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The calculation of rate coefficients is a discipline of nonlinear science of importance to much of physics, 
chemistry, engineering, and biology. Fifty years after Kramers' seminal paper on thermally activated bar- 
rier crossing, the authors report, extend, and interpret much of our current understanding relating to 
theories of noise-activated escape, for w-hich many of the notable contributions are originating from the 
communities both of physics and of physical chemistry. Theoretical as well as numerical approaches are 
discussed for single- and many-dimensional metastable systems (including fields) in gases and condensed 
phases. The role of many-dimensional transition-state theory is contrasted with Kramers' reaction-rate 
theory for moderate-to-strong friction; the authors emphasize the physical situation and the close connec- 
tion between unimolecular rate theory and Kramers' work for weakly damped systems. The rate theory 
accounting for memory friction is presented, together with a unifying theoretical approach which covers 
the whole regime of weak-to-moderate-to-strong friction on the same basis (turnover theory). The pecu- 
liarities of noise-activated escape in a variety of physically different metastable potential configurations is 
elucidated in terms of the mean-first-passage-time technique. Moreover, the role and the complexity of es- 
cape in driven systems exhibiting possibly multiple, metastable stationary nonequilibrium states is 
identified. At lower temperatures, quantum tunneling effects start to dominate the rate mechanism. The 
early quantum approaches as well as the latest quantum versions of Kramers' theory are discussed, there- 
by providing a description of dissipative escape events at all temperatures. In addition, an attempt is 
made to discuss prominent experimental work as it relates to Kramers' reaction-rate theory and to indi- 
cate the most important areas for future research in theory and experiment. 
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