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What are fluctuation and work theorems
about?

Small systems: fluctuations may become comparable to
average quantities.

Can one infer thermal equilibrium properties from
fluctuations in nonequilibrium processes?
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Jarzynski’s equality
C. Jarzynski, PRL 78, 2690 (1997)

Z−1(t0)e−βH(to) non-eq.

H(t0) H(tf)H(tf)

t

{H(t)}tf ,t0 : protocol
w: work performed

〈e−βw 〉 = e−β∆F

∆F = F (tf )− F (t0), F (t) = −β−1 ln Z (t)

〈·〉: average over realizations of the same protocol

Jensen’s inequality : ∆F ≤ 〈w〉 Second Law
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Crooks’ fluctuation theorem

ptf ,t0(w)

pt0,tf (−w)
= e−β(∆F−w) G.E. Crooks, PRE 60,2721 (1999)
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ishingly rare with increasing system size. For large sys-
tems, the conventional second law emerges.

The Jarzynski equality
The various FTs that have been reported differ in the de-
tails of such considerations as whether the system’s dy-
namics are stochastic or deterministic, whether the kinetic
energy or some other variable is kept constant, and
whether the system is initially prepared in equilibrium or
in a nonequilibrium steady state. A novel treatment of dis-
sipative processes in nonequilibrium systems was intro-
duced in 1997 when Christopher Jarzynski reported a non-
equilibrium work relation,4 now called the Jarzynski
equality (JE). (See PHYSICS TODAY, September 2002, page

19.) The JE indicates a practical way to determine free-
energy differences. Consider a system, kept in contact with
a bath at temperature T, whose equilibrium state is de-
termined by a control parameter x. Initially, the control pa-
rameter is xA and the system is in an equilibrium state A.
The nonequilibrium process is obtained by changing x ac-
cording to a given protocol x(t), from xA to some final value
xB. In general, the final state of the system will not be at
equilibrium. It will equilibrate to a state B if it is allowed
to further evolve with the control parameter fixed at xB.
The JE states that 

(4)

where DG is the free-energy difference between the equilib-
rium states A and B, and the angle brackets denote an 
average taken over an infinite number of nonequilibrium
experiments repeated under the protocol x(t). Frequently,
the JE is recast in the form ∀exp(⊗Wdis)/kBT¬ ⊂ 1, 
where Wdis ⊂W ⊗ DG is the dissipated work along a given
trajectory.

The exponential average appearing in the JE implies
that ∀W¬ � DG or, equivalently, ∀Wdis¬ � 0, which, for macro-
scopic systems, is the statement of the second law of ther-
modynamics in terms of free energy and work. An impor-
tant consequence of the JE is that, although on average
Wdis � 0, the equality can only hold if there exist nonequi-
librium trajectories with Wdis � 0. Those trajectories, some-
times referred to as transient violations of the second law,
represent work fluctuations that ensure the microscopic
equations of motion are time-reversal invariant. The re-
markable JE implies that one can determine the free-
energy difference between initial and final equilibrium
states not just from a reversible or quasi-static process that
connects those states, but also via a nonequilibrium, irre-
versible process that connects them. The ability to bypass
reversible paths is of great practical importance.

In 1999, Gavin Crooks related various FTs by deriv-
ing a generalized theorem for stochastic microscopically
reversible dynamics.5 The box below gives details. 
The past six years have seen further consolidation, and
physicists now understand that neither the details of just
which quantities are maintained constant during the dy-
namics nor the somewhat differing interpretations of en-
tropy production, entropy production rate, dissipated
work, exchanged heat, and so forth lead to fundamentally
distinct FTs.

exp ⊂ exp⊗ ⊗
DG

k TB k TB
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Figure 4. Testing the Jarzynski equality. A molecule of RNA
is attached to two beads and subjected to reversible and ir-
reversible cycles of folding and unfolding. A piezoelectric
actuator controls the position of the bottom bead, which,
when moved, stretches the RNA. An optical trap formed by
two opposing lasers captures the top bead, and the change
in momentum of light that exits the two-beam trap deter-
mines the force exerted on the molecule connecting the two
beads. The difference in positions of the bottom and top
beads gives the end-to-end length of the molecule. The
blowup shows how the RNA molecule (green) is coupled
with the two beads via molecular handles (blue). The han-
dles end in chemical groups (red) that can be stuck to com-
plementary groups (yellow) on the bead. The blowup is not
to scale: The diameter of the beads is around 3000 nm,
much greater than the 20-nm length of the RNA.

The Crooks Fluctuation Theorem

Gavin Crooks provided a significant generalization of an important fluctuation theorem (FT) obtained earlier by Christopher
Jarzynski. As described in the text, the Jarzynski equality (JE) relates the change DG in free energy of two equilibrium states

to an appropriate work average calculated with an irreversible path. In the Jarzynski scenario, and also in Crooks’s general-
ized FT, the system is initially in thermal equilibrium but then driven out of equilibrium by the action of an external agent. Let
xF(s) denote a time-dependent nonequilibrium “forward” process for which the variable s runs from 0 to some final time t. The
forward process initially acts on an equilibrium state A and it and ends at a state B that is not at equilibrium. In the reverse
process, the initial state B is allowed to reach equilibrium and the system evolves to a nonequilibrium state A. The nonequi-
librium protocol for the reverse process xR(s) is time-reversed with respect to the forward one, xR(s) ⊂ xF(t ⊗ s), so that both
processes last for the same time t. Let PF(W) and PR(W) stand for the work probability distributions along the forward and re-
versed processes respectively. Then the Crooks FT asserts

The Crooks FT can be manipulated to yield the JE. It also resembles the Gallavotti–Cohen FT (equation 3) derived for
steady-state systems if one identifies st with Wdis /T ⊂ (W ⊗ DG)/T. The main difference is that the Gallavotti–Cohen relation
is asymptotically valid, whereas the Crooks theorem holds for any finite time t.

⊂ expP WF( )

P WR ( )⊗ k TB

W G⊗D (( .

along the unfolding path while (absolute) values smaller than DG
occur more often along the refolding path. As can be seen from
equation (1), the CFT states that although PU(W), PR(2W) depend
on the pulling protocol, their ratio depends only on the value of DG.
Thus the value of DG can be determined once the two distributions
are known. In particular, the two distributions cross at W ¼ DG:

PUðWÞ ¼ PRð2WÞ )W ¼ DG ð3Þ

regardless of the pulling speed. Although the simple identity (3)
already gives an estimate of DG, it is not necessarily very precise
because it uses only the local behaviour of the distribution around
W ¼ DG. Using the whole work distribution increases the precision
of the free-energy estimate19. In particular, as we show below, when
the overlapping region of work values between the unfolding and
refolding work distributions is too narrow (as may happen for large
values of the average dissipated work, defined as kWdisl ¼ kWl 2
DG), the use of Bennett’s acceptance ratio method20 makes it possible
to extract accurate estimates of DG using the CFT (see the Sup-
plementary Information).
We first experimentally test the validity of the CFT for a molecular

transition occurring near equilibrium. For this, we use a short
interfering (si)RNA hairpin that targets the messenger RNA of the
CD4 receptor of the human immunodeficiency virus (HIV)11 and
that unfolds irreversibly but not too far from equilibrium at acces-
sible experimental pulling speeds (dissipated work values less than
6kBT). Under these conditions, the unfolding and refolding work
distributions overlap over a sufficiently large range of work values to
justify the use of the direct method to experimentally test equation
(1). The work done on the molecules during either pulling or
relaxation is given by the areas below the corresponding force–
extension curves (Fig. 1).
Unfolding and refolding work distributions at three different

pulling speeds are shown in Fig. 2. Irreversibility increases with the
pulling speed and unfolding–refolding work distributions become
progressively more separated. Note, however, that the unfolding and
the refolding distributions cross at a value of the work DG¼
110:3^ 0:5kBT that does not depend on the pulling speed, as
predicted by equation (3). Moreover, the work distributions also

satisfy the CFT, that is, equation (1) (see the Supplementary
Information). We also notice that work distributions are compatible
with, and can be fitted to, gaussian distributions (data not shown).
After subtracting the contribution arising from the entropy loss due
to the stretching of the molecular handles attached on both sides of
the hairpin (DGhandles ¼ 23.8 kBT) and of the extended single-
stranded (ss)RNA ðDGssRNA ¼ 23:7^ 1kBTÞ from the total work,
DGexp ¼ 110:3^ 0:5kBT, we obtain for the free energy of unfolding
at zero forceDG

exp
0 ¼ 62:8^ 1:5kBT ¼ 37:2^ 1kcalmol21 (at 258C,

in 100mM Tris-HCl, pH 8.1, 1mM EDTA), in excellent agreement
with the result obtained using the Visual OMP from DNA software21

DGmfold
0 ¼ 38kcalmol21 (at 258C, in 100mM NaCl).
To extend the experimental test of the validity of the CFT to the

very-far-from-equilibrium regime where the work distributions are
no longer gaussian, we apply the CFT to determine: (1) the difference
in folding free energy between an RNA molecule and a mutant that
differs only by one base-pair, and (2) the thermodynamic stabilizing
effect of Mg2þ ions on the RNA structure. The RNAwe consider is a
three-helix junction of the 16S ribosomal RNA of Escherichia coli12

that binds the S15 protein. The secondary structure of this RNA is a
common feature in RNA structures22–24 that plays, in this case, a
crucial role in the folding of the central domain of the 30S ribosomal
subunit. For comparison, and to verify the accuracy of the method,
we have pulled the wild type and a CzG to GzC mutant (C754G to
G587C) of the three-helix junction.
Figure 3 depicts the unfolding and refolding work distributions for

the wild-type and mutant molecules (work values were binned into
about 10–20 equally spaced intervals). For both molecules, the
distributions display a very narrow overlapping region. In contrast
with the hairpin distribution, the average dissipated work for the
unfolding pathway is now much larger—in the range 20–40kBT —
and the unfolding work distribution shows a large tail and strong
deviations from gaussian behaviour. Thus, these molecules are ideal
to test the validity of equation (1) in the far-from-equilibrium
regime. As shown in the inset of Fig. 3, the plot of the log ratio of
the unfolding to the refolding probabilities versus total work done on
the molecule can be fitted to a straight line with a slope of 1.06, thus
establishing the validity of the CFT (see equation (1)) under far-
from-equilibrium conditions. Ourmeasurements reveal the presence
of long tails in the work distribution PU(W) along the unfolding path

Figure 2 | Test of the CFT using an RNA hairpin. Work distributions for
RNA unfolding (continuous lines) and refolding (dashed lines). We plot
negative work, PR(2W), for refolding. Statistics: 130 pulls and three
molecules (r ¼ 1:5 pN s21), 380 pulls and four molecules (r ¼ 7:5 pN s21),
700 pulls and three molecules (r ¼ 20:0 pN s21), for a total of ten separate
experiments. Good reproducibility was obtained among molecules (see
Supplementary Fig. S2). Work values were binned into about ten equally
spaced intervals. Unfolding and refolding distributions at different speeds
show a common crossing around DG¼ 110:3kBT.

Figure 1 | Force–extension curves. The stochasticity of the unfolding and
refolding process is characterized by a distribution of unfolding or refolding
work trajectories. Five unfolding (orange) and refolding (blue) force–
extension curves for the RNA hairpin are shown (loading rate of 7.5 pN s21).
The blue area under the curve represents the work returned to the machine
as the molecule switches from the unfolded to the folded state. The RNA
sequence is shown as an inset.
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the refolding distributions cross at a value of the work DG¼
110:3^ 0:5kBT that does not depend on the pulling speed, as
predicted by equation (3). Moreover, the work distributions also

satisfy the CFT, that is, equation (1) (see the Supplementary
Information). We also notice that work distributions are compatible
with, and can be fitted to, gaussian distributions (data not shown).
After subtracting the contribution arising from the entropy loss due
to the stretching of the molecular handles attached on both sides of
the hairpin (DGhandles ¼ 23.8 kBT) and of the extended single-
stranded (ss)RNA ðDGssRNA ¼ 23:7^ 1kBTÞ from the total work,
DGexp ¼ 110:3^ 0:5kBT, we obtain for the free energy of unfolding
at zero forceDG

exp
0 ¼ 62:8^ 1:5kBT ¼ 37:2^ 1kcalmol21 (at 258C,
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with the result obtained using the Visual OMP from DNA software21
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very-far-from-equilibrium regime where the work distributions are
no longer gaussian, we apply the CFT to determine: (1) the difference
in folding free energy between an RNA molecule and a mutant that
differs only by one base-pair, and (2) the thermodynamic stabilizing
effect of Mg2þ ions on the RNA structure. The RNAwe consider is a
three-helix junction of the 16S ribosomal RNA of Escherichia coli12

that binds the S15 protein. The secondary structure of this RNA is a
common feature in RNA structures22–24 that plays, in this case, a
crucial role in the folding of the central domain of the 30S ribosomal
subunit. For comparison, and to verify the accuracy of the method,
we have pulled the wild type and a CzG to GzC mutant (C754G to
G587C) of the three-helix junction.
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and the unfolding work distribution shows a large tail and strong
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establishing the validity of the CFT (see equation (1)) under far-
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Figure 2 | Test of the CFT using an RNA hairpin. Work distributions for
RNA unfolding (continuous lines) and refolding (dashed lines). We plot
negative work, PR(2W), for refolding. Statistics: 130 pulls and three
molecules (r ¼ 1:5 pN s21), 380 pulls and four molecules (r ¼ 7:5 pN s21),
700 pulls and three molecules (r ¼ 20:0 pN s21), for a total of ten separate
experiments. Good reproducibility was obtained among molecules (see
Supplementary Fig. S2). Work values were binned into about ten equally
spaced intervals. Unfolding and refolding distributions at different speeds
show a common crossing around DG¼ 110:3kBT.

Figure 1 | Force–extension curves. The stochasticity of the unfolding and
refolding process is characterized by a distribution of unfolding or refolding
work trajectories. Five unfolding (orange) and refolding (blue) force–
extension curves for the RNA hairpin are shown (loading rate of 7.5 pN s21).
The blue area under the curve represents the work returned to the machine
as the molecule switches from the unfolded to the folded state. The RNA
sequence is shown as an inset.
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and narrow work distributions PRðWÞ along the refolding path.
These distributions complement each other, one being large where
the other is small, thereby providing thermodynamically important
information about the free-energy landscape.
Bennett’s acceptance ratio method gives DGexp ¼ 154:1^ 0:4kBT

and DGexp ¼ 157:9^ 0:2kBT for unfolding the wild-type and
mutant types, respectively, giving a difference between the two
forms DDG

exp
0 ¼ DDGexp ¼ 3:8^ 0:6kBT. After subtracting the

(identical for both molecules) handle and RNA entropy loss contri-
butions (97^ 1kBT) we get DG

exp
0 ¼ 57^ 1:5kBT (wild type) and

DG
exp
0 ¼ 60:8^ 1:5kBT (mutant), the error increasing owing to the

uncertainty in the contributions coming from the stretching of
ssRNA. Free-energy prediction programs such as Mfold25 and Visual
OMP21 give a DDGmfold

0 ¼ 2^ 2kBT between the forms (at 25 8C and
100mM NaCl). Thus, when combined with acceptance ratio
methods, the CFT furnishes a method precise enough to determine
the difference in the folding free energies of RNAmolecules differing
only by one base pair in 34 base pairs.
Finally we apply equation (1) to obtain the free energy of

stabilization by Mg2þ of the S15 three-helix junction. These values
are often difficult to access using bulk methods because melting
temperatures of tertiary folded RNAs are frequently higher than the
boiling point of water, and Mg2þ catalyses the hydrolysis of RNA at
increased temperatures26. Figure 4 depicts the work histograms in the
presence and absence ofMg2þ (at constant ionic strength); stretching
contributions differ in the presence and absence of magnesium ions
(116.8 kBT and 97 kBT, respectively). These values have been sub-
tracted from the work data to properly compare the unfolding free
energies of both molecules. The strong increase of irreversibility due
to Mg2þ can be seen in the large value of the average dissipated work
(about 50 kBT along the unfolding reaction and 16 kBT along the
refolding path). Applying Bennett’s acceptance ratio method for the
molecule in the presence of magnesium yields DGexp ¼ 205:5^
1:5kBT and (after subtracting the stretching contributions) gives
DGexp

0
¼ 88:7^ 2:5kBT for the unfolding reaction of the wild-type

junction in 4mMMgCl2. The difference in free energies of unfolding
in the presence and absence ofMg2þ,DDG

exp
0 ¼231:7^ 2kBT, gives

the free energy of stabilization associated with the binding of Mg2þ

Figure 3 | Free-energy recovery and test of the CFT for non-gaussian work
distributions. Experiments were carried out on the wild-type and mutant
S15 three-helix junction without Mg2þ. Unfolding (continuous lines) and
refolding (dashed lines) work distributions. Statistics: 900 pulls and two
molecules (wild type, purple); 1,200 pulls and five molecules (mutant type,
orange). Crossings between distributions are indicated by black circles.
Work histograms were found to be reproducible among different molecules
(error bars indicating the range of variability). Inset, test of the CFT for the
mutant. Data have been linearly interpolated between contiguous bins of the
unfolding and refolding work distributions.

Figure 4 | Use of CFT to extract the stabilizing contribution of Mg21 to the
free energy of the S15 three-helix junction (wild type). Unfolding
(continuous lines) and refolding (dashed lines) work distributions. Green
curves, 450 pulls and two molecules in Mg2þ; purple curves, 900 pulls and
two molecules without Mg2þ. Crossings between distributions are indicated
by black circles. Work histograms are reproducible between the molecules
(error bars indicating the range of variability). Inset, the same histograms in
logarithmic scale (axes labels as for the main panel) showing (vertical black
bars) the regions of work values where unfolding and refolding distributions
are expected to cross each other by Bennett’s acceptance ratio method
(Supplementary Information).

Table 1 | Summary of results obtained for all molecules

Molecule WU
m WR

m jU jR Wð2Þ
cum WU

J WR
J West

J DGexp DGexp
0 WU

dis WR
dis RU RR

Hairpin (1.5 pN s21)* 110.9 108.7 2.35 2.21 109.7 (0.2) 107.4 (0.7) 110.9 (0.2) 109.1 (0.5) 110.0 (0.2) 62.5 (1.2) 0.9 1.3 3.1 1.9
Hairpin (7.5 pN s21) 113.8 106.6 2.63 2.84 110.3 (0.2) 109.7 (0.7) 110.9 (0.5) 110.3 (0.5) 110.3 (0.5) 62.8 (1.5) 3.5 3.7 0.98 1.10
Hairpin (20 pN s21) 115.7 104.1 3.2 3.5 110.1 (0.2) 110.2 (0.7) 108.6 (0.2) 109.4 (0.4) 110.2 (0.6) 62.9 (1.6) 5.4 6.2 0.94 0.98
S15 (wild, no Mg) 191.3 145.9 11.3 2.9 158.7 (0.8) 155.2 (1.4) 149.3 (0.2) 152.2 (0.7) 154.1 (0.4) 57.0 (1.5) 36.3 9.1 1.75 0.46
S15 (mutant, no Mg) 176.5 153.4 10.6 2.1 156.0 (0.4) 152.4 (5.0) 155.7 (0.2) 154.1 (0.3) 157.9 (0.2) 60.8 (1.5) 18.6 4.5 3.02 0.49
S15 (wild, Mg) 256.4 190.3 12.2 5.0 213.0 (1.3) 207.0 (4.0) 199.8 (0.6) 203.6 (2.0) 205.5 (1.5) 88.7 (2.5) 50.9 15.2 1.46 0.82

WU
m and WR

m, jU and jR, W
U
J and WR

J are the average total work, standard deviations and predictions obtained by using Jarzynski’s equality along the unfolding (U) and refolding (R) paths. Wð2Þ
cum

is the estimate obtained by Hummer30, Wð2Þ
cum ¼ ðWU

m þWR
mÞ=22 ðj2U 2 j2RÞ=12kBT, which gives the leading correction to the linear response prediction, West

J is the average of the estimates
obtained by using Jarzynski’s equality along the unfolding and refolding paths West

J ¼ ðWU
J þWR

J Þ=2; DG
exp is our best estimate obtained by using the acceptance ratio method; DGexp

0 is the
final estimate for the unfolding free energy at zero force after subtracting the handles contribution, WU;R

dis ¼ jWU;R 2DGexpj is the average dissipated work (for the analysis of the hairpin data

we took DGexp ¼ 110:3 for all pulling rates) and RU;R ¼
j2
U;R

2kBTW
U;R
dis

is a parameter that is equal to 1 for gaussian work distributions8. Statistical errors are given for Jarzynski’s equality and the

crossing estimates. These were obtained using the bootstrap method. All work values (except DGexp
0 ) include the handle and RNA stretching contributions and are given in units of kBT at

T ¼ 298K. In parentheses we indicate the errors in units of kBT.
*Data for the RNA hairpin at 1.5 pN s21 are also included for completion; however, at such low loading rates drift effects are very large and data are very noisy as revealed by the values of RU

and RR, which differ too much from 1.
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Isothermal quasistatic process:
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∆F = w = 〈w〉
Non-equilibrium process:

H(t0) H(tf)H(tf)
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Definition of work

A. Classical:

w =

∫ tf

t0

dt
∂H(z(t), t)

∂t
= H(z(tf ), tf )− H(z(t0), t0)

z(t): Trajectory in phase space
z(t0): Starting point taken from Z−1(t0)e−βH(z,t0)

B. Quantum mechanical:

w = em(tf )− en(t0)

H(t)ϕn,λ(t) = en(t)ϕn,λ(t)

work is a random quantity due to the randomness inherent in
the initial state ρ(t0) and in quantum mechanics.
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Probability of work

H(t)ϕn,λ(t) = en(t)ϕn,λ(t)

Pn(t) =
∑
λ

|ϕn,λ(t)〉〈ϕn,λ(t)|

pn = Tr Pn(t0)ρ(t0)
= probability of being at energy en(t0) at t = t0

ρn =Pn(t0)ρ(t0)Pn(t0)/pn

= state after measurement

ρn(tf ) =Utf ,t0ρnU
+
tf ,t0

p(m|n) = TrPm(tf )ρn(tf )
= conditional probability of getting to energy em(tf )
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Probability of work

ptf ,t0(w) =
∑
n,m

δ(w − [em(tf )− en(t0)])p(m|n)pn
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Characteristic function of work

Gtf ,t0(u) =

∫
dw e iuwptf ,t0(w)

=
∑
m,n

e iuem(tf )e−iuen(t0)TrPm(tf )Utf ,t0ρnU
+
tf ,t0

pn

=
∑
m,n

Tre iuH(tf )Pm(tf )Utf ,t0e
−iH(t0)ρnU

+
tf ,t0

pn

= Tre iuHH(tf )e−iuH(t0)ρ̄(t0)

≡ 〈e iuH(tf )e−iuH(t0)〉t0

HH(tf ) = U†tf ,t0
H(tf )Utf ,t0 ,

ρ̄(t0) =
∑
n

Pn(t0)ρ(t0)Pn(t0), ρ̄(t0) = ρ(t0) ⇐⇒ [ρ(t0),H(t0)]
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Work is not an observable

Note: Gtf ,t0(u) is a correlation function. If work was an
observable, i.e. if a hermitean operator W existed then the
characteristic function would be of the form of an
expectation value

GW (u) = 〈e iuW 〉 = Tre iuW ρ(t0)

Hence, work is not an observable.

P. Talkner, P. Hänggi, M. Morillo, Phys. Rev. E 77, 051131 (2008)
P.Talkner, E. Lutz, P. Hänggi, Phys. Rev. E 75, 050102(R) (2007)
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Canonical initial state

BATH
β

SYSTEM
H(t0)

H(t0) H(tf)
weak

contact

tt0 tf

ρ(t0) = Z−1(t0)e−βH(t0), Z (t0) = Tre−βH(t0), ρ̄(t0) = ρ(t0)

G c
tf ,t0

(β, u) = Z−1(t0)Tre iuHH(tf )e−iuH(t0)e−βH(t0)
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Choose u = iβ

〈e−βw 〉 =

∫
dw e−βwptf ,t0(w)

= G c
tf ,t0

(iβ)

= Tre−βHH(tf )eβH(t0)Z−1(t0)e−βH(t0)

= Tre−βH(tf )/Z (t0)

= Z (tf )/Z (t0)

= e−β∆F

quantum
Jarzynski
equality
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u → −u + iβ and time-reversal

Z (t0)G c
tf ,t0

(u) = Tr U+
tf ,t0

e iuH(tf )Utf ,t0e
i(−u+iβ)H(t0)

= Tr e−i(−u+iβ)H(tf )e−βH(tf )U+
t0,tf

e i(−u+iβ)H(t0)Ut0,tf

= Z (tf )G c
t0,tf

(−u + iβ)

ptf ,t0(w)

pt0,tf (−w)
=

Z (tf )

Z (t0)
eβw = e−β(∆F−w) Tasaki-Crooks

theorem

white
H. Tasaki, cond-mat/0009244.

P. Talkner, P. Hänggi, J. Phys. A 40, F569 (2007).
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Microcanonical initial state

ρ(t0) = ω−1
E (t0)δ(H(t0)− E ),

ωE (t0) = Tr δ(H(t0 − E )) = eS(E ,t0)/kB

ωE (t0): Density of states, S(E , t0): Entropy

pmc
tf ,t0

(E ,w) = ω−1
E (t0)Tr δ(HH(tf )− E − w)δ(H(t0)− E )

pmc
tf ,t0

(E ,w)

pmc
t0,tf (E + w ,−w)

=
ωE+w (tf )

ωE (t0)
= e [S(E+w ,tf )−S(E ,t0)]/kB

P.Talkner, P. Hänggi, M. Morillo, Phys. Rev. E 77, 051131 (2008)
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Example

Driven harmonic oscillator

H(t) = ~ωa+a + f ∗(t)a + f (t)a+, f (t) = 0 for t < t0

Gtf ,t0(u)=exp

[
−iu |f (tf )|2

~ω
+
(
e iu~ω− 1

)
|z |2
] ∞∑

n=0

pnLn

(
4|z |2 sin2 ~ωu

2

)

pn = TrPn(t0)ρ(t0) = 〈n|ρ(t0)|n〉, z =
1

~ω

∫ tf

t0

ds
df (s)

ds
e iωs

〈w〉 = ~ω|z |2−|f (tf )|2
~ω

, 〈w2〉−〈w〉2 = 2(~ω)2|z |2(〈a+a〉0+
1

2
)

〈w〉: independent of initial state;
〈·〉: average w.r.t. initial state ρ̄(t0) =

∑
n pn|n〉〈n|.

P. Talkner, S. Burada, P. Hänggi, PRE 78, 011115 (2008).
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ptf ,t0(w) =
∑
r∈Z

qr δ[w − (~ωr − |f (tf )|2/(~ω)
)
]

0 1 2 3 4 5 6z
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qmc
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Candidate experimental check of Jarzynski
equality in the quantum regime

Atom in Paul Trap: Quantum Harmonic Oscillator

Prepare oscillator in
thermal state

Probe the oscillator
initial eigenstate

Change trap stiffness

Probe the oscillator
final eigenstate

Construct ptf ,t0(W )

G. Huber, F. Schmidt-Kaler, S. Deffner, E.Lutz, PRL 101
070403 (2008)
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Open Quantum Systems: Weak Coupling

HSBHS(t) HB H(t) = HS(t) + HB + HSB

HS(t)Pi ,α(t) = eS
i (t)Pi ,α(t),

HBPi ,α(t) = eB
α Pi ,α(t),

eS
i (tf )− eS

j (t0) = E = internal energy change

eB
α − eB

β = −Q = exchanged heat

ρ̄0 =
∑
i ,α

Pi ,α(t0)ρ0Pi ,α(t0)

ptf ,t0(E ,Q) = joint PDF for E and Q

GE ,Q
tf ,t0

(u, v) = Tre i(uHS
H(tf )−vHB

H (tf ))e−i(uHS (t0)−vHB)ρ̄0

P. Talkner, M. Campisi, P. Hänggi, J.Stat.Mech. (2009) P02025
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ρ0 = Z−1(t0)e−β(HS (t0)+HSB+HB) therm. eq. at t0

≈ ρ0
0

[
1−

∫ β

0
dβ′eβ

′(HS (t0)+HB)δHSBe−β
′(HS (t0)+HB)

]
ρ0

0 = Z−1
S (t0)Z−1

B e−β(HS (t0)+HB)

ρ̄0 =
∑
i ,α

Pi ,α(t0)ρ0Pi ,α(t0)

= ρ0
0 +O

(
(δHSB)2

)

GE ,Q
tf ,t0

(u, v) = Tre i(uHS
H(tf )−vHB

H (tf ))e−i(uHS (t0)−vHB)ρ0
0
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Crooks theorem for energy and heat

ZS(t0)GE ,Q
tf ,t0

(u, v) = ZS(tf )GE ,Q
t0,tf (−u + iβ,−v − iβ)

ptf ,t0(E ,Q)

pt0,tf (−E ,−Q)
=

ZS(tf )

ZS(t0)
eβ(E−Q) = e−β(∆FS−E+Q)

w = E − Q : work

pQ,w
tf ,t0

(Q,w)

pQ,w
t0,tf (−Q,−w)

= e−β(∆FS−w),
pw
tf ,t0

(w)

pw
t0,tf (−w)

= e−β(∆FS−w)

ptf ,t0(Q|w) = pt0,tf (−Q| − w), ptf ,t0(Q|w) =
pQ,w
tf ,t0

(Q,w)

pw
tf ,t0

(w)
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Strong coupling: Quantum Treatment

H(t) = HS(t) + HSB + HB

Fluctuation Theorem for the total system:

ptf ,t0(w)

pt0,tf (−w)
=

Y (tf )

Y (ti )
eβw

where:
Y (t) = Tre−β(HS (t)+HSB+HB)

and
w = em(tf )− en(t0)

en(t)= instantaneous eigenvalues of total system
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Free energy of a system strongly coupled to
an environment

Thermodynamic argument:

FS = F − F 0
B

F total system free energy
FB bare bath free energy.

With this form of free energy the three laws of thermodynamics
are fulfilled.

G.W. Ford, J.T. Lewis, R.F. O’Connell, Phys. Rev. Lett. 55, 2273 (1985);

P. Hänggi, G.L. Ingold, P. Talkner, New J. Phys. 10,115008 (2008);

G.L. Ingold, P. Hänggi, P. Talkner, Phys. Rev. E 79, 0611505 (2009).
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Partition function

ZS(t) =
Y (t)

ZB

where ZB = TrBe−βHB
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Main results

ptf ,t0(w)

pt0,tf (−w)
= eβw Y (tf )

Y (t0)
= eβw ZS(tf )

ZS(t0)
= eβ(w−∆FS )

〈e−βw 〉 = e−β∆FS
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Quantum Hamiltonian of Mean Force

ZS(t) :=
Y (t)

ZB
= TrSe−βH∗(t)

where

H∗(t) := − 1

β
ln

TrBe−β(HS (t)+HSB+HB)

TrBe−βHB

also
e−βH∗(t)

ZS(t)
=

TrBe−βH(t)

Y (t)

M. Campisi, P. Talkner, P. Hänggi, Phys. Rev. Lett. 102, 210401 (2009).
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Strong coupling: Example

System: Two-level atom; “bath”: Harmonic oscillator

H =
ε

2
σz + Ω

(
a†a +

1

2

)
+ χσz

(
a†a +

1

2

)
H∗ =

ε∗

2
σz + γ

ε∗ = ε+ χ+
2

β
artanh

(
e−βΩ sinh(βχ)

1− e−βΩ cosh(βχ)

)
γ =

1

2β
ln

(
1− 2e−βΩ cosh(βχ) + e−2βΩ

(1− e−βΩ)2

)

ZS = Tre−βH∗ FS = −kbT ln ZS

SS = −∂FS

∂T
CS = T

∂SS

∂T

M. Campisi, P. Talkner, P. Hänggi, J. Phys. A: Math. Theor. 42 392002 (2009)
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Entropy and specific heat
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Summary

Correlation function expression of characteristic
function of work valid for all initial states of a closed
system.

Work is not an oservable.

Canonical initial states.

Quantum Crooks’ fluctuation theorem.
Quantum Jarzynski’s work theorem.

Microcanonical state:

Crooks type theorem yields microcanonical entropy
changes.

Open Systems

Weak coupling: Fluctuation theorems for energy and heat
and work and heat
Strong coupling: Fluctuation and work theorems



Fluctuation
Theorem for

Arbitrary
Open

Quantum
Systems

Peter Hänggi,
Michele

Campisi, and
Peter Talkner

References

P. Talkner, E. Lutz, P. Hänggi, Phys. Rev. E, 75, 050102(R) (2007).

P. Talkner, P. Hänggi, J Phys. A 40, F569 (2007).

P. Talkner, P. Hänggi, M. Morillo, Phys. Rev. E 77, 051131 (2008).

P. Talkner, P.S. Burada, P. Hänggi, Phys. Rev. E 78, 011115 (2008).

P. Hänggi, G.-L. Ingold, P. Talkner, New J. Phys. 10, 115008 (2008)

P. Talkner, M. Campisi, P. Hänggi, J. Stat. Mech., P02025 (2009).

G.-L. Ingold, P. Talkner, P. Hänggi, Phys. Rev. E 79, 0611505
(2009)

M. Campisi, P. Talkner, P. Hänggi, Phys. Rev. Lett. 102, 210401
(2009).

M. Campisi, P. Talkner, P. Hänggi, J. Phys. A: Math. Theor. 42

392002 (2009)


