Quantum Dissipation: A Primer

P. Hänggi

Institut für Physik Universität Augsburg

QUANTUM DISSIPATION $\mathcal{L} = \frac{1}{2} m_0 e^{xt_2} - \frac{1}{2} m_0 e^{xt_2}^2$ L'éco

d dL = d moex = moex + moex

 $QM: L \rightarrow H = \frac{p^2}{2m_0}e^{-yt} + \frac{1}{2}m_0e^{st}\omega_0^2x^2$

NOISE-INDUCED ESCAPE

rate = $F(y) = \frac{\omega_0}{2\pi} \exp(-\delta U/D)$ RMP 62: 251(90)

thermal equilibrium P.H., P. TALKNER, M. BORKOVEC REV. MOD. PHYS. <u>62</u>: 251(1990)

Reaction-rate theory: fifty years after Kramers

Peter Hänggi, Peter Talkner, Michal Borkovec

RMP 62: 251 (90)

THE PROBLEM

FACTS

D

H2& HD sorbed in Zeolites [Bouchand etal (92)

CO-MIGRATION IN HEHOGLOBIN [Frauenfelder]

TUNNELING IN A JOSEPHSON JUNCTION SUBJECTED TO MEMORY FRICTION [Esteve et. al. (79)]

Results

Quantum Tunneling	Cross- over	Quantum Corrections	thermal T activation T
R=Aexp-B	2-0-mode	$k = F_{ep} Q$	$k = A(n)e^{-E_0/AT}$
$B=S_{B}(T,\gamma)$	$\frac{S_B}{E} = \frac{E_b}{E}$	quantum enhancement	y=n/M
B(T=0)= B(T=0) -a T ² !	smooth!	$Q \sim exp \frac{\hbar^2(\omega_o^2 + \omega_o^2)}{(kT)^2}$	$\left\{\left(\frac{3}{4}+c_{0}^{2}\right)^{2}-\frac{3}{2}\right\}$
$A(T_{i}y) \simeq A(y)$ $\exists l_2$	Erfc- behavior	>1 i.e.	· 600
« A (1+2.80x), y→0 2.400		$E_b \rightarrow E_b - \frac{c}{T}$	

Quantum transmission coefficient

- red Redfield
- black path integral
- blue quantum Grote-Hynes theory
- brown quantum turnover theory by Hänggi, Pollak, Grabert
- green quantum turnover theory by Rips and Pollak
- triangles centroid method

Reaction-rate theory: fifty years after Kramers

Peter Hänggi

Lehrstuhl für Theoretische Physik, University of Augsburg, D-8900 Augsburg, Federal Republic of Germany

Peter Talkner*

Department of Physics, University of Basel, CH-4056 Basel, Switzerland

Michal Borkovec

Institut für Lebensmittelwissenschaft, ETH-Zentrum, CH-8092 Zürich, Switzerland

The calculation of rate coefficients is a discipline of nonlinear science of importance to much of physics, chemistry, engineering, and biology. Fifty years after Kramers' seminal paper on thermally activated barrier crossing, the authors report, extend, and interpret much of our current understanding relating to theories of noise-activated escape, for which many of the notable contributions are originating from the communities both of physics and of physical chemistry. Theoretical as well as numerical approaches are discussed for single- and many-dimensional metastable systems (including fields) in gases and condensed phases. The role of many-dimensional transition-state theory is contrasted with Kramers' reaction-rate theory for moderate-to-strong friction; the authors emphasize the physical situation and the close connection between unimolecular rate theory and Kramers' work for weakly damped systems. The rate theory accounting for memory friction is presented, together with a unifying theoretical approach which covers the whole regime of weak-to-moderate-to-strong friction on the same basis (turnover theory). The peculiarities of noise-activated escape in a variety of physically different metastable potential configurations is elucidated in terms of the mean-first-passage-time technique. Moreover, the role and the complexity of escape in driven systems exhibiting possibly multiple, metastable stationary nonequilibrium states is identified. At lower temperatures, quantum tunneling effects start to dominate the rate mechanism. The early quantum approaches as well as the latest quantum versions of Kramers' theory are discussed, thereby providing a description of dissipative escape events at all temperatures. In addition, an attempt is made to discuss prominent experimental work as it relates to Kramers' reaction-rate theory and to indicate the most important areas for future research in theory and experiment.

CONTENTS

List o	of Sy	mbols	252	
I.	Introduction			
II.	Roadway To Rate Calculations		257	
	А.	Separation of time scales	257	
	В.	Equation of motion for the reaction coordinate	257	
	C.	Theoretical concepts for rate calculations	258	
		1. The flux-over-population method	258	
		2. Method of reactive flux	259	
		3. Method of lowest eigenvalue, mean first-passage		
		time, and the like	261	
III.	Cla	ssical Transition-State Theory	261	
	Α.	Simple transition-state theory	262	
	В.	Canonical multidimensional transition-state theory	263	
		1. Multidimensional transition-state rate for a col-		
		lection of N vibrational bath modes	264	
		2. Atom-transfer reaction	264	
		3. Dissociation reaction	264	
		4. Recombination reaction	265	
	C.	Model case: particle coupled bilinearly to a bath of		
		harmonic oscillators	266	
		1. The model	266	
		2. Normal-mode analysis	266	
		3. The rate of escape	267	
IV.	Kra	amers Rate Theory	268	
	А.	The model	268	
	В.	Stationary flux and rate of escape	270	
	C.	Energy of injected particles	272	

*Present address: Paul Scherrer Institut, CH-5232 Villigen, Switzerland.

	D.	Energy-diffusion-limited rate	273
	E.	Spatial-diffusion-limited rate: the Smoluchowski	
		limit	274
	F.	Spatial-diffusion-limited rate in many dimensions	
		and fields	275
		1. The model	275
		2. Stationary current-carrying probability density	276
		3. The rate of nucleation	277
	G.	Regime of validity for Kramers' rate theory	278
V.	Unimolecular Rate Theory		
	Α.	Strong collision limit	281
	В.	Weak collision limit	282
	C.	Between strong and weak collisions	284
	D.	Beyond simple unimolecular rate theory	285
VI.	Tu	nover between Weak and Strong Friction	286
	А.	Interpolation formulas	286
	В.	Turnover theory: a normal-mode approach	287
	C.	Peculiarities of Kramers' theory with memory fric-	
		tion	289
VII.	Me	an-First-Passage-Time Approach	290
	Α.	The mean first-passage time and the rate	290
	В.	The general Markovian case	290
	C.	Mean first-passage time for a one-dimensional Smo-	
		luchowski equation	291
		1. The transition rate in a double-well potential	291
		2. Transition rates and effective diffusion in period-	
		ic potentials	292
		3. Transition rates in random potentials	293
		4. Diffusion in spherically symmetric potentials	294
	D.	Mean first-passage times for Fokker-Planck process-	
		es in many dimensions	295
	E.	Sundry topics from contemporary mean-first-	
		passage-time theory	297
		1. Escape over a quartic $(-\mathbf{x}^4)$ barrier	297

251 Copyright © 1990 The American Physical Society

		2. Escape over a cusp-shaped barrier	298	K(x,x')	transition probability kernel
		3. Mean first-passage time for shot noise	299	M	mass of reactive particle
		4. First-passage-time problems for non-Markovian		P(E)	period of oscillation in the classically al-
VIII	T	processes	300		lowed region
v 111.	112	Two examples of one-dimensional nonequilibrium	300	P(E,E')	classical conditional probability of finding
	A.	rate problems	301		the energy E, given initially the energy E'
		1. Bistable tunnel diode	301	0	quantum correction to the classical prefac-
		2. Nonequilibrium chemical reaction	302	£	tor
	В.	Brownian motion in biased periodic potentials	302	S.	dissinative bounce action
	С.	Escape driven by colored noise	304	T_b	temperature
	D.	Nucleation of driven sine-Gordon solitons	306		
		1. Nucleation of a single string	307	I_0	crossover temperature
_		2. Nucleation of interacting pairs	308	I(E)	period in the classically forbidden regime
IX.	Qu	antum Rate Theory	308	$U(\mathbf{x})$	metastable potential function for the reac-
	А.	Historic background and perspectives; traditional			tion coordinate
		quantum approaches	308	V	volume of a reacting system
	B.	The functional-integral approach	310	Z	partition function, inverse normalization
	С. D	The dissipative tuppeling rate	212	Z_0, Z_A	partition function of the locally stable state
	D.	1 Elux-flux autocorrelation function expression for	515		(A)
		the quantum rate	314	$Z^{ eq}$	partition function of the transition rate
		2. Unified approach to the quantum-Kramers rate	314	\mathcal{H}	Hamiltonian function of the metastable sys-
		3. Results for the quantum-Kramers rate	315		tem
		a. Dissipative tunneling above crossover	315	F	complex-valued free energy of a metastable
		b. Dissipative tunneling near crossover	316	U	state
		c. Dissipative tunneling below crossover	316	ſ	Fokker Planck operator
		4. Regime of validity of the quantum-Kramers rate	318	\mathcal{L}	hostward anotar of a Falter Dianaly and
	E.	Dissipative tunneling at weak dissipation	319	\mathcal{L}^{+}	backward operator of a Pokker-Planck pro-
		1. Quantum escape at very weak friction	319	•	
	-	2. Quantum turnover	320	J	total probability flux of the reaction coordi-
	Р.	Sundry topics on dissipative tunneling	321	_	nate
		1. Incoherent tunneling in weakly blased metasta-	221	h	Planck's constant
		2 Coherent dissipative tunneling	321	ħ	$h(2\pi)^{-1}$
		3 Tunneling with fermionic dissipation	322	k_B	Boltzmann constant
Х.	Nu	merical Methods in Rate Theory	322	k	reaction rate
XI.	Exp	periments	324	k^+	forward rate
	Α.	Classical activation regime	325	k^{-}	backward rate
	В.	Low-temperature quantum effects	327	$k_{\rm TST}$	transition-state rate
XII.	Co	nclusions and Outlook	327	$k(\vec{E})$	microcanonical transition-state rate, semi-
Ackn	owle	edgments	330		classical cumulative reaction probability
Appe	ndix	A: Evaluation of the Gaussian Surface Integral in		k_{α}	spatial-diffusion-limited Smoluchowski rate
	Eq.	. (4.77)	331	m	mass of ith degree of freedom
Appe	ndix	B: A Formal Relation between the MFPT and the	221	m_i	mass of <i>i</i> th degree of freedom
Pofor	Flu	ix-Over-Population Method	331	$p(\mathbf{x}, t)$	probability density
Kelei	ence	-5	552	$p_0(x)$	stationary nonequilibrium probability densi-
					ty for the reaction coordinate
LIST	OF	SYMBOLS		p_i	momentum degree of freedom
				\boldsymbol{q}_i	configurational degree of freedom
A (7	7)	temperature-dependent quantum rate pr	efac-	r(E)	quantum reflection coefficient
		tor		s(x)	density of sources and sinks
C(t)		correlation function		t(E)	quantum transmission coefficient
D		diffusion coefficient		$t_{\Omega}(x)$	mean first-passage time to leave the domain
Ε		energy function			Ω , with the starting point at x
\overline{E} .		activation energy $(=$ harrier energy with	the	<i>t</i> MEDT	constant part of the mean first-passage time
™ b		energy at the metastable state set equal	to	· MFP1	to leave a metastable domain of attraction
		zero)		$v = \dot{r}$	velocity of the reaction coordinate
$\mathbf{F}^{(A)}$		Lowin matrix of the anarry function	. +	r	reaction coordinate
Ľ		the stable state	ai	л Т. Т	location of well minimum or notantial
$\mathbf{F}^{(S)}$		Hessian matrix of the energy function		$\boldsymbol{x}_0, \boldsymbol{x}_a$	minimum of state 4 manualius
12		around the saddle-point configuration		r .	harrier location
		around the saddle-point configuration		harmondless b	Ualiter invation

 x_T β location of the transition state inversion temperature $(k_B T)^{-1}$

action variable of the reaction coordinate

J Jacobian

Ι

microscopic approach

 $H^{+otal} = \frac{1}{2}M\dot{q}^{2} + ll(q)$ system

 $+\frac{1}{2}\sum_{\alpha}m_{\alpha}\dot{q}_{\alpha}^{2} + \sum_{\alpha}m_{\alpha}\omega_{\alpha}^{2}\dot{q}_{\alpha}^{2}$ (harmonic) bath

+ q Z Ca ga linear coupling $+q^2\sum_{\alpha}\frac{c_{\alpha}}{2m_{1}c_{1}^2}$

compensation of frequency shift

QE.

path integral approach to density matrix at temperature T trace out environment

QUANTUM NOISE

QUANTUM L.-EQ.

$\frac{|0\rangle_{S+B}}{4} \neq \frac{|0\rangle_{S}}{2}$ $\frac{|0\rangle_{B}}{4}$ $\frac{|0\rangle_{S+B}}{4} \neq \frac{|0\rangle_{S}}{2}$ $\frac{|0\rangle_{S+B}}{4} \neq \frac{|0\rangle_{S}}{2}$

$H_{s+n} = H_s + H_{s-n} + H_B$

 $=\frac{p^2}{2m}+V(x)+\sum_{\alpha}\left[\frac{p_{\alpha}^2}{2m_{\alpha}}+\frac{m_{\alpha}c_{\alpha}^2}{2}\left(q_{\mu}-\frac{c_{\alpha}}{m_{\alpha}c_{\alpha}^2}\right)\right]$

Ss #2" exp (- Hs)

 $S_{Total} = S_{s+B} = 2^{-1} e_{xp} \left(-\frac{H_{s+B}}{hT}\right)$

5 QLE $i_{x}\dot{o} = [O, H_{-}]$ $m\ddot{x} + m \int ds y(t-s) \dot{x}(s) + \frac{\partial V(x)}{\delta x}$ $= \eta(t) - m_{g}(t-0) \times (0)$ INITIAL SLIP $\gamma(t-s) = \frac{1}{m} \sum_{m,\omega^2} \frac{c_{\alpha}}{\cos(\omega_{\alpha}(t-s))}$ $= \gamma(s-t)$

 $m(t) = \sum_{n} \sum_{n} \left[q_n^{(0)} \cos(\alpha_n t) + \frac{\mu_n}{m_n \omega_n} \sin(\alpha_n t) \right]$

• $\frac{1}{2} < m(t) m(ss + m(ssm(t))) = C(t-s)$ $= C(\tau) = \frac{\pi}{2} \sum_{n} \frac{c_n}{c_n} \coth\left(\frac{\pi c_n}{2\Lambda T}\right) \cosh(\frac{\pi}{2\Lambda T})$

 $\hat{\mathbf{x}}(z) = \int e^{z} e^{-zt} dt$ $\delta(\omega) = \int (z = -i\omega)$ OHMIC DISSIPATION $J(\omega) = \chi \omega \exp(-\omega/\omega_e)$ cut-off frequency We >> Wo, Wh KONDO-PARAMETER, $= (2\pi \hbar / a^2) \propto \omega \exp(-\omega / \omega_c)$ a=29a: tunneling length

REMARKS

1.

QLE OPERATES IN FULL HILBERT SPACE OF SOB

 $\hat{g}(z) = \int e^{izt} g(t)dt = \frac{i}{2m} \sum_{\alpha} \frac{c_{\alpha}}{\alpha} \left[\frac{1}{z - c_{\alpha}} + \frac{1}{z + c_{\alpha}} \right]$ $\frac{1}{x+iot} = P(\frac{1}{x}) - i\pi S(x) \qquad \text{Im} \geq 0$ $Re_{g}^{2}(2 = \omega + iot) = \frac{\pi}{2m} \sum_{\alpha} \frac{c_{\alpha}}{m_{\alpha}\omega_{\alpha}^{2}} \left[d(\omega - \omega_{\alpha}) + d(\omega + \omega_{\alpha}) \right]$ $- C(\tau) = \frac{m}{\pi} \int d\omega \operatorname{Re}_{\mathcal{S}} (\omega + i0^{\dagger}) \cos(\omega \tau)$ · coth (the) 3 with $\mathfrak{J}(t) = \mathfrak{l}(t) - \mathfrak{m}_{\mathfrak{f}}(t) \times (0)$ $\hat{S}_{B} = 2^{-\prime} e_{xp} - \beta \left[\sum_{\alpha} \left(\frac{p_{\alpha}^{2}}{2m_{\alpha}} + \frac{m_{\alpha}^{2} v_{\alpha}^{2}}{2} \left(q_{\alpha} - \frac{c_{\alpha}}{2m_{\alpha}} \right) \right]$ → < ğ(t)> = 0 $\frac{2}{2} < \frac{3}{7} + \frac{3}{7} + \frac{3}{7} + \frac{3}{7} = C(\tau)$

 $\langle \times (0) \} (t) \neq 0$

 $\langle H_{int} \rangle_{p} \neq 0$

SYNOPSIS LINEAR RESPONSE THEORY & QUANTUM-FDT

 $\hat{H}(t) = \hat{H}_{o} - F(t)\hat{A}; s_{\rho} = Z \exp(-\beta \hat{H}_{o})$ $\langle \hat{B}(t) \rangle - \langle \hat{B}(t) \rangle = \langle \delta \hat{B}(t) \rangle = \int \chi(t-s) \mathcal{F}(s) ds$ $K \sqcup BO: \chi_{BA}(\tau) = \Theta(\tau) \stackrel{i}{\leftarrow} \langle [\hat{B}(\tau), \hat{A}(o)] \rangle_{BA}$ $= -\Theta(\tau) \hat{S} \langle \hat{A}(-i \pm \lambda) \hat{B}(\tau) \rangle d\lambda$ classical limit - OUT) B< BIT) A10)>

SYNOPSIS LINEAR RESPONSE THEORY & QUANTUM-FDT

 $\hat{H}(t) = \hat{H}_{o} - F(t)\hat{A}; s_{\rho} = Z \exp(-\beta \hat{H}_{o})$ $\langle \hat{B}(t) \rangle - \langle \hat{B}(t) \rangle_{\beta} = \langle \delta \hat{B}(t) \rangle = \int \chi(t-s) \mathcal{F}(s) ds$ $KUBO: \chi_{BA}(\tau) = \Theta(\tau) \frac{i}{\tau} \langle [\hat{B}(\tau), \hat{A}(\omega)] \rangle_{BA}$ $= -\Theta(\tau) \hat{S} \langle \hat{A}(-i \pm \lambda) \hat{B}(\tau) \rangle d\lambda$ classical limit - OUT) B< BIT) A10)> $\hat{B} = \hat{A} = \hat{q}$; $\mathcal{F}(t) = A \cos \Omega t$ < Jq(+)> = P, e-ist + P, e-ist $P_{1-1} = \frac{A}{2} e^{\mp i \Omega t} \chi(\pm \Omega)$

QUANTUM-FDT

 $S_{BA}(\tau) = \frac{1}{2} < (\hat{B}(t) - \langle \hat{B} \rangle) (\hat{A}(0) - \langle \hat{A} \rangle)$ + $(\hat{A}(0) - \langle \hat{A} \rangle_{p}) (\hat{B}(\tau) - \langle \hat{B} \rangle_{p})$ $\chi_{BA}(\tau) = \chi'_{BA}(\tau) + i \chi''_{BA}(\tau)$ $\frac{1}{2} \begin{bmatrix} \chi_{BA}(+) + \chi_{AB}(-t) \end{bmatrix} - \frac{1}{2} \begin{bmatrix} \chi_{BA}(+) - \chi_{AB}(-t) \end{bmatrix}$ $\chi_{BA}(\omega) = \int_{\omega} \chi_{BA}(t) e^{i\omega t} dt$ $\chi''_{BA}(\omega) = \frac{1}{\pi} \tanh(\pi\omega\rho/2) S_{BA}(\omega)$ $S_{BA}(\omega) = \hbar \coth(\hbar\omega \beta/2) \chi_{BA}'(\omega)$ 2 X BA(C) (BSU) NOTE: $\chi''_{BA}(\omega) = \frac{1}{2} \left[\chi^*_{AB}(\omega) - \chi_{BA}(\omega) \right]$ $\neq Im \chi_{BA}(\omega)$; except $\lambda = \hat{B}$ $\hat{A} = \hat{B} = \hat{q} : S_{qq}(\Omega) = \hbar \cosh(\hbar \Re \beta 2) \operatorname{Im} \chi_{qq}(\mathcal{Q})$

 $S_{II}(\omega) = (\hbar \omega) \cosh\left(\frac{\hbar \omega}{2\hbar T}\right) Re 2(\omega)$

kT>>ta: SII(w) -> 2kT Re 2(w) TARMY 21T/R

JOHNSON-NYQUIST (1928)

- tw Re Z(w) ht << tw quantum-zero point fluct. S. (w=0) = 0 at w=0

1900-1951

J.B. Johnson

Thermal agitation of electricity in conductors.

Phys. Rev. (1928) 32 (July) 97-109

H. Nyquist

Thermal agitation of electric charge in conductors.

Phys. Rev. (1928) 32 (July) 110-113

L. Onsager

Reciprocal relation in irreversible process.

Phys. Rev. (1931) 32 (February) 405-426

H.B. Callen, T.A. Welton

Irreversibility and Generalized Noise.

Phys. Rev. (1951) 83 (1) 34-40

QUANTUM NOISE

NO QUANTUM EQ. PARTITION-TH.

S:= 14, (+)>< 42(+) ; u:=== Sdw - 500

 $i \hbar \hat{g} = [H_{0,g}] + \underbrace{\#} [\chi^{2}_{g}] - \underbrace{$(+)[\chi,g]} - \underbrace{\#} [\chi^{2}_{g}] - \underbrace{[\chi^{2}_{g}] - \underbrace{[\chi^{2}_{g}]} - \underbrace{[\chi^{2}_{g}]} - \underbrace{[\chi^{2}_{g}] - \underbrace{[\chi^{2}_{g}]} - \underbrace{[\chi^{2}_{g}]} - \underbrace{[\chi^{2}_{g}] - \underbrace{[\chi^{2}_{g}]} - \underbrace{[\chi^{2}_{g}]} - \underbrace{[\chi^{2}_{g}]} - \underbrace{[\chi^{2}_{g}] - \underbrace{[\chi^{2}_{g}]} - \underbrace{[\chi^{2}_{g}]} - \underbrace{[\chi^{2}_{g}] - \underbrace{[\chi^{2}_{g}]} - \underbrace$

PIT FALLS

MARKOV MASTER EQ

 $\frac{d}{ds} = -\frac{1}{2}Ls - \Gamma_s + I(t)$

BLOCH-REDFIELD i.g. NO DET. BALANCE ROTATING WAVE APPROX.

(LINDBLAD; DAVIES-APPROX.)

- DET. BALANCE V O.K. BUT
- WRONG EHRENFEST EQ.
- NO FDT
- NO KMS-COND. < u(t) = < u(t + in p)

Schematic of stochastic resonance. The crosshatched oval represents a black-box system which receives two inputs: one weak and periodic, the other strong and random. The output is relatively regular with small fluctuations.

NOISE - ASSISTED SYNCHRONIZED HOPPING

Bistable Model

P. JUNG + P. H., PHYS. REV. A44 8032(91)

MORE NOISE -> MORE SIGNAL

P. JUNG + P. H., PHYS. REV. A44: 8032(91)

MORE NOISE -> MORE SIGNAL

S R

IN QUANTUM MECHANICS

QSR

LINEAR RESPONSE 2QSR

with
$$P_1 = \frac{A}{2} \chi_{gg}(\mathcal{R}) \equiv \frac{A}{2} \chi(\mathcal{R})$$

$$\gamma_1 = 4\pi |P_1|^2 = \pi A^2 |\chi(\Omega)|^2$$

 $SNR = \frac{\pi A^2 |\chi(\Omega)|^2}{S_{qq}(\Omega; A=0)} = \frac{\pi A^2 |\chi(\Omega)|^2}{Im \chi(\Omega) \hbar \omega \hbar (\hbar \Omega \beta 2)}$

PROBLEM: QUANTUM X(S) S(S)

 $S_{gg}(t) = \frac{1}{2} < J_{q}(t) J_{q}(0) + J_{q}(0) J_{q}(t) >_{A}$ DIFFICULT

LINEAR RESPONSE 2QSR

with
$$P_1 = \frac{A}{2} \chi_{gg}(\mathcal{R}) \equiv \frac{A}{2} \chi(\mathcal{R})$$

$$\eta_1 = 4\pi |P_1|^2 = \pi A^2 |\chi(\Omega)|^2$$

 $SNR = \frac{\pi A^2 |\chi(\Omega)|^2}{S_{qq}(\Omega; A=0)} = \frac{\pi A^2 |\chi(\Omega)|^2}{Im \chi(\Omega) \hbar \omega \hbar (\hbar \Re \beta/2)}$

PROBLEM: QUANTUM X(I) S(I)

 $S_{qq}(t) = \frac{1}{2} < \delta \hat{q}(t) \delta \hat{q}(0) + \delta \hat{q}(0) \delta \hat{q}(t) >_{\beta}$

DIFFICULT

above-near crossover to thermal hopping AT LOW T

=0; $M \frac{d^2}{d\tau^2} q_B(\tau) = \frac{\partial U}{\partial q_B}$ $- M \frac{d^2}{d\tau^2} \dot{q}_{B}(\tau) + \left(\frac{\partial^2 N}{\partial q^2}\right) \dot{q}_{B}(\tau) = 0$

. . .

 $\Theta = \hbar/kT$

$$q_{B}(\tau + \Theta) = q_{B}(\tau)$$

QUANTUM SR

DRIVEN QUANTUM TUNNELING

M. GRIFONI, P.H. PHYS. REP. <u>304</u>: 229–358(98)

FREE COPY

http://www.physik.uni-augsburg. de/theo1/hanggi/

- BATH SPECTRUM
- . NOISE INPUT

HOMEPAGE "HANGGI"

GO TO : FEATURE ARTICLES

• Quantum Dissipation and Quantum Transport

http://www.physik.uni-augsburg.de/ theo1/hanggi/Quantum.html