energy bounds. Starting atminimumenergy,where
only the ground state is populated, an increase in
energy leads to an occupation of a larger number
of states and therefore an increase in entropy. As
the temperature approaches infinity, all states be-
come equally populated and the entropy reaches
its maximum possible value Smax. However,
the energy can be increased even further if high-
energy states are more populated than low-energy
ones. In this regime, the entropy decreases with
energy, which, according to the thermodynamic
definition of temperature (8) (1/T = ∂S/∂E), re-
sults in negative temperatures. The temperature is
discontinuous at maximum entropy, jumping from
positive to negative infinity. This is a consequence
of the historic definition of temperature. A con-
tinuous and monotonically increasing tempera-
ture scale would be given by −b = −1/kBT, also
emphasizing that negative temperature states are
hotter than positive temperature states, i.e., in
thermal contact, heat would flow from a negative
to a positive temperature system.

Because negative temperature systems can ab-
sorb entropy while releasing energy, they give
rise to several counterintuitive effects, such as
Carnot engines with an efficiency greater than
unity (4). Through a stability analysis for thermo-
dynamic equilibrium, we showed that negative
temperature states of motional degrees of free-
dom necessarily possess negative pressure (9) and
are thus of fundamental interest to the description
of dark energy in cosmology, where negative pres-
sure is required to account for the accelerating
expansion of the universe (10).

Cold atoms in optical lattices are an ideal
system to create negative temperature states be-
cause of the isolation from the environment and
independent control of all relevant parameters
(11). Bosonic atoms in the lowest band of a

1Fakultät für Physik, Ludwig-Maximilians-Universität München,
Schellingstraße 4, 80799Munich, Germany.2Max-Planck-Institut
für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching,
Germany.
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Crucial question:

• is the exponential fit parameter the 
thermodynamic temperature ?

• if not, what happens to the other claims ?
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PERSPECTIVES

        U
ltracold quantum gases present an 
exquisitely tunable quantum sys-
tem. Applications include preci-

sion measurement ( 1), quantum simulations 
for advanced materials design ( 2), and new 
regimes of chemistry ( 3). Typically trapped 
in a combination of magnetic fi elds and laser 
beams, strongly isolated from the environ-
ment in an ultrahigh vacuum, and cooled to 
temperatures less than a microdegree above 
absolute zero, they are the coldest known 
material in the universe. The interactions 
between atoms in the gas can be tuned over 
seven orders of magnitude and from repul-
sive to attractive ( 4). The addition of stand-
ing waves made from interfering lasers at 
optical wavelengths gives rise to an optical 
lattice, a crystal of light, periodic just like 
the usual crystals made of matter. On page 
52 of this issue, Braun et al. ( 5) use these 
special features of ultracold quantum gases 
to produce a thermodynamic oddity—nega-
tive temperature.

Temperature is casually associated with 
hot and cold. How can something be “colder” 
than absolute zero? The answer lies in a more 
precise notion of temperature. Temperature is 
a single-parameter curve fi t to a probability 
distribution. Given a large number of parti-
cles, we can say each of them has a probabil-
ity to have some energy, P(E). Most will be in 
low-energy states and a few in higher-energy 
states. This probability distribution can be fi t 
very well with an exponential falling away to 
zero. Of course, the actual distribution may 
be very noisy, but an exponential fi t is still 
a good approximation (see the fi gure, panel 
A). Negative temperature means most parti-
cles are in a high-energy state, with a few in a 
low-energy state, so that the exponential rises 
instead of falls (see the fi gure, panel E).

To create negative temperature, Braun et 

al. had to produce an upper bound in energy, 
so particles could pile up in high-energy rather 
than low-energy states. In their experiment, 
there are three important kinds of energy: 
kinetic energy, or the energy of motion in the 
optical lattice; potential energy, due to mag-
netic fi elds trapping the gas; and interaction 
energy, due to interactions between the atoms 
in their gas. The lattice naturally gives an 

upper bound to kinetic energy via the forma-
tion of a band gap, a sort of energetic barrier 
to higher-energy states. The potential energy 
was made negative by the clever use of an 
anti-trap on top of the lattice, taking the shape 
of an upside-down parabola. Finally, the 
interactions were tuned to be attractive (neg-
ative). Thus, all three energies had an upper 
bound and, in principle, the atoms could pile 
up in high-energy states.

Braun et al. convinced their gas to undergo 
such a strange inversion using a quantum 
phase transition ( 6), an extension of the well-
known thermodynamic concept of phase tran-
sitions to a regime in which the temperature 
is so low that it plays no role in the change 
of phase. In this case, they worked with two 
phases, superfl uid and Mott insulator. In a 
superfl uid, the gas fl ows freely without vis-
cosity and is coherent, like a laser, but made 
of matter instead of light. In a Mott insula-
tor, the atoms freeze into a regular pattern and 
become incompressible, similar to a solid. 

Braun et al. fi rst make their atoms repulsive 
in a superfl uid phase. They tune them to a 
Mott insulating phase by simply turning up 
the intensity of the optical lattice lasers, mak-
ing the lattice deeper. Then they tune the inte-
reactions to be attractive and at the same time 
turn their trap upside down to be an anti-trap. 
Finally, they melt the Mott insulator to obtain 
an attractive superfl uid. These anti-traps have 
been used before, to create a self-propagat-
ing pulse of atoms that does not disperse (a 
bright soliton) from attractive gases in one 
dimension ( 7,  8). However, attractive quan-
tum gases in two and three dimensions can 
implode, rather spectacularly ( 9). This ten-
dency to implode is called negative pressure. 
The negative temperature is precisely what 
stabilizes the gas against negative pressure 
and implosion; the Mott insulator serves as 
a bridge state between positive temperature 
and pressure, and negative temperature and 
pressure (see the fi gure, panels B to D).

Braun et al.’s exploration of negative 

Negative Temperatures?
PHYSICS
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A cloud of potassium atoms is tuned 

to negative temperatures via a quantum 

phase transition.
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will have that energy falls away exponentially. A quantum phase transition from a repulsive superfl uid (B) to 
a Mott insulator (C) provides a bridge to an attractive superfl uid (D), resulting in negative pressure balanced 
by negative temperature (E).
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Figure 1: Non-negativity of the absolute temperature in quantum systems with bounded spec-
trum. Thermodynamic functions for N weakly coupled bosonic oscillators with (L + 1) single
particle levels E! = !ε, ! = 0, . . . , L are shown for N = L = 10, corresponding to 184756
states in the energy band [E−, E+] = [0, LNε]. Open circles show exact numerical data; lines
represent analytical results based on the Gaussian approximation of the DoS ω. The thermo-
dynamic Gibbs entropy S = SG = kB ln Ω (red solid) grows monotonically with the total
energy E, whereas the Boltzmann (or surface) entropy SB = kB ln(εω) (blue solid) does not.
Accordingly, the absolute temperature T = TG (red dashed) remains positive, whereas the
Boltzmann temperature TB (blue dashed), as measured by Braun et al. [6], exhibits a singularity
at E∗ = εNL/2. Note that, although TG increases rapidly for E > E∗/2, it remains finite since
ω(E) > 0 on [0, E+]. Insets: Exact relative occupancies p! (open circles) of one-particle en-
ergy levels are shown for two different values of the total energy. They agree qualitatively with
those in Figs. 1A and 3 of Ref. [6], and can be approximately reproduced by an exponential
distribution (filled circles) with parameter TB, see Eq. (27). Quantitative deviations result from
the limited sample size (N, L) and the use of the Gaussian approximation for TB in our model
calculations.
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2 Generic example with bounded spectrum
That the difference between TG and TB is practically negligible for conventional macroscopic
systems [15, 16] may explain why they are rarely distinguished in most modern textbooks apart
from a few exceptions [9, 15]. However, for quantum systems with bounded energy spectrum,
SG and SB are generally very different (Fig. 1), and a careful distinction between TG and TB

becomes necessary.
To demonstrate this, we consider a generic quantum model that formalizes the example

presented by Braun et al. [6] in Fig. 1A of their paper18. The model consists of N weakly
interacting bosonic oscillators with Hamiltonian

HN !
N∑

n=1

hn, (29)

such that each oscillator can occupy non-degenerate single-particle energy levels E!n = ε"n

with spacing ε and "n = 0, 1 . . . , L. Assuming indistinguishable bosons, permissible N -particle
states can be labelled by Λ =( "1, . . . , "N), where 0 ≤ "1 ≤ "2 . . . ≤ "N ≤ L, and the associated
energy eigenvalues EΛ = ε("1 + . . . + "N) are bounded by 0 ≤ EΛ ≤ E+ = εLN . The DoS

ωN(E) = TrN [δ(E −HN)] (30)

counts the degeneracy of the eigenvalues E and equals the number of integer partitions [21] of
z = E/ε into N addends "n ≤ L. For N, L$ 1, the DoS can be approximated by a continuous
Gaussian,

ω(E) = ω∗ exp[−(E − E∗)
2/σ2], (31)

and the degeneracy attains its maximum ω∗ at the center E∗ = E+/2 of the energy band (Fig. 1).
The integrated DoS is then obtained as

Ω(E) = TrN [Θ(E −HN)]

! 1 +

∫ E

0

ω(E ′)dE ′

= 1 +
ω∗
√

πσ

2

[
erf

(
E − E∗

σ

)
+ erf

(
E∗

σ

)]
,

(32)

where the parameters σ and ω∗ are determined by the boundary condition ω(0) = 1/ε and the
total number [21] of possible N -particle states Ω(E+) = (N + L)!/(N !L!). For this model, the
Gaussian approximation gives

kBTB =
σ2

E+ − 2E
(33)

18When interpreted in terms of spins, this model applies also to the experiments of Purcell and Pound [1].
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ωN(E) = TrN [δ(E −HN)] (30)

counts the degeneracy of the eigenvalues E and equals the number of integer partitions [21] of
z = E/ε into N addends "n ≤ L. For N, L$ 1, the DoS can be approximated by a continuous
Gaussian,

ω(E) = ω∗ exp[−(E − E∗)
2/σ2], (31)

and the degeneracy attains its maximum ω∗ at the center E∗ = E+/2 of the energy band (Fig. 1).
The integrated DoS is then obtained as

Ω(E) = TrN [Θ(E −HN)]

! 1 +

∫ E

0

ω(E ′)dE ′

= 1 +
ω∗
√

πσ

2

[
erf

(
E − E∗

σ

)
+ erf

(
E∗

σ

)]
,

(32)

where the parameters σ and ω∗ are determined by the boundary condition ω(0) = 1/ε and the
total number [21] of possible N -particle states Ω(E+) = (N + L)!/(N !L!). For this model, the
Gaussian approximation gives

kBTB =
σ2

E+ − 2E
(33)

18When interpreted in terms of spins, this model applies also to the experiments of Purcell and Pound [1].
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where the parameters σ and ω∗ are determined by the boundary condition ω(0) = 1/ε and the
total number [21] of possible N -particle states Ω(E+) = (N + L)!/(N !L!). For this model, the
Gaussian approximation gives

kBTB =
σ2

E+ − 2E
(33)

18When interpreted in terms of spins, this model applies also to the experiments of Purcell and Pound [1].

11

2 Generic example with bounded spectrum
That the difference between TG and TB is practically negligible for conventional macroscopic
systems [15, 16] may explain why they are rarely distinguished in most modern textbooks apart
from a few exceptions [9, 15]. However, for quantum systems with bounded energy spectrum,
SG and SB are generally very different (Fig. 1), and a careful distinction between TG and TB

becomes necessary.
To demonstrate this, we consider a generic quantum model that formalizes the example

presented by Braun et al. [6] in Fig. 1A of their paper18. The model consists of N weakly
interacting bosonic oscillators with Hamiltonian

HN !
N∑

n=1

hn, (29)

such that each oscillator can occupy non-degenerate single-particle energy levels E!n = ε"n

with spacing ε and "n = 0, 1 . . . , L. Assuming indistinguishable bosons, permissible N -particle
states can be labelled by Λ =( "1, . . . , "N), where 0 ≤ "1 ≤ "2 . . . ≤ "N ≤ L, and the associated
energy eigenvalues EΛ = ε("1 + . . . + "N) are bounded by 0 ≤ EΛ ≤ E+ = εLN . The DoS

ωN(E) = TrN [δ(E −HN)] (30)

counts the degeneracy of the eigenvalues E and equals the number of integer partitions [21] of
z = E/ε into N addends "n ≤ L. For N, L$ 1, the DoS can be approximated by a continuous
Gaussian,

ω(E) = ω∗ exp[−(E − E∗)
2/σ2], (31)

and the degeneracy attains its maximum ω∗ at the center E∗ = E+/2 of the energy band (Fig. 1).
The integrated DoS is then obtained as

Ω(E) = TrN [Θ(E −HN)]

! 1 +

∫ E

0

ω(E ′)dE ′

= 1 +
ω∗
√

πσ

2

[
erf

(
E − E∗

σ

)
+ erf

(
E∗

σ

)]
,

(32)

where the parameters σ and ω∗ are determined by the boundary condition ω(0) = 1/ε and the
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where the parameters σ and ω∗ are determined by the boundary condition ω(0) = 1/ε and the
total number [21] of possible N -particle states Ω(E+) = (N + L)!/(N !L!). For this model, the
Gaussian approximation gives
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18When interpreted in terms of spins, this model applies also to the experiments of Purcell and Pound [1].
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where the parameters σ and ω∗ are determined by the boundary condition ω(0) = 1/ε and the
total number [21] of possible N -particle states Ω(E+) = (N + L)!/(N !L!). For this model, the
Gaussian approximation gives
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18When interpreted in terms of spins, this model applies also to the experiments of Purcell and Pound [1].

11

2 Generic example with bounded spectrum
That the difference between TG and TB is practically negligible for conventional macroscopic
systems [15, 16] may explain why they are rarely distinguished in most modern textbooks apart
from a few exceptions [9, 15]. However, for quantum systems with bounded energy spectrum,
SG and SB are generally very different (Fig. 1), and a careful distinction between TG and TB

becomes necessary.
To demonstrate this, we consider a generic quantum model that formalizes the example

presented by Braun et al. [6] in Fig. 1A of their paper18. The model consists of N weakly
interacting bosonic oscillators with Hamiltonian

HN !
N∑

n=1

hn, (29)

such that each oscillator can occupy non-degenerate single-particle energy levels E!n = ε"n

with spacing ε and "n = 0, 1 . . . , L. Assuming indistinguishable bosons, permissible N -particle
states can be labelled by Λ =( "1, . . . , "N), where 0 ≤ "1 ≤ "2 . . . ≤ "N ≤ L, and the associated
energy eigenvalues EΛ = ε("1 + . . . + "N) are bounded by 0 ≤ EΛ ≤ E+ = εLN . The DoS

ωN(E) = TrN [δ(E −HN)] (30)

counts the degeneracy of the eigenvalues E and equals the number of integer partitions [21] of
z = E/ε into N addends "n ≤ L. For N, L$ 1, the DoS can be approximated by a continuous
Gaussian,

ω(E) = ω∗ exp[−(E − E∗)
2/σ2], (31)

and the degeneracy attains its maximum ω∗ at the center E∗ = E+/2 of the energy band (Fig. 1).
The integrated DoS is then obtained as

Ω(E) = TrN [Θ(E −HN)]

! 1 +

∫ E

0

ω(E ′)dE ′

= 1 +
ω∗
√

πσ

2

[
erf

(
E − E∗

σ

)
+ erf

(
E∗

σ

)]
,

(32)

where the parameters σ and ω∗ are determined by the boundary condition ω(0) = 1/ε and the
total number [21] of possible N -particle states Ω(E+) = (N + L)!/(N !L!). For this model, the
Gaussian approximation gives

kBTB =
σ2

E+ − 2E
(33)

18When interpreted in terms of spins, this model applies also to the experiments of Purcell and Pound [1].
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where the parameters σ and ω∗ are determined by the boundary condition ω(0) = 1/ε and the
total number [21] of possible N -particle states Ω(E+) = (N + L)!/(N !L!). For this model, the
Gaussian approximation gives

kBTB =
σ2

E+ − 2E
(33)

18When interpreted in terms of spins, this model applies also to the experiments of Purcell and Pound [1].
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where the parameters σ and ω∗ are determined by the boundary condition ω(0) = 1/ε and the
total number [21] of possible N -particle states Ω(E+) = (N + L)!/(N !L!). For this model, the
Gaussian approximation gives

kBTB =
σ2

E+ − 2E
(33)

18When interpreted in terms of spins, this model applies also to the experiments of Purcell and Pound [1].
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Figure 1: Non-negativity of the absolute temperature in quantum systems with bounded spec-
trum. Thermodynamic functions for N weakly coupled bosonic oscillators with (L + 1) single
particle levels E! = !ε, ! = 0, . . . , L are shown for N = L = 10, corresponding to 184756
states in the energy band [E−, E+] = [0, LNε]. Open circles show exact numerical data; lines
represent analytical results based on the Gaussian approximation of the DoS ω. The thermo-
dynamic Gibbs entropy S = SG = kB ln Ω (red solid) grows monotonically with the total
energy E, whereas the Boltzmann (or surface) entropy SB = kB ln(εω) (blue solid) does not.
Accordingly, the absolute temperature T = TG (red dashed) remains positive, whereas the
Boltzmann temperature TB (blue dashed), as measured by Braun et al. [6], exhibits a singularity
at E∗ = εNL/2. Note that, although TG increases rapidly for E > E∗/2, it remains finite since
ω(E) > 0 on [0, E+]. Insets: Exact relative occupancies p! (open circles) of one-particle en-
ergy levels are shown for two different values of the total energy. They agree qualitatively with
those in Figs. 1A and 3 of Ref. [6], and can be approximately reproduced by an exponential
distribution (filled circles) with parameter TB, see Eq. (27). Quantitative deviations result from
the limited sample size (N, L) and the use of the Gaussian approximation for TB in our model
calculations.
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2 Generic example with bounded spectrum
That the difference between TG and TB is practically negligible for conventional macroscopic
systems [15, 16] may explain why they are rarely distinguished in most modern textbooks apart
from a few exceptions [9, 15]. However, for quantum systems with bounded energy spectrum,
SG and SB are generally very different (Fig. 1), and a careful distinction between TG and TB

becomes necessary.
To demonstrate this, we consider a generic quantum model that formalizes the example

presented by Braun et al. [6] in Fig. 1A of their paper18. The model consists of N weakly
interacting bosonic oscillators with Hamiltonian

HN !
N∑

n=1

hn, (29)

such that each oscillator can occupy non-degenerate single-particle energy levels E!n = ε"n

with spacing ε and "n = 0, 1 . . . , L. Assuming indistinguishable bosons, permissible N -particle
states can be labelled by Λ =( "1, . . . , "N), where 0 ≤ "1 ≤ "2 . . . ≤ "N ≤ L, and the associated
energy eigenvalues EΛ = ε("1 + . . . + "N) are bounded by 0 ≤ EΛ ≤ E+ = εLN . The DoS

ωN(E) = TrN [δ(E −HN)] (30)

counts the degeneracy of the eigenvalues E and equals the number of integer partitions [21] of
z = E/ε into N addends "n ≤ L. For N, L$ 1, the DoS can be approximated by a continuous
Gaussian,

ω(E) = ω∗ exp[−(E − E∗)
2/σ2], (31)

and the degeneracy attains its maximum ω∗ at the center E∗ = E+/2 of the energy band (Fig. 1).
The integrated DoS is then obtained as

Ω(E) = TrN [Θ(E −HN)]

! 1 +

∫ E

0

ω(E ′)dE ′

= 1 +
ω∗
√

πσ

2

[
erf

(
E − E∗

σ

)
+ erf

(
E∗

σ

)]
,

(32)

where the parameters σ and ω∗ are determined by the boundary condition ω(0) = 1/ε and the
total number [21] of possible N -particle states Ω(E+) = (N + L)!/(N !L!). For this model, the
Gaussian approximation gives

kBTB =
σ2

E+ − 2E
(33)

18When interpreted in terms of spins, this model applies also to the experiments of Purcell and Pound [1].
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ωN(E) = TrN [δ(E −HN)] (30)

counts the degeneracy of the eigenvalues E and equals the number of integer partitions [21] of
z = E/ε into N addends "n ≤ L. For N, L$ 1, the DoS can be approximated by a continuous
Gaussian,

ω(E) = ω∗ exp[−(E − E∗)
2/σ2], (31)

and the degeneracy attains its maximum ω∗ at the center E∗ = E+/2 of the energy band (Fig. 1).
The integrated DoS is then obtained as
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(32)

where the parameters σ and ω∗ are determined by the boundary condition ω(0) = 1/ε and the
total number [21] of possible N -particle states Ω(E+) = (N + L)!/(N !L!). For this model, the
Gaussian approximation gives

kBTB =
σ2

E+ − 2E
(33)

18When interpreted in terms of spins, this model applies also to the experiments of Purcell and Pound [1].
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1.4 Measuring TB vs. TG

To conclude this section, let us still clarify why the method employed, for example, by Braun et
al. [6] measures TB and not the thermodynamic temperature T = TG. We restrict ourselves to
sketching the main idea as the technical details of the derivation can be found in most modern
textbooks on statistical mechanics [15, 16].

We recall that Braun et al. [6] estimate an effective ‘temperature’ by fitting an exponential
Bose-Einstein function to their experimentally obtained one-particle distributions. Let us as-
sume their system contains N ! 1 particles and denote the corresponding Hamiltonian by HN

and the DoS by ωN . Then, the formally exact MC one-particle density operator is given by

ρ1 = TrN−1[ρN ] =
TrN−1[δ(E −HN)]

ωN
. (25)

To obtain an exponential (canonical) fitting formula, as used in the experiments, one first has to
rewrite ρ1 in the equivalent form

ρ1 = exp[ln ρ1]. (26)

Then, applying a standard steepest descent approximation [15, 16] to the logarithm and assum-
ing discrete one-particle levels E!, one finds for the relative occupancy p! of one-particle level
E! the canonical form16

p! #
e−E!/(kBTB)

Z
, Z =

∑

!

e−E!/(kBTB). (27)

The key observation here is that this exponential approximation features TB and not the absolute
thermodynamic Gibbs temperature T = TG. Hence, by fitting the one-particle distribution,
Braun et al. [6] determined the Boltzmann temperature TB, which can be negative, whereas the
thermodynamic Gibbs temperature T = TG is always non-negative. From the above definitions,
it is straightforward to show that, generally,

TB =
TG

1− kB/C
, (28)

where C = (∂TG/∂E)−1 is the heat capacity. Evidently, differences between TG and TB

become relevant only if |C| is close to or smaller than kB; in particular, TB is negative if
0 < C < kB. From a practical perspective, Eq. (28) is useful as it allows to reconstruct the
non-negative absolute temperature T = TG from measurements of TB and C, but TG can, of
course, also be directly measured.

16This becomes obvious by writing (25) for a given one-particle energy E! as p! = ωN−1(E − E!)/ωN (E) =
exp[lnωN−1(E − E!)]/ωN (E) and expanding for E! $ E, which gives p! ∝ exp[−E!/(kBTB,N−1)] where
kBTB,N−1 ≡ ωN−1(E)/ω′

N−1(E) in agreement with Eq. (7). That is, TB in (27) is actually the Boltzmann
temperature of the (N − 1)-particle system.
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1.4 Measuring TB vs. TG

To conclude this section, let us still clarify why the method employed, for example, by Braun et
al. [6] measures TB and not the thermodynamic temperature T = TG. We restrict ourselves to
sketching the main idea as the technical details of the derivation can be found in most modern
textbooks on statistical mechanics [15, 16].

We recall that Braun et al. [6] estimate an effective ‘temperature’ by fitting an exponential
Bose-Einstein function to their experimentally obtained one-particle distributions. Let us as-
sume their system contains N ! 1 particles and denote the corresponding Hamiltonian by HN

and the DoS by ωN . Then, the formally exact MC one-particle density operator is given by

ρ1 = TrN−1[ρN ] =
TrN−1[δ(E −HN)]

ωN
. (25)

To obtain an exponential (canonical) fitting formula, as used in the experiments, one first has to
rewrite ρ1 in the equivalent form

ρ1 = exp[ln ρ1]. (26)

Then, applying a standard steepest descent approximation [15, 16] to the logarithm and assum-
ing discrete one-particle levels E!, one finds for the relative occupancy p! of one-particle level
E! the canonical form16

p! #
e−E!/(kBTB)

Z
, Z =

∑

!

e−E!/(kBTB). (27)

The key observation here is that this exponential approximation features TB and not the absolute
thermodynamic Gibbs temperature T = TG. Hence, by fitting the one-particle distribution,
Braun et al. [6] determined the Boltzmann temperature TB, which can be negative, whereas the
thermodynamic Gibbs temperature T = TG is always non-negative. From the above definitions,
it is straightforward to show that, generally,

TB =
TG

1− kB/C
, (28)

where C = (∂TG/∂E)−1 is the heat capacity. Evidently, differences between TG and TB

become relevant only if |C| is close to or smaller than kB; in particular, TB is negative if
0 < C < kB. From a practical perspective, Eq. (28) is useful as it allows to reconstruct the
non-negative absolute temperature T = TG from measurements of TB and C, but TG can, of
course, also be directly measured.

16This becomes obvious by writing (25) for a given one-particle energy E! as p! = ωN−1(E − E!)/ωN (E) =
exp[lnωN−1(E − E!)]/ωN (E) and expanding for E! $ E, which gives p! ∝ exp[−E!/(kBTB,N−1)] where
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temperature of the (N − 1)-particle system.
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PERSPECTIVES

        U
ltracold quantum gases present an 
exquisitely tunable quantum sys-
tem. Applications include preci-

sion measurement ( 1), quantum simulations 
for advanced materials design ( 2), and new 
regimes of chemistry ( 3). Typically trapped 
in a combination of magnetic fi elds and laser 
beams, strongly isolated from the environ-
ment in an ultrahigh vacuum, and cooled to 
temperatures less than a microdegree above 
absolute zero, they are the coldest known 
material in the universe. The interactions 
between atoms in the gas can be tuned over 
seven orders of magnitude and from repul-
sive to attractive ( 4). The addition of stand-
ing waves made from interfering lasers at 
optical wavelengths gives rise to an optical 
lattice, a crystal of light, periodic just like 
the usual crystals made of matter. On page 
52 of this issue, Braun et al. ( 5) use these 
special features of ultracold quantum gases 
to produce a thermodynamic oddity—nega-
tive temperature.

Temperature is casually associated with 
hot and cold. How can something be “colder” 
than absolute zero? The answer lies in a more 
precise notion of temperature. Temperature is 
a single-parameter curve fi t to a probability 
distribution. Given a large number of parti-
cles, we can say each of them has a probabil-
ity to have some energy, P(E). Most will be in 
low-energy states and a few in higher-energy 
states. This probability distribution can be fi t 
very well with an exponential falling away to 
zero. Of course, the actual distribution may 
be very noisy, but an exponential fi t is still 
a good approximation (see the fi gure, panel 
A). Negative temperature means most parti-
cles are in a high-energy state, with a few in a 
low-energy state, so that the exponential rises 
instead of falls (see the fi gure, panel E).

To create negative temperature, Braun et 

al. had to produce an upper bound in energy, 
so particles could pile up in high-energy rather 
than low-energy states. In their experiment, 
there are three important kinds of energy: 
kinetic energy, or the energy of motion in the 
optical lattice; potential energy, due to mag-
netic fi elds trapping the gas; and interaction 
energy, due to interactions between the atoms 
in their gas. The lattice naturally gives an 

upper bound to kinetic energy via the forma-
tion of a band gap, a sort of energetic barrier 
to higher-energy states. The potential energy 
was made negative by the clever use of an 
anti-trap on top of the lattice, taking the shape 
of an upside-down parabola. Finally, the 
interactions were tuned to be attractive (neg-
ative). Thus, all three energies had an upper 
bound and, in principle, the atoms could pile 
up in high-energy states.

Braun et al. convinced their gas to undergo 
such a strange inversion using a quantum 
phase transition ( 6), an extension of the well-
known thermodynamic concept of phase tran-
sitions to a regime in which the temperature 
is so low that it plays no role in the change 
of phase. In this case, they worked with two 
phases, superfl uid and Mott insulator. In a 
superfl uid, the gas fl ows freely without vis-
cosity and is coherent, like a laser, but made 
of matter instead of light. In a Mott insula-
tor, the atoms freeze into a regular pattern and 
become incompressible, similar to a solid. 

Braun et al. fi rst make their atoms repulsive 
in a superfl uid phase. They tune them to a 
Mott insulating phase by simply turning up 
the intensity of the optical lattice lasers, mak-
ing the lattice deeper. Then they tune the inte-
reactions to be attractive and at the same time 
turn their trap upside down to be an anti-trap. 
Finally, they melt the Mott insulator to obtain 
an attractive superfl uid. These anti-traps have 
been used before, to create a self-propagat-
ing pulse of atoms that does not disperse (a 
bright soliton) from attractive gases in one 
dimension ( 7,  8). However, attractive quan-
tum gases in two and three dimensions can 
implode, rather spectacularly ( 9). This ten-
dency to implode is called negative pressure. 
The negative temperature is precisely what 
stabilizes the gas against negative pressure 
and implosion; the Mott insulator serves as 
a bridge state between positive temperature 
and pressure, and negative temperature and 
pressure (see the fi gure, panels B to D).

Braun et al.’s exploration of negative 
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A cloud of potassium atoms is tuned 

to negative temperatures via a quantum 

phase transition.
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will have that energy falls away exponentially. A quantum phase transition from a repulsive superfl uid (B) to 
a Mott insulator (C) provides a bridge to an attractive superfl uid (D), resulting in negative pressure balanced 
by negative temperature (E).
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1.4 Measuring TB vs. TG

To conclude this section, let us still clarify why the method employed, for example, by Braun et
al. [6] measures TB and not the thermodynamic temperature T = TG. We restrict ourselves to
sketching the main idea as the technical details of the derivation can be found in most modern
textbooks on statistical mechanics [15, 16].

We recall that Braun et al. [6] estimate an effective ‘temperature’ by fitting an exponential
Bose-Einstein function to their experimentally obtained one-particle distributions. Let us as-
sume their system contains N ! 1 particles and denote the corresponding Hamiltonian by HN

and the DoS by ωN . Then, the formally exact MC one-particle density operator is given by

ρ1 = TrN−1[ρN ] =
TrN−1[δ(E −HN)]

ωN
. (25)

To obtain an exponential (canonical) fitting formula, as used in the experiments, one first has to
rewrite ρ1 in the equivalent form

ρ1 = exp[ln ρ1]. (26)

Then, applying a standard steepest descent approximation [15, 16] to the logarithm and assum-
ing discrete one-particle levels E!, one finds for the relative occupancy p! of one-particle level
E! the canonical form16

p! #
e−E!/(kBTB)

Z
, Z =

∑

!

e−E!/(kBTB). (27)

The key observation here is that this exponential approximation features TB and not the absolute
thermodynamic Gibbs temperature T = TG. Hence, by fitting the one-particle distribution,
Braun et al. [6] determined the Boltzmann temperature TB, which can be negative, whereas the
thermodynamic Gibbs temperature T = TG is always non-negative. From the above definitions,
it is straightforward to show that, generally,

TB =
TG

1− kB/C
, (28)

where C = (∂TG/∂E)−1 is the heat capacity. Evidently, differences between TG and TB

become relevant only if |C| is close to or smaller than kB; in particular, TB is negative if
0 < C < kB. From a practical perspective, Eq. (28) is useful as it allows to reconstruct the
non-negative absolute temperature T = TG from measurements of TB and C, but TG can, of
course, also be directly measured.

16This becomes obvious by writing (25) for a given one-particle energy E! as p! = ωN−1(E − E!)/ωN (E) =
exp[lnωN−1(E − E!)]/ωN (E) and expanding for E! $ E, which gives p! ∝ exp[−E!/(kBTB,N−1)] where
kBTB,N−1 ≡ ωN−1(E)/ω′

N−1(E) in agreement with Eq. (7). That is, TB in (27) is actually the Boltzmann
temperature of the (N − 1)-particle system.
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Relativistic RegimeRelativistic Regime

Σ(u = 0) −→ Σ0(u 6= 0)Σ(u 0) → Σ (u 6 0)
x0 = γ(u) (x− u · t)x γ(u) (x u t)

t0 = γ(u)
¡
t− ux/c2

¢
µ

2
¶−1/2

with γ(u) =

µ
1− u2

c2

¶ /

2 2 2 ( 0)2 2( 0)2

Note: thermodynamic observables are NONLOCAL

x2 − c2t2 = (x0)2 − c2(t0)2

Note: thermodynamic observables are NONLOCAL

J. Dunkel & P.H., Relativistic Brownian motion, Phys. Rep. 471, 1 - 73 (2009)
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“Temperature” problem 

in RTD?

moving bodies 
appear cooler

.. hotter!

maybe ... not

1907/08

1940s

1923/1963

CK Yuen, Amer. J. Phys. 38:246 (1970)

T=T’ 1966-69











Take Home Messages
• ∃ absolute temperature T ≥ 0

• T = ∂E

S
• T = ∂S ...

with S(E) a concave function of E !with S(E) a concave function of E !

• S(E) : microcanonical NOT always = S(E) : canonical
( long range non ergodic parts )

E

( long range, non-ergodic parts )

• T does NOT fluctuate

• quantum mechanics: no virial theorem; no equipartion

• relativistic statistical thermometer
TΣ = TΣ0



Conclusions

• population inversion        microcanonical 

• bounded spectrum         ensembles not equivalent

• consistent thermostatistics         Gibbs entropy

• temperature always positive (‘by construction’)

• no Carnot efficiencies  > 1

• please correct textbooks & lecture notes

⇒
⇒

⇒

arxiv: 1304.2066
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