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Different stories to tell:

• Normal diffusion
• Subdiffusion: Experiments, models, and 

mathematical instruments
– CTRW
– Percolation
– Slow modes of multiparticle models

• Aging
• Case study 1: REM 
• Case study 2: “The twins”: exactly solvable examples
• Conclusions



Emergence of normal diffusion
Einstein (1905)

Postulates:
0)
i) ∃ time interval τ < ∞, so that the
particle’s motion during the two 
consequent intervals is independent
ii) The displacements s during 
subsequent τ-intervals are 
identically distributed. 
For unbiased diffusion:
iii) The second moment of s exists
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Essentially, a 
Random Walk Model
(1880, 1900, 1905×2)

Stationary increments

Non-correlated 
increments
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RW models vs. continuum models
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Continuous

Stationary velocity process → x-process with stationary increments

Discrete
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Experimental techniques

• Ensemble properties:

• measurements of mass transport, current or polarization
• FRAP

•Single-particle properties:

•Trajectories
• single-particle tracking

•First passage times
• FRET

•Sojourn times
• FCS 

“Measure and fit!”



Why do we need it?

Experiment Mathematical model 
of the process

Physical model 
of the system

Mathematical model 
of other processes 

(e.g. reactions)

New experimentally 
relevant predictions

Statistical tests: Differ on ensemble and on the single trajectory level



Physical models
Crowded environments: experiments hint onto subdiffusion:

α < 1, or D = 0.
Possible sources of anomalous subdiffusion:

1. Trapping models as arising from variants of random potential 
models (energetic disorder, trapping environment) often 
translated to CTRW (in d = 3)

2. Trapping models of geometric nature (combs, “spikes”)
(even closer to CTRW)

3. Diffusion on fractal structures, e.g. on percolation clusters
(geometrical disorder, or labyrinthine environment). 

4. Temporal correlations due to slow modes (typical for
viscoelastic environments)



Physical models
Crowded environments: experiments hint onto subdiffusion.

α < 1, or D = 0.
Possible sources of anomalous subdiffusion:

1. Trapping models as arising from variants of random potential 
models (energetic disorder, trapping environment) often 
translated to CTRW (in d = 3)

2. Trapping models of geometric nature (combs, “spikes”)
(even closer to CTRW)

3. Diffusion on fractal structures, e.g. on percolation clusters
(geometrical disorder, or labyrinthine environment). 

4. Temporal correlations due to slow modes (typical for
viscoelastic environments)

(can be considered as a complex combination of fractal 
diffusion and projections from state to configuration space)



CTRW: Fractional diffusion (or Fokker-Planck) equation, or a 
couple of Langevin equations describing the evolution of the 
coordinate and of the clock time as functions of the operational
time (Fogedby’s approach).

Fractals: Percolation and other labyrinthine models. No equation 
known. Often approximately described by diffusion equations 
with distance-dependent diffusion coefficient.

fBm (viscoelastic models): Generalized (integrodifferential ) 
Langevin equation. No Fokker-Planck analogue known.

sBm: “Time-dependent diffusion coefficient taken seriously”: 
Diffusion equation with time-dependent diffusion coefficient. 
Often used by experimentalists for fitting of anomalous diffusion 
of unclear origin.

Mathematical instruments



Subdiffusion: In disordered solids…

The sum of slopes
is always 2

H. Scher and E. Montroll, 1975 



Explanation: Multple trapping and CTRW
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The subordination

PDF of the particle’s
position after n steps

(say, a Gaussian)

Probability to make
exactly n steps up to

the time t
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Short way to the result:
• Independent steps  => 
•Steps follow inhomogeneously in the physical time t.
•The number of steps up to the time t may be calculated using  the 
renewal approach:
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The the FDE can be derived from the properties of the parent process 
and those of subordinator (operational time)



Other relevant models: Percolation
Geometric disorder: Percolation cluster 
at criticality: Markovian model with 
non-iid steps. Mapped on a non-
Markovian model after averaging over 
realizations



slope 1/2

Slow modes: Subdiffusion in a Rouse polymer chain.
Each mode normally diffusing (OU-process).
More complex models: polymer networks, 
intramolecular interactions etc. 
Close relative: Single file diffusion in a 1d tube

Other relevant models: Polymers

The whole process is a non-Markovian process 
with stationary increments



Back to basics
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Displacement during the time interval between s and t (t > s)  

Anomalous diffusion with stationary increments:
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No age, no aging!

Normal diffusion was a process with stationary, non-correlated 
increments.
Position-position correlation function



Anomalous diffusion with symmetric non-correlated increments
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Displacement during the time interval 
between s and t (t > s)  
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Age s – t0 at beginning of observation can be determined for 1≠α



Resampling of CTRW
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Aging properties in CTRW
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Ensemble-averaged 
moving time-averaged behavior

Ensemble-averaged behavior

moving time-averaged behavior
in a single realization

Moving time averages in CTRW

8.1~)( −ttψSome numerical results for the case
A. Lubelski, IMS, J. Klafter, PRL 100, 250602 (2008)
Y. He, S. Burov, R. Metzler and E. Barkai, PRL 101, 058101 (2008)



Test on ensemble level



Test on single trajectory level

p-variance test for 
temporal homogeneity



Properties of the most popular models 
of subdiffusion

Environment Model Correlations Aging prop. Moving 
time av.

PDF

trapping CTRW none aging normal non-Gauss.

labyrinthine fractal antipersistent equilibr. anomal. non-Gauss.

“changing” sBm none aging normal Gaussian

viscoelastic fBm antipersistent equilibr. anomal. Gaussian



• Anomalous is normal

• Happy families are all alike; every 
unhappy family is unhappy in its own 
way



Case study: Non-interacting particles in 
a random potential
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• Superdiffusion is impossible: 
The enumerator never diverges in 
finite dimensions and the 
denominator never vanishes

Two (and only two) sources of subdiffusion in our system:

• Either                          diverges (“strong energetic disorder”)

• or the percolation concentration in the system is unity, e.g. on the 
percolation threshold, in 1d, or on a finitely ramified fractal 
(“structural disorder”). No anomalous diffusion in random barrier 
models in d > 1.
• both can apply simultaneously (“subdiffusion of mixed origins”)
e.g. in 1d barrier model

⎟
⎠
⎞

⎜
⎝
⎛−

kT
Eiexp

F. Camboni & IMS, Phys. Rev. E 85, 050104(R) (2012)



Two (and only two) sources of subdiffusion in our system:

• Either                          diverges (“strong energetic disorder”)

The disorder-averaged partition function diverges (at lower 
limit). Different realizations of a finite system might be 
strongly different.

• or the percolation concentration in the system is unity, e.g. on the 
percolation threshold, in 1d, or on a finitely ramified fractal 
(“structural disorder”). 

The system may not homogenize even at largest scales. 
Different realizations of a finite system might be strongly 
different.

• both can apply simultaneously (“subdiffusion of mixed origins”)
e.g. in 1d barrier model
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Formal theory: Y. Meroz, IMS and J. Klafter, PRE 81 010101 (2010) 



Aging and closeness to equilibrium
Initial distribution: Homogeneous

Final (equilibrium) distribution: 
all particles in the deepest trap.
(Sub)diffusion without dispersion
(Anderson localization, not in CTRW*)

Final  (equilibrium) distribution: 
homogeneous



The (unequal) twins

G. H. Weiss and S. Havlin, 
Physica A 134, 474 (1986)

K. W. Kehr and R. Kutner, 
Physica A 110, 535 (1982)

x

Y. Meroz, IMS and J. Klafter, PRL 107, 260601 (2011)

Markovian RW models, mapped on non-Markovian models 
under projection (and averaging over realizations in RWRW)



The PDFs



The FPT density
start at x = 0
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Aging properties

There are three 
curves here!

ta=0

ta=1000

ta=3000

ta> 0
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The (unequal) twins

G. H. Weiss and S. Havlin, 
Physica A 134, 474 (1986)

K. W. Kehr and R. Kutner, 
Physica A 110, 535 (1982)

x

Y. Meroz, IMS and J. Klafter, PRL 107, 260601 (2011)

Markovian RW models, mapped on non-Markovian models 
under projection (and averaging over realizations in RWRW)



Take home messages
• Anomalous is normal
• Happy families are all alike; every unhappy family 

is unhappy in its own way
• Knowledge of the PDF as a function of time (and 

even of an equation for this function) is not too 
much

• The most important distinction has to be made 
between models with stationary increments and 
models with uncorrelated increments. 

• Models of mixed origin make the situation even 
more complex
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