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Different stories to tell:

Normal diffusion

Subdiffusion: Experiments, models, and
mathematical instruments

— CTRW

— Percolation

— Slow modes of multiparticle models

Aging

Case study 1: REM

Case study 2: “The twins”: exactly solvable examples
Conclusions



Emergence of normal diffusion

Einstein (1905)
Non-correlated
Postulates:

o)n(x,t) > P(x,t)
1) 3 time interval T < oo, so that{the @
particle’s motion during the twp
consequent intervals is independent
I1) The displacements S during
subsequent t-intervals are
identically distributed. < CStationary increments >
For unbiased diffusion: @(s) = ¢@(-9)

ll1) The second moment of S exists Essentially, a

2= T82¢(S)ds < 00 Random Walk Model
e (1880, 1900, 1905x2)




Motion as a sum of small increments: X(t) = Z S,
i=1

mean free path mean relaxation time
_/e2\V? S\ 1/2
A=(s]) N=t/r roc A/(V7)
O<A<w stationary 0<7 <0

<X2(t)>=<£2 Sj >\‘ Coon- Cor-re|-ated

the central limit theorem (for independent steps)
2

P(x,t) = (47Kt)™"* exp(— 4XKJ

with K o <V2>TE s



RW models vs. continuum models

Discrete X = Zt:Si Continuous
X7)= <ZSS I>O=ic X(t)—jv(t')dt'
4 e <x () <Hv(t')v(t")dt'dt">
© toto
HC(t',t")dt'dt"

Stationary velocity process — X-process with stationary increments
C(t',t")y=C(t-t']), 0< jOwC(t')dt' <o

<X2 (t)> = dDt Stationarity of increments
<X (t)> i Stationar dilibr
T . '\ et y (equilibrium) state
D = %1_{2 t - jo C(t")dt of the bath




FEATURES

An increasing number of natural phenomena do not fit
into the relatively simple description of diffusion developed by Einstein a century ago

Anomalous diffusion

spreads its wings | V"

o # 1

Joseph Klafter and Izor M Sokolov

AS ALL of us are no dounbt aware, this
vear has been declared “world year of
physies” to celebrate the three remark-
able breakthronghs made by Albert
Eimnstein in 1905, However, 1t 15 not so
well known that Einsteins work on
Browmanmotion — the randommotion
of tiny particles first observed and m-
veshigated by the botamst Robent Brown
in 1827 — has been cited more times in
the saenthc lterature than his more However, Fick’s approach was purely
larmous papers on special relativity and phenomenologeal, based on an anal-
the quantum nature of light. Inaseries  5i5e behaviour- albatrosses fybythe ulesof 28 With Fourier's heat equation — it
of publications that meluded his doc-  anomalous diffusion. ook Einstemn o dertve the difflusion
toral thesis, Emstein derved an equa- equation from hrst princples as part
|'i|"l|'| rl"l'l'F%'l'l"ﬂ'-'l'l'i'.'l'l'l '|'|'|I"l|'il"l|'| I-'I'I"II'I'I|'|'|'i|'-|'l"r\-|:l"l"l'|'l'il"'I'l'l-il'll'"i'l'lll""l-\'. =1 rl"'.'ll I"lr I'I'il-\'. 1'|'I"I'|'I-¢' i1l .IE.'I'I"I'\\'I'I'i'.l'I'I |'|'|I"l|'il"l'|'| Fll"" I"I'il"l |I'|'i'\-|: I"I'I.' '.1'\-|:'\-i.|||'|'|'i|'ll'|'

n Inving orgamsms. In 1855 Fick pub-
lished the famous diffusion equaton,
2 which, when written in terms of prob-
= ahility, is c/ o = Dl o, where p gives
" the probability of finding an object at
acertain position x, at a time £ and £1s
the diffusion coetheent. Fick went on o
show that the mean-squared displace-
ment of an object undergomg diffusion

15 240,

PasrnEanlin
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PRL 96. 098102 (2006) PHYSICAL REVIEW LETTERS 10 MARCH 2006

Physical Nature of Bacterial Cytoplasm

[do Golding and Edward C. Cox
Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
(Received 10 November 2005; published 10 March 2006)

We track the motion of individual Auorescently labeled ml
find that the motion is subdiffusive, with an exponent that is ro
disruption of cytoskeletal elements. By modifying the parame
cell, we are able to examine the possible mechanisms tha
eeneciallv the effect of macromolecular crowding. We als
gene regulation, in par
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EERNAS

Ergodic and nonergodic processes coexist
in the plasma membrane as observed
by single-molecule tracking

Aubrey V. Weigel®, Blair 5imon®, Michael M. Tamkun®?, and Diego Krapf**

*5chool of Biomedical Engineerin
State University, Fort Collins, CO
Department of Biochemistry anc

Edited* by lennifer Lippincott-Sch
Diffusion in the plasma mem

display anomalous dynarmics.
this diffusion pattern remain:

A

Fig. 1. Owverlay image of GFP-tagged Kv2.1 clusters and individual QDs.
Kw2.1 clusters are shown in green and QD-tagged channels in red. The
trajectories of (4) a clustered and (B) a nonclustered (free) Kv2.1 channels
are shown. Interestingly, the nonclustered channel ignores the compartment
perimeters and the channel travels freely into and out of a cluster. Scale bars:
1 pm.



Experimental techniques

* Ensemble properties:

* measurements of mass transport, current or polarization

 FRAP
*Single-particle properties:

*Trajectories

* single-particle tracking
*First passage times

« FRET
*Sojourn times

* FCS .

<

“Measure and fit!”



Why do we need it?

Experiment

Mathematical model |_
of the process

Physical model
of the system

l

Mathematical model
of other processes
(e.g. reactions)

l

New experimentally
relevant predictions

\l Statistical tests: Differ on ensemble and on the single trajectory level




Physical models

Crowded environments: experiments hint onto subdiffusion:
a<l,orD=0.
Possible sources of anomalous subdiffusion:

1. Trapping models as arising from variants of random potential
models (energetic disorder, trapping environment) often
translated to CTRW (in d = 3)

2. Trapping models of geometric nature (combs, “spikes”)
(even closer to CTRW)

3. Diffusion on fractal structures, e.g. on percolation clusters
(geometrical disorder, or labyrinthine environment).

4. Temporal correlations due to slow modes (typical for
viscoelastic environments)



Physical models

Crowded environments: experiments hint onto subdiffusion.
a<l,orD=0.
Possible sources of anomalous subdiffusion:

1. Trapping models as arising from variants of random potential
models (energetic disorder, trapping environment) often
translated to CTRW (in d = 3)

2. Trapping models of geometric nature (combs, “spikes”)
(even closer to CTRW)

3. Diffusion on fractal structures, e.g. on percolation clusters
(geometrical disorder, or labyrinthine environment).

4. Temporal correlations due to slow modes (typical for
viscoelastic environments)

(can be considered as a complex combination of fractal
diffusion and projections from state to configuration space)



Mathematical instruments
CTRW: Fractional diffusion (or Fokker-Planck) equation, or a
couple of Langevin equations describing the evolution of the
coordinate and of the clock time as functions of the operational
time (Fogedby’s approach).

Fractals: Percolation and other labyrinthine models. No equation
known. Often approximately described by diffusion equations
with distance-dependent diffusion coefficient.

fBm (viscoelastic models): Generalized (integrodifferential )
Langevin equation. No Fokker-Planck analogue known.

sBm: “Time-dependent diffusion coefficient taken seriously”:
Diffusion equation with time-dependent diffusion coefficient.
Often used by experimentalists for fitting of anomalous diffusion
of unclear origin.



Subdiffusion: In disordered solids...
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Explanation: Multple trapping and CTRW

E

p(E;)cexp(E, /E,)
r. =71,exp(—E, /k;T) pPE)

|,
O A
The waiting-time distribution between the two jumps (1) oc t

Diffusion anomalies for 0 < o < 1: the mean waiting time diverges!

Mean number of steps N(t) oct® Mean rate of steps M (t) = 2—? oc t*7!

Mean squared displacement <x (t)> ct® with a <1



The subordination

Transition to continuum:

P(x,1) = iwu,nm (t)

PDF of the particle’s
position after n steps
(say, a Gaussian)

Probability to make
exactly n steps up to
the time t

Pt = [ W (%,2)T (z,t)d7

operational time



| } clock time t
1 o I p—

operational time n

nl(tz) — "(f;)




Short way to the resuilt:

* Independent steps => <X2 (t)> =a’(n(t))

Steps follow inhomogeneously in the physical time t.

*The number of steps up to the time t may be calculated using the
renewal approach:

no steps up to time t: ¥, (1) =1- _‘-W(t )dt'

1 step up to time t: 1, (1) = J.W(t ) 2, (t=t)dt'

n steps up to time t: %, (1) = j@”(t ) 2o (t—1)at!

(V)= X nz, (0 =2




~ 1- W(U) ~n
After Laplace-transform: Zn(U) = U y(u)

n=0 n=0 d
-y~ d Gonpy o W)
IR AT M )
w(t)oct™ ™ yUu)=1-cu® +...
‘(n(t)) o t“% (A(u))=c™u™"™

The the FDE can be derived from the properties of the parent process
and those of subordinator (operational time)



Geometric disorder: Percolation cluster
at criticality: Markovian model with
non-1id steps. Mapped on a non-
Markovian model after averaging over

realizations '.

Fig. (4). The measurement system: 3D translational anomalons
diffusive motion within the observation volume AV = (.14 fL. {in
pink color). Simmlation steps n=10000.

Current Pharmacentfical Biotechnology, 2010, 11, 527-543

Meaningful Interpretation of Subdiffusive Measurements in Living Cells
(Crowded Environment) by Fluorescence Fluctuation Microscopy

Gerd Baumann'~, Robert F. Place™ and Zeno Pﬁldes-Papl)l""*



Other relevant models: Polymers

0.0

log(<ARX(¢t)>/c?)

-0.57

-1.01

-1.51

2 -1 0
Slow modes: Subdiffusion in a Rouse polymer chain.
Each mode normally diffusing (OU-process).

More complex models: polymer networks,
intramolecular interactions etc.

Close relative: Single file diffusion in a 1d tube

The whole process 1s a non-Markovian process
with stationary increments



Back to basics

Normal diffusion was a process with stationary, non-correlated
Increments.

Position-position correlation function ‘¢(t, S) = <X(t)X(S)>

Displacement during the time interval between S and t (t > S)

dmo—x@ﬂ§=<%a»+¢ﬁ@»»é@iﬂ!ﬂb

Anomalous diffusion with stationary increments: { X (t)> = Kt“
(X -x)F) = (xt-9))

e.g. ¢(t,s)= g[t“ +5% —|t - s‘“] — fractional Brownian Motion

‘ No age, no aging! ‘

Process starting at t,

<[x(t ~t,)- x(s—to)]2> = (X(t—t,—s+1)) 1 (x*(t—s))




Anomalous diffusion with symmetric non-correlated increments

‘¢(t, ) = (X()X(5)) = (X(S)X(S)) +(Ax(t ~$)X(8)) = (x*(5))

Displacement during the time interval

between Sand t (t > 9) /

([xO-x(©F ) = (x* 1) +(x*(5)) <x2<t) (¥(9))

Anomalous diffusion: <x (t)

<[x(t) _ x(s)]2> — Kt” — Ks”
Process starting at t,,
<[X(t _to) o X(S _to)]2> = K(t _to)a _ K(S _to)a

Age s — t, at beginning of observation can be determined for « #1



Resampling of CTRW

p(E;) < exp(E;/E)
V ' VV v V v r. =7,exp(—E; /k,T) p&)

CTRW as a process with dependent, yet uncorrelated increments

< L 1 I

0 {

.IIII._[_[_HIIIII.IIIIII?IIII.JJ_>




Aging properties in CTRW
In normal diffusion: <[X(t )—X(t,) 2> <X2(t > 2D(t, -t,)
Explanation: Since <n(t)> t/z, <n t2)> <n(t )> <n(t —t )>

In CTRW ([x(t,) - x(t)]? >oc<n> (n(t))=(n))

¥

)

TR TR RS

0y t
;, ( t; t,—t >>t
tf‘ £t <<t

—— —ﬂ

The process ages.



Moving time average
(n(t)) = At” <x2(t)> =a’*(n(t)), .

\ﬁ/_/
(xt)-xt)F) =a[(n,), —(ne)),,]

*Ensemble average of moving time averages
= moving time average of ensemble av.

<<x2(t)>T>enS=azTl [linct+ty), - n(t)ens]dt' A

—

)" —t |dlt

‘For t<<T one gets: <<x2(t)>T> =a’AT* 't

ens

*Prediction: time dependent mean diffusion coefficient

K (T)=a>AT /2]




Moving time averages in CTRW

160 .
140} .
<x2(t)> -—tO'B,,»
e L
120} SO i 1
Ensemble-averaged behavior
100} \\>@ -
m) o moving time-averaged behavior
g 8o0r ’ in a single realization
60 ]
<x2(t)> ~t
401 T -
201
Nl L I 1 1 1 1
0 50 100 150 200 250 300 Ensemble-averaged
Time moving time-averaged behavior

Some numerical results for the case w/(t) ~t™°

A. Lubelski, IMS, J. Klafter, PRL 100, 250602 (2008)
Y. He, S. Burov, R. Metzler and E. Barkai, PRL 101, 058101 (2008)



Test on ensemble level

PRL 103, 038102 (2009)

PHYSICAL REVIEW LETTERS

week ending
17 JULY 2009

Elucidating the Origin of Anomalous Ditfusion in Crowded Fluids

Jedrzej) Szymanski and Matthias Weiss

Cellular Biophvsics Group (BIOMS), German Cancer Research Center, Im Newenheimer Feld 280, D-69120 Heidelberg, Germany
(Raraivad 17 Naramhar WNR- nuhlichad 15 Tuly 2())0)
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FIG. 2. Mean square displacement {r(f)?) for obstructed diffu-
sion (36% obstacle concentration), FBM, and CTEW (from top).
Open symbols denote the ensemble-averaged MSD, and cross-
like symbols denote the time-averaged MSD for a representative
trajectory. While both approaches coincide for FBM and ob-
structed diffusion, the curves differ for the CTRW due to weak
ergodicity breaking. For better visibility, MSD curves for FBM
and obstructed diffusion have been shified upwards (factor 30
and 250, respectively). Full lines scale as (r{f)?) ~ “%2; the
dashed line is linear in time.



p-variance test for
temporal homogeneity

Test on single trajectory level

- v r . k ench
PRL 103, 180602 (2009) PHYSICAL REVIEW LETTERS % OCTOBER 209

Fractional Brovwnian Motion Versus the Continuouos-Time Random Walk:
A Simple Test for Subdiffusive Dynamics

Marcin Magdeiare ® Aleksander Wermn,” and Krzysztofl Burnecki®
Hiigo Steinkhaus Center, Institute of Mathemarics and Computer Science, Wroclaw University of Technology,
Wisplanskiege 27, 50-370 Wrockaw, Poland

Joseph Elafter®
Sehool of Chemiery, Raymond and Bevedy Sackler Faoulty of Enter Sclences, Tel Aviv Undversity, Tel Aviv 69978, frrael

and Freiburg Inaiture for Advanced Snedies (FRIAS), University of Freiburg, 79104 Freiburg, Germany
{Received 6 May 20009, revised manuseript received 12 October 2007; published 30 October 2009)
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Properties of the most popular models

of subdiffusion

Environment | Model Correlations Aging prop. | Moving PDF

time av.
trapping CTRW | none aging normal non-Gauss.
labyrinthine | fractal antipersistent | equilibr. anomal. non-Gauss.
“changing” sBm none aging normal Gaussian
viscoelastic | fBm antipersistent | equilibr. anomal. Gaussian




« Anomalous iIs normal

* Happy families are all alike; every
unhappy family is unhappy in its own
way



Case study: Non-interacting particles in
a random potential

g :Z(Wijnj _Wji”i)

J

detailed balance

0 0 ;
w;n; =w;n;’  with

oM p(_gj AAAAS
"N KT yaDavavaVa




<Wij exp(— Elj>  Superdiffusion 1s impossible:
* 2 EM

D — KT The enumerator never diverges in
=a E finite dimensions and the
i . .
CXp| — —kT denominator never vanishes

Two (and only two) sources of subdiffusion in our system:
. E, . .
e Either <exp(— ﬁj> diverges (“strong energetic disorder”)

* or the percolation concentration in the system 1s unity, e.g. on the
percolation threshold, in 1d, or on a finitely ramified fractal
(“structural disorder”). No anomalous diffusion in random barrier
models ind > 1.

* both can apply simultaneously (“subdiffusion of mixed origins”)
e.g. in 1d barrier model

F. Camboni & IMS, Phys. Rev. E 85, 050104(R) (2012)



Two (and only two) sources of subdiffusion in our system:

e Either <exp(— kE_'II')> diverges (“strong energetic disorder”)
The disorder-averaged partition function diverges (at lower
limit). Different realizations of a finite system might be
strongly different.
* or the percolation concentration in the system is unity, e.g. on the
percolation threshold, in 1d, or on a finitely ramified fractal
(“structural disorder™).
The system may not homogenize even at largest scales.
Different realizations of a finite system might be strongly
different.
* both can apply simultaneously|(“subdiffusion of mixed origins”)
e.g. in 1d barrier model

Formal theory: Y. Meroz, IMS and J. Klafter, PRE 81 010101 (2010)



Aging and closeness to equilibrium

Initial distribution: Homogeneous

VLY

Final (equilibrium) distribution:

all particles in the deepest trap.

Final (equilibrium) distribution: (Sub)diffusion without dispersion
homogeneous (Anderson localization, not in CTRW?)



The (unequal) twins
Y. Meroz, IMS and J. Klafter, PRL 107, 260601 (2011)

i i i I i

S ! -
G. H. Weiss and S. Havlin, K. W. Kehr and R. Kutner,
Physica A 134, 474 (1986) Physica A 110, 535 (1982)

Markovian RW models, mapped on non-Markovian models
under projection (and averaging over realizations in RWRW)



The PDFs
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The FPT density
startat X =0 /\/\/\ﬁnish at X

\J V >
10° ——
R asymptotics comb |
— 21X -
f (t) E | | t—5/4 |
Lo ['(—-1/4)
E? 107
asymptotics RWRW _
I X2 ]
1078 _ f (t) = O64ﬁt3/2 ”‘_
10°

10° 10°



Aging properties

=1 | L1, pewn)=(xe +v-xt,)F)

MSD

t>0 t

There are three
curves here!
RWRW

t,=0

cCOMB

t,=1000 stationary

comb projections

non-stationary

10° 10" 10? 10° 10"
time steps



The (unequal) twins
Y. Meroz, IMS and J. Klafter, PRL 107, 260601 (2011)

i i i I i

S ! -
G. H. Weiss and S. Havlin, K. W. Kehr and R. Kutner,
Physica A 134, 474 (1986) Physica A 110, 535 (1982)

Markovian RW models, mapped on non-Markovian models
under projection (and averaging over realizations in RWRW)



Take home messages

Anomalous is normal

Happy families are all alike; every unhappy family
IS unhappy in its own way

Knowledge of the PDF as a function of time (and
even of an equation for this function) is not too
much

The most important distinction has to be made
between models with stationary increments and
models with uncorrelated increments.

Models of mixed origin make the situation even
more complex
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