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The diffusion equation (1855)

Continuity %n(x,t):—divj(x,t) E> the diffusion equation

%)
+ linear response j=—K gradn(x,t) a”(xit) = KAN(x,t)




Emergence of normal diffusion
Einstein (1905)

O
Postulates:
0)n(x,t) = P(x,1) e
1) 3 time interval T < «, so that the @ ®
particle’s motion during the two
consequent intervals Is independent |
I1) The displacements s during | A :
subsequent t-intervals are identically
distributed. -
For unbiased diffusion: ¢(s) = ¢(~s) | Essentially, a

iii) The second moment of s exists Random Walk Model
° (1880, 1900, 1905x2)
A= j32¢(s)ds < o0




”Can any of you readers refer me to a work wherein | should find a
solution of the following problem, or failing the knowledge of any
existing solution provide me with an original one? | should be extremely
grateful for the aid in the matter. A man starts from the point O and
walks | yards in a straight line; he then turns through any angle whatever
and walks another | yards in a second straight line. He repeats this
process n times. Inquire the probability that after n stretches he is at a
distance between r and r + or from his starting point O”.

K. Peasron, 1905




N
Motion as a sum of small independent increments: X(t) = Zsi
ol

mean free path mean relaxation time
A= <Si2 >1/2 T oC ﬂ/<v2>1/2

O<A< O<7r<

(XE(t)) = <£ZN: s. j2>\‘N (s?) +M
the central limit theorem

i1
1/2 X’

P(x,t) = (42Kt) " “exp| ———

(x,t) =( ) XP( 4Ktj

with K « <V2>Z' =7



FEATURES

An increasing number of natural phenomena do not fit
into the relatively simple description of diffusion developed by Einstein a century ago

Anomalous diffusion

spreads its wings o)«

a+1

Joseph Klafter and Izor M Sokolov

AS ALL of us are no dounbt aware, this
vear has been declared “world year of
physies” to celebrate the three remark-
able breakthronghs made by Albert
Eimnstein in 1905, However, 1t 15 not so
well known that Einsteins work on
Browmanmotion — the randommotion
of tiny particles first observed and m-
veshigated by the botamst Robent Brown
in 1827 — has been cited more times in
the saenthc lterature than his more However, Fick’s approach was purely
larmous papers on special relativity and phenomenologeal, based on an anal-
the quantum nature of light. Inaseries  5i5e behaviour- albatrosses fybythe ulesof 28 With Fourier's heat equation — it
of publications that meluded his doc-  anomalous diffusion. ook Einstemn o dertve the difflusion
toral thesis, Emstein derved an equa- equation from hrst princples as part
|'i|"l|'| rl"l'l'F%'l'l"ﬂ'-'l'l'i'.'l'l'l '|'|'|I"l|'il"l|'| I-'I'I"II'I'I|'|'|'i|'-|'l"r\-|:l"l"l'|'l'il"'I'l'l-il'll'"i'l'lll""l-\'. =1 rl"'.'ll I"lr I'I'il-\'. 1'|'I"I'|'I-¢' i1l .IE.'I'I"I'\\'I'I'i'.l'I'I |'|'|I"l|'il"l'|'| Fll"" I"I'il"l |I'|'i'\-|: I"I'I.' '.1'\-|:'\-i.|||'|'|'i|'ll'|'

n Inving orgamsms. In 1855 Fick pub-
lished the famous diffusion equaton,
2 which, when written in terms of prob-
= ahility, is c/ o = Dl o, where p gives
" the probability of finding an object at
acertain position x, at a time £ and £1s
the diffusion coetheent. Fick went on o
show that the mean-squared displace-
ment of an object undergomg diffusion

15 240,

PasrnEanlin



The Zoo of Superdiffusion

4 Superdiffusion in monkey behaviour

100m

start
end —20m

The typical trajectories of spider monkeys in the forest of the Mexican
Yucatan peninsula display steps withvariable lengths, which correspond toa
diffusive processthatisfasterthan that of normal diffusion. An example of
such atrajectory is shown on the left. & magnified part of it is shown onthe
right; thisimage looks qualitatively similar to the larger-scale trajectony, which
is an important property of Lewy walks. Similar behaviouris found in the
foraging habits of other animals, and could mean thatanomalous diffusion
offers a bettersearch strategy than that of normal ciffusion.

R Fernandez et al. 2004 Lévy walk patterns in the foraging

movements of spider monkeys (Ateles geoffroyi); Behav. Ecol.
Sociol. 55 223-230



An old story: In disordered solids...
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Explanation: Multple trapping and CTRW

E
P(E;) < exp(-E; /E,)
V : VV v V v r. =7,eXp(E; [k, T)  PE)
| ,

0 t

The waiting-time distribution between the two jumps () oc t™
with a =k,T / E,

Diffusion anomalies for 0 < a < 1: the mean waiting time diverges!

Mean density of steps M (t) = aN oc t4”

dt
Mean squared displacement <x (t)> oct” with o<1



Spectral power

Spectral power

more subdiffusion...
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3 Subdiffusion in cells

100nm
(—
Researchers have found that theway proteins diffuse across cell
membranes can be described by anomalous diffusion thatis slower than the
normal case. (3l Thisis a simulationof such arandomwalk, whichshows a

2 mstimeframe overwhich a protein “hops” between 120 nm?
compartmentsthought to be formed by the cell's oytoskeleton. (b) The
experimental trajectories of proteins in the plasma membrane of a live cell
(shown in a 0,025 ms timeframe) provide evidence for thistrapping nature,
as shown by the different colours. The longresidence times in these
compartments isthought to be the origin ofthe anomalous behaviour,

K Ritchie et al., Biophys. J. 88 2266 (2005)

J.W. Kirchner, X. Feng & C. Neal, Nature 403, 524 (2000),
M. Dentz, A. Cortis, H. Scher, B. Berkowitz, Adv. Water Res. 27, 155 (2004)



Experiments on protein relaxation

H. Yang, G. Luo, P. Karnchanaphanurach,

T.-M. Louie, I. Rech, S. Cova, L. Xun,

X. Sunney Xie, Science 302, 262 (2003)
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e Anomalous IS norma

 Happy families are all alike; every
unhappy family is unhappy In its own way:

Possible sources of anomalous subdiffusion:

1. CTRW with power-law waliting times as arising from SI\/I:><

random potential models (energetic disorder)

2. Diffusion on fractal structures, e.g. on the percolation ~ M: ><
cluster (geometrical disorder)

3. Temporal correlations due to slow modes. NM><+><

The three cases correspond to different models and are
described using different theoretical instruments.



An old story: In disordered solids...
Mean field model for a rugged potential landscape (trap model)
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| } clock time t
1 o I p—

operational time n

nl(tz) — "(f;)




The Subordination

PDF of the particle’s
position after n steps
(say, a Gaussian)

Transition to continuum:

PO = YW (X1 7,0

Probability to make
exactly n steps up to
the time t

P(xt) = [ W (x,2)T (z,t)d7

operational time



Short way to the result:

e Independent steps => <x2(t)> =a’(n(t))

«Steps follow inhomogeneously in the physical time t.

*The number of steps up to the time t may be calculated using the
renewal approach:

no steps up to time t: %o (t) =1- JW(t )at

lstepuptotimet: x(t)= Iw(t)lo(t t')dt’

n steps up to time t; %, (t) = jw(t ) ¥ (t=1)dt’

(V)= nz, (0 =7




A0

After Laplace-transform: X (U) =

() =17 "’(“’an =2 ‘/’(“)Zw(u)—~w ()

_1-y(u) da v (u)
= v U)- Zw()— o]

w(t)oct™ w(u)=l-cu” +...

[(n(t)) o<t} (fi())=ctu™e




Nonstationarity
In normal diffusion: <[X(t2) — x(tl)]2> = <X2(t1 _t2)> =2D(t, -t,)
Explanation: Since  (n(t))=t/z,(n(t,))—(n(t,))=(n(t, —t,))
In all other cases <[x(t2) = x(tl)]2> oc (n)=(n(t,))—(n(t,))

=¥

)

o

TRITRTTN | =

=0 N t ’[>
L 3 (t —t, > t,
2 t)t—t<<t

The process ages.

—— —ﬂ

eAnomalous diffusion at long times
eNormal diffusion at short times



E.g.: Death of linear response

t =0 Ny t itz t

| ' SIRYC
m, (1) = a<n(t)> T 2 3 4 5
—a[N@)) - (N@))] o™
= const-(t7 —tf) ' ﬁ

1 2 3 4 5
a=uf :
Death of linear response



Fractional subdiffusion (CTRW)

W (X)=[1-& (X)]/2 w_(X)=[1+&f (X)]/2

)

Model:

Waiting time pdf:
w(t)oct ™ withO<a <1




A master equation: probabillity balance

Local balance p;(t)=J."-J; HH (0 >
*Balance during transitions 4

I (1) = Wiy (1) 32, (1) + Wi 5 (1) 1 () t
eL_inear response to bias

WO =45 £

1
Wi,y (t) = 5 —g f(t) t <t &

-1 i+1

 Balance equation

P, () =w,_,; (1) I (1) +w,,,; (1), () =7 (1)




Memory function

«Jump probability per unit time at time t:
37 (©) = @) p,(0)+ [w(t—t)J; )t

no jumps oarrivalatt=t Density
*Express J;" through p.(t)=J"-J. of steps
t
3 ®=p OO+ [wt-t)p )+ @))dt
In Laplace dorr?ain
3, (U) = () pAOf + 7 ([, (u) ~ phof + 3y ()
* In Laplace domain * In time domain

~ "
= o] N SR It VN I
Ji (u)=u W) p; (u) Ji (1) =Dp(t) = dtﬂM (t t)lpi (t')dt




Generalized master equation

General balance equation
p (t) — WI -1, (t)‘J |_1(t) + Wi+1,i (t)‘J i:-l (t) o J i_ (t)1
+ memory kernel

I (1) = cbp(t)——jM(t ') p, (t')dt
= generalized master equatlon

dpcilt(t) = Wiy (PP, (') + W,y (PP, (1) = PPy (1)

For power-law waiting time densities y(t) ct™ one has ® oc,D,

Continuum limit: 5
L
FP




Aging and death of linear response

m, (t) = 4, j; dt'sin wt'M (t') Trick: sinwt = (e —e ')/ 2i
+ shift theorem In Laplace domain

MU-i®)—M(U+io)

m, (u) = 4, =
21U =
; 1.5
Fort — oo linear response
stag nates: 10
m,(t) > —uf, IMM (-iw)
0.5
I.M. Sokolov and J. Klafter, J
Phys. Rev. Lett. 97, 140602 (2006) ol ‘ ‘ ‘ ‘ ‘
0 2m 4 61 &n 107 t
Exp.: “Experimental quenching of harmonic stimuli ...” by P.Allegrini et al.

Numerics: M.-C. Neel, A. Zoia and M. Joelson, “Mass transport subject to time-dependent flow with
nonuniform sorption in porous media”, PRE 80, 056301 (2009)



e eI e . week ending
PRL 103, 030602 (2009) PHY SICAL REVIEW LETTERS 17 JULY 2009

Experimental Quenching of Harmonic Stimuli: Universality of Linear Response Theory

Paolo Allugrini,' Mauro Hulugnu,l'ﬂ' Leone I*'ﬂ:-u.r.u[]i,I Paolo 'f_fﬂrijguli[]i,"1'{l and Ludovico Silvestri™
\Dipartimento di Fisica “E. Fermi,” Universita di Pisa and INFM CRS-SOFT, Largo Pontecorve 3, 56127 Pisa, haly
*Center Jor Nonlinear Science, University of North Texas, PO. Box 311427, Denton, Texas 76203, USA

Instituto de Alta Irnvestigacion, Universidad de Tarapaca-Casilla 6-D Arica, Chile
Ustitute dei Processi Chimico Fisici del CNR Area della Ricerca di Pisa, Via G. Moruzzi 1, 56124 Pisa, Italy

L EN.S., University of Florence, via Nello Carrara 1, 50019 Sesto Fiorentino (FI), Italy
(Received 26 Mayv 2009 revised manuscript received 16 June 2009; published 15 July 2009)

We show that liquid crystals in the weak turbulence electroconvective regime respond to harmonic
perturbations with oscillations whose intensity decay with an inverse power law of time. We use the results
of this experiment to prove that this eftect 15 the manifestation of @ form of lmear response theory (LET)
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- . . i week ending
PRL 103, 030602 (2009) PHY SICAL REVIEW LETTERS 17 JULY 2009

Experimental Quenching of Harmonic Stimuli: Universality of Linear Response Theory

Paolo Allegrini,' Mauro Bologna, ™ Leone Fronzoni,! Paolo Grigolini,'"=* and Ludovico Silvestri'”
'Dipartimento di Fisica “E. Fermi,” Universita di Pisa and INFM CRS-SOFT, Largo Pontecorve 3. 56127 Pisa, haly
*Center for Nonlinear Science, University of North Texas, PO. Box 311427, Denton, Texas 76203, USA
Instituto de Alta Imvestigacion, Universidad de Tarapaca-Casilla 6-D Arica, Chile
stituto dei Processi Chimico Fisici del CNR Area della Ricerca di Pisa, Via G. Moruzzi 1, 56124 Pisa, Italy
L EN.S., University of Florence, via Nelle Carrara 1, 50019 Sesto Fiorentine (FI), Italy
(Received 26 May 2009 revised manuscript received 16 June 2009; published 15 July 2009)
We show that liquid crystals in the weak turbulence electroconvective regime respond to harmonic
perturbations with oscillations whose intensity decay with an inverse power law of time. We use the results
of this experiment to prove that this effect is the manifestation of a form of linear response theory (LET)
valid in the out-of-equilibrium case, as well as at thermodynamic equilibrium where it reduces to the
ordinary LRT. We argue that this theory is a universal property, which is not confined to physical processes
such as mrbulent or excitable media. and that it holds tue in all possible conditions. and for all possible

We argue that this theory is a universal property, which is not
confined to physical processes such as turbulent or excitable
media, and that it holds true in all possible conditions, and for all
possible systems, including complex networks, thereby
establishing a bridge between statistical physics and all the
fields of research in complexity.




Ham’s schon mal eins g’sehn?

(Have you ever seen one?)
Ernst Mach

Single molecule tracking

Kusumi, A., Sako, Y. & Yamamoto, M. Confined lateral diffusion of membrane
receptors as studied by single particle tracking (nanovid microscopy). Effects of
Calcium-induced differentiation in cultured epithelial cells. Biophys. J. 65,
2021-2040 (1993).

Kenich, S., Ritchie, K., Kajikawa, E., Fujiwara, T. & Kusumi, A. Rapid hop
diffusion of a GOprotein-coupled receptor in the plasma membrane as revealed by
single-molecule techniques. Biophys. J. 88, 3659-3680 (2005).

Golding, I. & Cox, E.C. Physical nature of bacterial cytoplasm. Phys. Rev. Let.
96:098102-1 — 09102-4 (2006).

Seisenberger, G., Ried, M.U. Endrel3, T., Baning, H., Hallek, M. & Brauchle, C.
Real-time single-molecule imaging of the infection pathway of an adeno
-associated virus. Sience. 294, 1929-1932 (2001)



In most experiments on subdiffusion, say in disordered
semiconductors, the ensemble average is implied by the
multiparticle nature of the problem.

*In single particle tracking experiments moving time average Is
a typical procedure used to obtain the diffusion coefficient.

Normal diffusion:

(X* (1)) = 2Kt

Normal diffusion is an ergodic process: The ensemble average
gives the same result as a time-moving average

(X)) =Ti_t [ Ix+t)—x(t)]dt

for a single long trajectory.



Although the discrimination between normal diffusion
and subdiffusion according to

(X* (1)) = 2Kt

and
2K,
I'l+a)
seems simplé\ in practice, however, the situation iIs quite
Involved.

<x2(t)>ens‘

*The question of what is the *“correct” averaging procedure in
the anomalous case has seldom been discussed.



Model simulations
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A. Lubelski, I.M.S, J. Klafter, PRL 100, 250602 (2008)
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Some numerical results for the case w(t) ~t™°



Nonergodicity mimicks inhomogeneity...
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The distribution p(K) of diffusion coefficients obtained from time
averaged single trajectories for the case of T=2-10°, and t=500.

A. Lubelski, 1.M.Sokolov and J. Klafter, PRL 100, 250602 (2008)
Y. He, S. Burov, R. Metzler and E. Barkai, PRL 101, 058101 (2008)
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Seisenberger, G., Ried, M.U. Endrel3, T., Buning, H., Hallek, M. & Brauchle, C., Real-time single-molecule imaging of the
infection pathway of an adeno-associated virus. Sience. 294, 1929-1932 (2001)



Explanation of the result for ((x®),)
<n(t)>ens ~ At” <x2(t)> =a*(n(t)), .
(Kt -x@wF)  =a’[nt,),, - (),

Interchanging the sequence of averaging

(o)), = lntes0),, ~(ne), -

0 0

T

o] ot

*Fort << T one gets: <<x2(t)>T> =a’AT* ™t

ens

*Prediction: time dependent mean diffusion coefficient
Ko (T) =aAT“ /2]




Numerical check for the prediction

-G
a=0.5
a -6.oF .
® Y=-0.52764 * X + 0.74174
s 7 i
Y
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Advice for experimentalists:
Check for the time-dependence of diffusion coefficient!



Numerics/Experiments

Absence of nonergodicity, and the subdiffusive behavior of the
moving time averages Is a witness against a whatever trap model

of anomalous diffusion.
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PRL 103, 038102 (2009)

week ending

PHYSICAL REVIEW LETTERS 17 JULY 2009

Elucidating the Origin of Anomalous Ditfusion in Crowded Fluids

Jedrzej) Szymanski and Matthias Weiss

Cellular Biophvsics Group (BIOMS), German Cancer Research Center, Im Newenheimer Feld 280, D-69120 Heidelberg, Germany
(Received 12 December 2008; published 15 July 2009)
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FIG. 2. Mean square displacement {r(f)?) for obstructed diffu-
sion (36% obstacle concentration), FBM, and CTEW (from top).
Open symbols denote the ensemble-averaged MSD, and cross-
like symbols denote the time-averaged MSD for a representative
trajectory. While both approaches coincide for FBM and ob-
structed diffusion, the curves differ for the CTRW due to weak
ergodicity breaking. For better visibility, MSD curves for FBM
and obstructed diffusion have been shified upwards (factor 30
and 250, respectively). Full lines scale as (r{f)?) ~ “%2; the
dashed line is linear in time.



Universal fluctiuations

|.M. Sokolov, E. Heinsalu, P. Hanggi and I. Goychuk
Universal fluctuations in subdiffusive transport
EPL 86 (2009) 30009

M. Esposito, K. Lindenberg and 1.M. Sokolov
On the relation between event-based and time-based current statistics,

Europhys. Lett. 89, 10008 (2010)
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Fig. 1: Two-level system embedded between a left (L) and a
right (R) particle reservoir.




“‘normal” motion

@/er tired! ‘
v(t) =V, + v(t)

Two different means

=)=

and

— 1
V(L) = (v) = L<m>

both converge to a sharp and the same limit for t—o or L —o
(a property called self-averaging).

— L

Although it is not quite correct, one often uses V(L) = <T(L)> .



*anomalous” motion (TOF)

#o o §

Fig. 6.2. The effect of high barriers on the average mobility as perceived by I. Villain.

(stolen from Haus and Kehr)



Fixed-time and TOF setups

length Iin units of <a>
subvelocity in units of

v, =1+ a)<a>/1“




Fixed-time velocity

‘5x ajn(t) (n>> 1)‘ t = T fixed

no steps up to time t: p(0,t) = y,(t) =1- jw(t)dt

l1stepuptotimet: p@t)=x )= jw(t)p(Ot t")dt'

n steps up to time t: p(n,t) =y, (t) = jc,y(t)p(n —1t—t")dt’

p(n,u) = 1- VJ(U) OIS exp[n In(l—u“)]; T exp(— nu“)

= =
p(nTy=L_T L(Tj CiL, (0} =e™

o n1+1/05 a I,.l1/05




Universal fluctuations

Scaled velocity &£ =v/v,

Distribution of scaled velocity:

_ @+ o)t . (F(1+ a)jlla
p(S,) |

Moments of scaled velocity

So =1 Independenton T
— 2 (l+a) = .
So = Universal fluctuations

“ T(l+2q)
Moments have to be obtained by additional ensemble averaging!



TOF setup

L fixed = number of steps n fixed

Change of variablesto £ =I"'(1+«a)L/t”

p(t) _ n—l/a I—a (n—llat)

U

Note: mean
velocity cannot
be defined as
v=L/t)"
since (t)
diverges!!! *

p(s.) =

rd+a)"”

a§1+1/0!

o

|

I'l+ a)

Ca

]1/05

the same as In the fixed time setup.




Same for periodic potential

V (X) =V, cos(27x) — Fx

Dimensionless velocity is defined as

=v/v, (F)

with

K A[1—-exp(-FFA)]
jdxj dy exp[— AU (x) —U (y)]]

as following from the solution of FFPE



P(Ve,)

Large & - asymptotics

p(E,) = Aar) £/ gyl B(ar) £10- |




Fig. 1. Two-level system embedded between a left (L) and a

right (R) particle reservoir.

Time-driven statistics
(analog fixed-time)

)

L y(t)
Py —+—: B
e R O e
pL , o PE

Event-driven statistics

B
-r._._.-l'"r’r

(analog TOF)

e

1

v Zk P, (k) <|m>k:km<
im{1") = I'(m+1) (Plg—Povl
et LT Tam+D) | 8 + 1

7)¥

P (t)




Conclusions

Anomalous IS norma

Happy families are all alike; every
unhappy family is unhappy in its own way

In subdiffusive systems governed by
CTRW only ensemble averages attain
sharp values, the time averages show
universal fluctuations!

If you want to get mean velocity or current,
average velocity or current
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