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I. INTRODUCTION

One of the most intriguing equations of contemporary
physics is Boltzmann’s celebrated principle

SB = kB ln W , �1�

where kB is Boltzmann’s constant. Despite its unquestionable
success in providing a means to compute the thermodynamic
entropy of isolated systems based on counting the number W
of available microscopic states, its theoretical justification
remains obscure and vague in most statistical mechanics
textbooks. In this respect Khinchin has commented:1 “All
existing attempts to give a general proof of this postulate
must be considered as an aggregate of logical and math-
ematical errors superimposed on a general confusion in the
definition of the basic quantities.” The lack of a crystal-clear
proof of Boltzmann’s principle puts physics students, teach-
ers, and all physicists in the uncomfortable position of being
forced to accept the relation as a postulate which is necessary
to link thermodynamic entropy to microscopic dynamics.

Recent studies in the history and foundations of statistical
mechanics2 have drawn attention to the fact that a similar
relation,

S = kB ln � , �2�

emerges naturally from classical mechanics if the ergodic
hypothesis is made, the properties that entropy should satisfy
are appropriately set, and the basic quantities are consistently
defined. The quantity � is the volume in phase space en-
closed by a hypersurface of constant energy E.

Equation �2� is valid for both large and small systems and
coincides with the Boltzmann formula for large systems.
Hence, the derivation of Eq. �2� provides the missing link for
Eq. �1�. The basic argument underlying the derivation of Eq.
�2� can be traced to as early as the second half of the 19th
century in the work of Helmholtz and Boltzmann.3,4

The purpose of this article is to provide an accessible and
contemporary presentation of the original argument of Helm-
holtz and Boltzmann3,4 and of its recent developments.2 We
derive Boltzmann’s principle from classical mechanics with
one simple guiding principle—the heat theorem �see state-
ment 1� and one central assumption, namely, the ergodic hy-
pothesis.

In Sec. II we briefly review the basics of thermodynamics.
We give concise formulations of the first and second laws of

thermodynamics and introduce the heat theorem. We con-
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struct a one-dimensional mechanical model of thermody-
namics in Sec. III according to the work of Helmholtz.3 The
concepts of ergodicity and microcanonical probability distri-
bution emerge naturally in this model and are introduced in
Sec. IV. In Sec. V we generalize the one-dimensional model
to more realistic Hamiltonian systems of N-particles in three
dimensions. At this stage the ergodic hypothesis is assumed
and Eq. �2� is derived. In Sec. VI we point out that the
mechanical entropy of Eq. �2� does not change during quasi-
static processes in isolated systems, in agreement with the
second law of thermodynamics. Non-quasi-static processes
that can lead to an increase in entropy have been treated
elsewhere.5,6 In Sec. VII the Boltzmann principle is derived.
A summary and some remarks concerning the validity of the
ergodic hypothesis are given in Sec. VIII.

We present the line of reasoning and main results in the
text, while proofs and problems are provided in Appendices
B–E.

II. CLAUSIUS ENTROPY

We first review the first and second laws of thermodynam-
ics in the formulation given by Clausius,7 which gives the
definition of thermodynamic entropy.

The differential form of the first law of thermodynamics
is8

dE = �Q + �W , �3�

where dE is the change in internal energy, �Q is the energy
added to the system due to heating, and �W is the work done
on the system during an infinitesimal transformation. The
first law is the energy conservation law applied to a system
in which there is an exchange of energy by both work and
heating. It is essential to realize that �Q and �W are inexact
differentials, whereas dE is an exact differential. The internal
energy E is a state variable, a quantity that characterizes the
thermodynamic equilibrium state of the system. In contrast,
W and Q characterize thermodynamic energy transfers only
and are not properties of the state of the system.9

A differential is exact if and only if the integral along a
path in the system’s state space depends only on the end
points. In contrast, the corresponding integral of an inexact
differential with the same end points depends on the path
taken. A summary of the formal definition of differential
forms �more precisely, 1-form� and their major properties is

given in Appendix A.
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The second law of thermodynamics can be conveniently
summarized in three statements.

Statement 1. The differential �Q /T is exact. This statement
is one of the most important statements of thermodynamics.
Although �Q is not an exact differential, an exact differential
is obtained when it is divided by the absolute temperature T.
An equivalent statement is that there exists a state function S
such that

�Q

T
= dS . �4�

The function S is called the thermodynamic entropy of the
system.

Statement 1 can also be stated in an equivalent integral
form. The integral of �Q /T along a path connecting a state A
to a state B in the system’s state space does not depend on
the path, but only on its end points A and B.11 This statement
means that there exists a state function S �the thermodynamic
entropy� such that

�
A

B �Q

T
= S�B� − S�A� . �5�

From Eq. �3�, the heat transfer is �Q=dE−�W. In general,
work can be performed by changing external parameters �i,
such as the volume, magnetic field, and the electric field. The
work �W done is given by −�iFid�i, where Fi denotes the
corresponding conjugate forces, pressure, magnetization, and
electric polarization, respectively. Therefore, the first law can
be written as

�Q = dE + �
i

Fid�i. �6�

Without loss of generality, we will restrict ourselves in the
following to only one external parameter V with conjugate
force P:12

�Q = dE + PdV . �7�

In this case, statement 1 can be expressed as

�dE + PdV�/T = exact differential = dS . �8�

Equation �8� is known in literature as the heat theorem.10

Because by definition dS= ��S /�E�dE+ ��S /�V�dV, the heat
theorem can be expressed in equivalent terms as there exists
a function S�E ,V� such that13

�S

�E
=

1

T
,

�S

�V
=

P

T
. �9�

Any inexact differential, such as �Q=dE+ PdV, does not
enjoy the same property: It is impossible to find a function of
state Q�E ,V� such that �Q /�E=1 and �Q /�V= P.

The following two statements, regarding the function S,
complete Clausius’s form of the second law.

Statement 2. For a quasi-static process occurring in a ther-
mally isolated system, the entropy change between two equi-
librium states is zero,

�S = 0. �10�

Statement 3. For a non-quasi-static process occurring in a
thermally isolated system, the entropy change between two
equilibrium states is non-negative,
�S � 0. �11�
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A crucial point in statements 2 and 3 is that they are for
thermally isolated systems. Thermally isolated systems are
those that are not in contact with a thermal bath, by means of
which either their temperature or energy can be controlled.
Thus, these processes are those in which only the external
parameter V is varied in a controlled way and the variable E
is uncontrolled. In statement 2 a quasi-static process is one in
which the change in the parameter V is so slow that at any
instant of time the system is almost in equilibrium. In state-
ment 3, this requirement is relaxed.

III. ONE-DIMENSIONAL MECHANICAL MODELS
OF THERMODYNAMICS

In this section we construct a one-dimensional classical
mechanical analog of Clausius thermodynamic entropy. This
construction dates back to Helmholtz2,3,10 and is based on the
heat theorem �8�.

Consider a particle of mass m and coordinate x moving in
a U-shaped potential ��x�, as illustrated in Fig. 1. To allow
for the possibility of doing work on the particle by means of
an external intervention, we assume that the potential � de-
pends on some externally controllable parameter V so that
�=��x ;V�. The Hamiltonian of this system is

H�x,p;V� = K�p� + ��x;V� , �12�

where K�p�= p2 /2m is the kinetic energy and p is the mo-
mentum. Given this mechanical system, we need to specify
its internal energy E, “temperature” T, and the “force” P
conjugate to the external parameter V.

For the internal energy, we take the energy E given by the
Hamiltonian. For a fixed V, the particle’s energy E is a con-
stant of motion. For simplicity, we define the zero of energy
in such a way that the minimum of the potential is 0, regard-
less of the value of V.

Once V and E are specified, the orbit of the particle in
phase space is fully determined. We call E and V the sys-
tem’s “thermodynamic” state variables.14 The particle moves
between the two turning points x��E ,V� and forms closed
orbits in phase space with a period ��E ,V� �see Fig. 1�.

p

x−(E1, V1) 0 x+(E1, V1)

x

E1

ϕ

x−(E2, V2) 0 x+(E2, V2)

x

E2

ϕ(x; V1) ϕ(x; V2)

E1, V1 E2, V2

(b)(a)

(c) (d)

Fig. 1. Point particle in the U-shaped potential ��x ;V�=mV2x2 /2. �a� Shape
of the potential for a V=V1. �b� Shape of the potential for a V=V2. �c� Phase
space orbit corresponding to the potential ��x ;V1� at energy E1. �d� Phase
space orbit corresponding to the potential ��x ;V2� at energy E2. The two
quantities E ,V, uniquely determine one “state,” that is, one closed orbit in
phase space.
Now that the state variables are fixed, we have to define
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the corresponding temperature and conjugate force. In agree-
ment with the common understanding that temperature for
classical systems is a measure of the kinetic energy of the
particles, we take the temperature to be proportional to the
kinetic energy averaged over a period

T�E,V� �
2

kB��E,V��0

��E,V�

K�p�t;E,V��dt . �13�

The Boltzmann constant kB ensures the correct dimensions
for the temperature T. For the conjugate force, we take the
time average of −�� /�V,15

P�E,V� � −
1

��E,V��0

��E,V� ���x�t;E,V�;V�
�V

dt . �14�

In Eqs. �13� and �14� x�t ;E ,V� and p�t ;E ,V� are the solution
of Hamilton’s equations of motion with a fixed V and arbi-
trary initial condition x0 , p0 such that H�x0 , p0 ;V�=E.

Having identified the mechanical analogs of internal en-
ergy, external parameter, temperature, and conjugate force
with the quantities E, V, T, and P, respectively, we can now
ask whether a mechanical analog of the entropy S exists. To
answer this question, we must find, according to statement 1,
as expressed in Eq. �9�, a function S�E ,V� such that

�S�E,V�
�E

=
1

T�E,V�
,

�S�E,V�
�V

=
P�E,V�
T�E,V�

. �15�

That such a function exists is given by the following theo-
rem.

Helmholtz’s theorem. A function S�E ,V� satisfying Eq.
�15� exists and is given by

S�E,V� = kB log 2�
x−�E,V�

x+�E,V�
�2m�E − ��x;V��dx . �16�

The proof of the theorem is given in Appendix B and Ref.
10, pp. 45–46. The entropy S�E ,V� can be rewritten com-
pactly as

S�E,V� = kB log	 pdx , �17�

where p=�2m�E−��x ;V�� is the momentum of the particle
when it is located at x: The integral 
pdx is called the re-
duced action.15 It is the area � in phase space enclosed by
the orbit of energy E and parameter V,

S�E,V� = kB log ��E,V� , �18�

where

��E,V� = �
H�x,p;V�	E

dpdx . �19�

Helmholtz’s theorem shows that there exists a mechanical
counterpart of the entropy given by the logarithm of the
phase space volume enclosed by the curve of constant energy
H�x , p ;V�=E.

That there exists a function S satisfying Eq. �15� is a re-
markable result that shows there is a consistent one-
dimensional mechanical model of thermodynamics. Al-
though this model suggests the deep connection between

classical mechanics and thermodynamic entropy, it is too
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simple to model a real thermodynamic system composed of
as many as 1023 particles. Thus, it is necessary to generalize
the Helmholtz theorem to multidimensional systems.

IV. ERGODICITY AND THE MICROCANONICAL
ENSEMBLE

To generalize our model to more degrees of freedom, we
need ergodicity and the microcanonical ensemble. The one-
dimensional example of Sec. III can be used to introduce
these important concepts.

The time average of a phase function f�x , p� over the orbit
specified by E and V is

�f�t �
1

�
�

0

�

f�x�t�,p�t��dt . �20�

For simplicity, we have dropped the explicit dependence on
E, V of �, x�t�, p�t�, and �f�t. Because p=mv=mdx /dt, the
differential dt is

dt = m
dx

p�x�
. �21�

Using this differential, we obtain

�f�t =
2m

�
�

x−

x+ dx

p�x�
f�x,p�x�� . �22�

The factor 2 is due to the particle going from x− to x+ in a
half period � /2. Now consider the integral

� dp��p2/2m + ��x;V� − E� , �23�

where � denotes the Dirac delta function. If we use the ex-
pression ��f�p��=�i��p− pi� / f��pi�, where the pi’s are the
zeroes of f�p� and ���p− pi�dp=1, we obtain for the integral,

� ��p2/2m + ��x;V� − E�dp = 2m/p�x� . �24�

Then, Eq. �22� becomes

�f�t =
1

�
� dx� dp��p2/2m + ��x;V� − E�f�p,x� , �25�

where it is unnecessary to specify the integration limits x�

because they are implied by the Dirac delta function. The
period � is given by

� = �
0

�

dt = 2�
x−

x+ dx

p�x�

=� dx� dp��p2/2m + ��x;V� − E� . �26�

Hence, we arrive at

�f�t =� dx� dp
�x,p;E,V�f�p,x� , �27�

where we have introduced the phase space probability den-

sity function
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�x,p;E,V� =
1

��E,V�
��p2/2m + ��x;V� − E� . �28�

From Eq. �26�, it is clear that 
 is properly normalized. The
function 
�x , p ;E ,V� is the microcanonical distribution.
Equation �27� shows that the time average of a phase space
function f�x , p� over a period is equal to its microcanonical
average. This property is called ergodicity. All one-
dimensional systems with a U-shaped potential are ergodic.

V. MULTIPARTICLE MECHANICAL MODELS
OF THERMODYNAMICS

We now extend the treatment for one degree of freedom to
systems of N-particles in three dimensions with 3N degrees
of freedom. The Hamiltonian for an interacting system of
N-particles of mass m is

HN�q,p;V� = KN�p� + �N�q;V� , �29�

where KN�p�=�i=1
3N pi

2 /2m is the kinetic energy and �N is the
potential energy. The coordinates q= �qi�i=1

3N and their conju-
gate canonical momenta p= �pi�i=1

3N are 3N-dimensional vec-
tors.

In analogy with one-dimensional systems with a U-shaped
potential, we define the microcanonical probability distribu-
tion as


N�q,p;E,V� =
1

�N�E,V�
��E − HN�q,p;V�� , �30�

where �N�E ,V� is the normalization

�N�E,V� =� ¯� ��E − HN�q,p;V��dqdp . �31�

The microcanonical average �f�� of a phase function f�q ,p�
is defined as

�f�� �� ¯� 
N�q,p;E,V�f�q,p�dqdp . �32�

Continuing the analogy with one-dimensional systems, we
make the following crucial assumption.

Ergodic hypothesis. For a given E and V, the time average
�f�t of any function f�q ,p� is uniquely determined and is
equal to its microcanonical average �f��,

�f�t = �f��. �33�

In analogy with Eqs. �13� and �14�, we define the tempera-
ture as

TN�E,V� �
2

3NkB
�KN�t, �34�

which is twice the average kinetic energy per degree of free-
dom. The conjugate force is defined as

PN�E,V� � − � ��N

�V
�

t

. �35�

We ask, in agreement with statement 1 as expressed in Eq.

�9�, does there exist a function SN�E ,V� such that
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�S�E,V�N

�E
=

1

TN�E,V�
,

�S�E,V�N

�V
=

PN�E,V�
TN�E,V�

? �36�

The following theorem gives the answer.
Generalized Helmholtz theorem. A function SN�E ,V� sat-

isfying Eq. �36� exists and is given by

SN�E,V� = kB log �N�E,V� , �37�

where

�N�E,V� � � ¯ �
HN�q,p�	E

dqdp . �38�

The proof, which is based on the equipartition theorem, is
given in Appendix C and Ref. 2. Unlike the temperature and
conjugate force, SN is not a time average of some phase
function f�q ,p�.

This theorem shows that ergodic systems constitute ideal
mechanical models of thermodynamics. The state variables E
and V define their thermodynamic state. In addition, their
temperature and conjugate force can be defined as functions
of the state variables. Surprisingly, the heat differential �dE
+ PNdV� /TN is exact, allowing for a consistent and logical
definition of entropy SN.

VI. ADIABATIC INVARIANCE

According to the generalized Helmholtz theorem, SN is
consistent with the first law of thermodynamics and state-
ment 1 of the second law of thermodynamics. Is this con-
struction also consistent with statements 2 and 3 of the sec-
ond law of thermodynamics?

For SN to be consistent with statement 2, it is necessary for
it to satisfy the following condition. If the parameter V is
varied very slowly in time from a V0=V�t0� to Vf =V�tf�, the
corresponding change in the entropy SN is zero. The time of
variation must be much slower than any time scale of the
system’s dynamics. By allowing for a time dependence of V,
the Hamiltonian function of the system is also time depen-
dent, and hence energy is not conserved. Consider the initial
system at t= t0 with phase space point q0 ,p0. The system
then evolves under the time-dependent Hamiltonian

HN�q,p;V�t�� = KN�p� + �N�q;V�t�� �39�

to a new phase space point q f�q0 ,p0� ,p f�q0 ,p0�, where we
have made explicit the dependence on the initial condition of
the evolved phase space point. The energy at time tf is Ef
=HN�q f�q0 ,p0� ,p f�q0 ,p0� ;V�tf��. It is known16 that for er-
godic systems the energy Ef reached at the end of a very
slow change depends only on the initial energy E0
=HN�q0 ,p0 ;V�t0��. The final energy Ef is determined by
solving the equation

�N�E0,V0� = �N�Ef,Vf� . �40�

Thus, the quantity �N�E ,V� does not change when V is var-
ied infinitely slowly in time. In classical mechanics this
property is called adiabatic invariance. Because the entropy
is SN�E ,V�=kB log �N�E ,V�, and �N�E ,V� is an adiabatic
invariant, it is evident that SN is also an adiabatic invariant.
Therefore, the entropy does not change if V is varied very
slowly in time and thus SN complies with statement 2. A
proof of adiabatic invariance of �N is given in Appendix D

and Ref. 16, pp. 27–30.
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It is also possible to prove that, in an averaged sense, SN
complies with statement 3 as well.5,6 In this case the average
change in entropy must be considered because the final en-
ergy is not uniquely determined by the initial energy for fast
transformations. Depending on the initial conditions, differ-
ent final energies can be obtained and hence different final
entropies.

VII. THE BOLTZMANN PRINCIPLE

For a system composed of a very large number N of par-
ticles that interact via short-range forces, the phase space
volume �N�E� approaches an exponential dependence on E,
�N�E�eE. Because �N=��N /�E �see Eq. �31��, we also
have �N�N �see Ref. 17, p. 148�.

The quantity �N in Eq. �31� is the measure of the shell of
constant energy HN�q ,p ;V�=E. As such, it is proportional to
the number W of microstates compatible with a given energy
E. According to semiclassical theory each microstate occu-
pies a volume h3N of phase space, where h is Planck’s
constant.18 By introducing an arbitrary energy scale �E, the
number of microstates W is given by W=�N�E /h3N�. Thus,
for very large N we obtain the proportionalities,

�N  �N  W �N � 1� . �41�

We take the logarithm and obtain

SN � kB ln W = SB �N � 1� , �42�

except for an irrelevant constant. Equation �42� shows that
for large ergodic systems composed of many particles inter-
acting via short range forces, the differential of the Boltz-
mann entropy is equal to the differential �Q /T. Hence, it can
be identified with the Clausius entropy, which gives a proof
of the Boltzmann principle.

VIII. CONCLUSIONS

Given an ergodic system, it is possible to specify its ther-
modynamic state by means of the total energy E and the
external parameter V. Given the state E ,V, we can unam-
biguously define the quantities TN�E ,V� and PN�E ,V�. Once
these are identified with the system temperature and conju-
gate force, we can ask whether, as prescribed by the heat
theorem, the combination

dE + PNdV

TN
�43�

is an exact differential. Surprisingly, the answer is positive,
meaning that there exists a function SN�E ,V� that can be
identified with the thermodynamic entropy of the system.
The generalized Helmholtz theorem says that this function is
given by the logarithm of the volume �N�E ,V� of phase
space enclosed by the hypersurface of energy H�q ,p ;V�=E.
For macroscopic systems, this entropy coincides with the
Boltzmann entropy, thus revealing the rationale of the Bolt-
zmann principle.

The entropy in Eq. �37� is sometimes referred to as the
Hertz entropy.19,20 Hertz21,22 derived it from the requirement
of adiabatic invariance �see also Refs. 16, 23, and 24�,
whereas we have derived it from the heat theorem. The fun-
damental character of the entropy in Eq. �37� is also recog-
nized in Ref. 25, where its property of being a canonical

invariant is emphasized, and in Ref. 26, which highlights its
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compliance with the equipartition theorem and the fact that it
is a positive and increasing function of the energy.27,28 The
entropy in Eq. �37� also appears in Gibbs seminal book.29

However, its connection with the heat theorem has not been
recognized previously.

The most crucial point in the derivation of the Boltzmann
principle is the introduction of the ergodic hypothesis. Al-
though this hypothesis is generally believed to hold for real
macroscopic systems, its proof is a formidable challenge
which has been achieved only in few special cases.30 A proof
that a gas of elastically colliding hard spheres is ergodic was
announced in 1963 by Sinai.31 However, the full proof was
not published and the problem is still open �see Ref. 32 for a
more detailed discussion�. Nevertheless, the ergodicity of
hard spheres systems is plausible as indicated by recent nu-
merical simulations �see Sec. IV of Ref. 33�.

In regard to these difficulties, we note that the present
derivation of the Boltzmann principle does not use the fact
that the average of any arbitrary phase function is equal to its
microcanonical average, as required by the ergodic hypoth-
esis. It only uses the fact that the time average of K and
−�� /�V is equal to their microcanonical averages �see the
proof of the generalized Helmholtz theorem in Appendix C�.
Thus, the ergodic hypothesis can be replaced by the follow-
ing hypothesis.

Weak ergodic hypothesis. For given E and V, the time
averages �K�t and ��� /�V�t are uniquely determined and are
equal to their microcanonical averages, that is,

�K�t = �K��, �44�

���/�V�t = ���/�V��. �45�

In summary, ergodicity is too stringent a condition and the
weaker ergodic condition for only the temperature and pres-
sure is sufficient to obtain the Boltzmann principle.34

ACKNOWLEDGMENTS

The authors wish to thank the Texas Section of the Ameri-
can Physical Society for the Robert S. Hyer Recognition for
Exceptional Research award presented at its Fall 2008 meet-
ing. They also thank Cosimo Gorini for reading the manu-
script. They are grateful to Professor Randall B. Shirts for
providing the translation of Ref. 25 and for his comments.
Valuable remarks from anonymous referees are also grate-
fully acknowledged.

APPENDIX A: DIFFERENTIAL FORMS: BRIEF
REVIEW OF DEFINITIONS AND MAIN RESULTS

A differential form � �more precisely, a 1-form� in a con-
nected subset A of R2 is formally written as

� = M�x1,x2�dx1 + N�x1,x2�dx2, �A1�

where M�x1 ,x2� ,N�x1 ,x2� are two functions on A and
�x1 ,x2� are the coordinates in R2.35

Given a curve � : �s0 ,s1�→A,

��s� = ��1�s�,�2�s�� , �A2�
the integral of � along the curve � is defined as
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�
�

� = �
s0

s1

�M���t���1��t� + N���t���2��t��dt , �A3�

where �1,2� are the derivatives of �1,2.
A differential form � is said to be exact if there exist a

function G :A→R such that

� = dG , �A4�

that is,

�G

�x1
�x1,x2� = M�x1,x2�,

�G

�x2
�x1,x2� = N�x1,x2� , �A5�

where G is called a primitive for the differential form.
Let ��A ,B� be the set of all curves connecting the point

A��a1 ,a2� to the point B��b1 ,b2� in A. A differential form
is exact if and only if for any two points A and B in A and
curves � and � in ��A ,B� it satisfies

�
�

� = �
�

� . �A6�

The integral of an exact differential form along any curve �
connecting A to B does not depend on the curve �, but only
on the ending points, and is given by

�
�

� = �
�

dG = G�B� − G�A� . �A7�

The following statement also holds: A differential form is
exact if and only if its integral along any closed curve is
zero. If the functions M and N are of class C1 �that is, they
are differentiable�, then a necessary condition for the form �
to be exact is that

�M
�x2

=
�N
�x1

. �A8�

In this case the differential form � is said to be closed.

APPENDIX B: PROOF OF HELMHOLTZ’S
THEOREM

For a one-dimensional system confined in a U-shaped po-
tential the period � of the orbit is equal to the derivative with
respect to energy of the phase space area � enclosed by the
orbit15

� =
��

�E
. �B1�

A simple way to prove this relation is by expressing the area
as ��E ,V�=���E−H�x , p ;V��dpdx, where ��x� is the Heavi-
side step function ���x�=1 if x�0, ��x�=0 if x�0�. If we
take the derivative with respect to E and use the relation
��x�=d��x� /dx, we obtain � �see Eq. �26��. By using Eqs.
�B1� and �18�, we have

�S

�E
= kB

�

�
. �B2�
From Eq. �22�, we obtain the relation
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2�K�t =
�

�
, �B3�

from which we obtain

�S

�E
=

kB

2�K�t
�B4�

using Eq. �B2�. Similarly, we also obtain

�S

�V
= −

kB

2�K�t
� ��

�V
�

t

. �B5�

From Eqs. �13� and �14�, we obtain

�S

�E
=

1

T
, �B6�

�S

�V
=

P

T
. �B7�

APPENDIX C: PROOF OF THE GENERALIZED
HELMHOLTZ THEOREM

The proof of generalized Helmholtz theorem makes use of
the multidimensional version of Eq. �B1�,

�N =
��N

�E
, �C1�

which can be proved, in a way similar to Eq. �B1�, by ex-
pressing �N as ���E−H�q ,p ;V��dqdp and using the relation
��x�=d��x� /dx. The equipartition theorem,17

2�K��

3N
=

�N

�N
�C2�

is the generalization of Eq. �B3� to many dimensions. We use
Eqs. �C2� and �C1� with Eq. �37� and obtain

�SN

�E
=

3NkB

2�KN��

. �C3�

In a similar way, we obtain

�SN

�V
= −

3NkB

2�KN��
� ��N

�V
�

�

. �C4�

By using Eqs. �34� and �35� with the ergodic hypothesis, we
finally arrive at

�SN

�E
=

1

TN
, �C5�

�SN

�V
=

PN

TN
. �C6�

APPENDIX D: PROOF OF ADIABATIC
INVARIANCE OF �N

To prove that �N in Eq. �38� is an adiabatic invariant, we
use the time-dependent Hamiltonian

HN�q,p;V�t�� = K�p� + ��q;V�t�� . �D1�

We take the total time derivative of the Hamiltonian

HN�q ,p ;V�t�� in Eq. �D1�,
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dHN�q,p;V�
dt

=
�HN�q,p;V�

�V

dV

dt
, �D2�

where the terms involving q̇ and ṗ cancel by Hamilton’s
equations.36 The derivative dV /dt changes slowly in time,
but dHN /dt and �HN /�V can change rapidly because of their
dependence on q�t� and p�t�. To eliminate the fast variables
q ,p, we take the average of Eq. �D2� with respect to the
microcanonical ensemble, which gives

� dHN

dt
�

�

= � �HN

�V
�

�

dV

dt
. �D3�

By Liouville’s theorem36 the average on the left-hand side of
Eq. �D3� is

� dHN

dt
�

�

=
dE

dt
. �D4�

The microcanonical average in Eq. �33� on the right-hand
side of Eq. �D3� is

� dHN

dV
�

�

=� ¯� 
N�q,p,E,V�
�HN�q,p,V�

�V
dqdp

= −
1

�N

��N

�V
, �D5�

where �N and �N are given in Eqs. �31� and �38�, respec-
tively. If we substitute Eqs. �D4� and �D5� into Eq. �D3� and
use �N=��N /�E, we obtain

d�N

dt
�

��N

�E

dE

dt
+

��N

�V

dV

dt
= 0, �D6�

which shows that �N is constant and therefore an adiabatic
invariant.

APPENDIX E: SUGGESTED PROBLEM

Consider the following Hamiltonian of a one-dimensional
harmonic oscillator with angular frequency V �see Fig. 1�:

H�x,p;V� =
p2

2m
+

mV2x2

2
. �E1�

�a� Calculate the area ��E ,V� enclosed by the trajectory of
energy E and angular frequency V. Use Eq. �B1� and
check that the period of the orbit is, as expected, given
by ��E ,V�=2� /V.

�b� Use Eqs. �13� and �14� to show that kBT�E ,V�=E and
P�E ,V�=−E /V.

�c� Show that the differential form dE+ PdV, with P�E ,V�
as in part �b� is not exact. �Hint: Show that Eq. �A8� is
not satisfied.� Show that the integral of dE+ PdV over
the rectangular path with corners �E0 ,V0�, �E0 ,V1�,
�E1 ,V1�, �E1 ,V0�, and E0�E1, V0�V1, is not zero.

�d� Consider the differential form �= �1 /T�dE+ �P /T�dV,
with P�E ,V� and T�E ,V� as in part �b�. Find a primi-
tive function S�E ,V� for �. Show that, apart from an
additive constant, it is S�E ,V�=log ��E ,V�, as dictated
by Theorem 1. Check that Eq. �A8� is satisfied.

a�Electronic mail: michele.campisi@physik.uni-augsburg.de
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Electronic mail: kobe@unt.edu
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