
Numerical renormalization group method for quantum impurity systems

Ralf Bulla*

Theoretische Physik III, Elektronische Korrelationen und Magnetismus, Institut für Physik,
Universität Augsburg, 86135 Augsburg, Germany and Institut für Theoretische
Physik, Universität zu Köln, 50937 Köln, Germany

Theo A. Costi†

Institut für Festkörperforschung, Forschungszentrum Jülich, 52425 Jülich, Germany

Thomas Pruschke‡

Institut für Theoretische Physik, Universität Göttingen, 37077 Göttingen, Germany

�Published 2 April 2008�

In the early 1970s, Wilson developed the concept of a fully nonperturbative renormalization group
transformation. When applied to the Kondo problem, this numerical renormalization group �NRG�
method gave for the first time the full crossover from the high-temperature phase of a free spin to the
low-temperature phase of a completely screened spin. The NRG method was later generalized to a
variety of quantum impurity problems. The purpose of this review is to give a brief introduction to the
NRG method, including some guidelines for calculating physical quantities, and to survey the
development of the NRG method and its various applications over the last 30 years. These
applications include variants of the original Kondo problem such as the non-Fermi-liquid behavior in
the two-channel Kondo model, dissipative quantum systems such as the spin-boson model, and lattice
systems in the framework of the dynamical mean-field theory.
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I. INTRODUCTION

The last decades have seen steadily increasing interest
in a wide range of physical systems involving quantum
impurities. The expression “quantum impurity system”
is used in a very general sense here, namely, a small
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system �the impurity� with only a few degrees of free-
dom coupled to a large system �the environment or
bath� with very many degrees of freedom, where both
subsystems have to be treated quantum mechanically.

The use of the terminology “impurity” is historical. In
the Kondo problem, the small system is a magnetic im-
purity, such as an iron ion, interacting with the conduc-
tion electrons of a nonmagnetic metal such as gold
�Hewson, 1993a�. Other realizations are, for example,
artificial impurities such as quantum dots hosting only a
small number of electrons. Here the environment is
formed by electrons in the leads. The term “quantum
impurity systems” can also be used for what are tradi-
tionally called dissipative systems. As an example, let
the impurity correspond to a spin degree of freedom and
the environment be composed of a bosonic bath; this
describes the well-known spin-boson model experimen-
tally relevant, for example, for dissipative two-level sys-
tems like tunneling centers in glasses �Leggett et al.,
1987�.

Any theoretical method for the investigation of quan-
tum impurity systems has to face a number of serious
obstacles. First of all, because the environment typically
consists of a �quasi�continuum of quantum-mechanical
degrees of freedom, one has to consider a wide range of
energies—from a high-energy cutoff �which can be of
the order of several eV� down to arbitrarily small exci-
tation energies. On the other hand, because the impurity
degrees of freedom usually form an interacting
quantum-mechanical system, their coupling to a con-
tinuum of excitations with arbitrarily small energies can
result in infrared divergences in perturbational treat-
ments. A well-known example of this difficulty is the
Kondo problem: Its physics is governed by an energy
scale, the Kondo temperature TK, which depends
nonanalytically on the spin-exchange coupling J be-
tween the impurity and the conduction band of the host,
ln TK�−1/J �see Hewson �1993a� for a detailed descrip-
tion of the limitations of the perturbational approach for
the Kondo model and the single-impurity Anderson
model�. One is thus faced with the task of performing
nonperturbative calculations for an interacting
quantum-mechanical many-body system with a con-
tinuum of excitations covering a broad spectrum of en-
ergies.

An efficient way to treat systems with such a broad
and continuous spectrum of energies is the renormaliza-
tion group approach. It allows one, in general, to go in a
certain sequence of renormalization group steps from
high energies, such as the bandwidth, to low energies,
such as the Kondo temperature. General introductions
to the renormalization group concepts have been given
by Ma �1976�, Goldenfeld �1992�, and Salmhofer �1999�
�see also Wilson and Kogut �1974� and Wilson �1975b��.
Here we focus on a specific implementation of the renor-
malization group idea: Wilson’s numerical renormaliza-
tion group �NRG� method �Wilson, 1975a�. This ap-
proach is different from most renormalization group
methods as it is nonperturbative in all system param-
eters; however, the price one has to pay is that the renor-

malization group steps have to be performed numeri-
cally.

The general strategy of the NRG method is the fol-
lowing �more details are given in Sec. II�. As a specific
example, consider the Kondo model, which describes a

magnetic impurity with spin S� coupled to the electrons
of a conduction band, assumed to be noninteracting, via

an interaction of the form JS� ·s�, with s� the spin density of
electrons at the impurity site. The NRG method starts
with a logarithmic discretization of the conduction band
in intervals ��−�n+1��c ,�−n�c� and �−�−n�c ,−�−�n+1��c�
�n=0,1 ,2 , . . . �. We call ��1 the NRG discretization pa-
rameter. After a sequence of transformations, the dis-
cretized model is mapped onto a semi-infinite chain with
the impurity spin representing the first site of the chain.
The Kondo model in the semi-infinite chain form is di-
agonalized iteratively, starting from the impurity site and
successively adding degrees of freedom to the chain. The
exponentially growing Hilbert space in this iterative pro-
cess is truncated by keeping a certain fraction of the
lowest-lying many-particle states. Because of the loga-
rithmic discretization, the hopping parameters between
neighboring sites fall off exponentially, i.e., going along
the chain corresponds to accessing decreasing energy
scales in the calculation.

In this way, Wilson achieved a nonperturbative de-
scription of the full crossover from a free impurity spin
at high temperatures to a screened spin at low tempera-
tures �Wilson, 1975a�, thus solving the so-called Kondo
problem as discussed by Hewson �1993a�. After this first
application more than 30 years ago, the NRG method
has been successfully generalized and applied to a much
wider range of quantum impurity problems. The first ex-
tension was the investigation of the single-impurity
Anderson model �Anderson, 1961�, which extends the
Kondo model by including charge fluctuations at the im-
purity site. Krishna-murthy et al. �1980a, 1980b� de-
scribed all the technical details, the analysis of fixed
points, and the calculation of static quantities for this
model.

Subsequently, the development of the NRG method
concentrated on the analysis of more complicated impu-
rity models, involving either more environment or more
impurity degrees of freedom. For example, in the two-
channel Kondo model the impurity spin couples to two
conduction bands. This model, which has a non-Fermi-
liquid fixed point with associated non-Fermi-liquid prop-
erties, was first investigated with the NRG method by
Cragg et al. �1980�. The numerical calculations for such a
two-channel model are, however, much more cumber-
some because the Hilbert space grows by a factor of 16
in each step of the iterative diagonalization, instead of
the factor of 4 in the single-channel case. Pang and Cox
�1991� and Affleck et al. �1992� later analyzed the stabil-
ity of the non-Fermi-liquid fixed point with respect to
various perturbations such as channel anisotropy.

The two-impurity Kondo model as a paradigm for the
competition of local Kondo screening and nonlocal mag-
netic correlations was studied with the NRG method by
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Jones and Varma �1987�; Jones et al. �1988�; Sakai et al.
�1990�; Sakai and Shimizu �1992a, 1992b�; and Silva et al.
�1996�. Here the focus was on whether the two regimes
are connected by a quantum phase transition or rather
by a smooth crossover. Later on, such studies were ex-
tended to the two-channel situation �Ingersent et al.,
1992�.

Originally, the NRG method was used to determine
thermodynamic properties of quantum impurity sys-
tems. The calculation of dynamic quantities with the
NRG method started with the T=0 absorption and pho-
toemission spectra of the x-ray Hamiltonian �Oliveira
and Wilkins, 1981, 1985�, followed by the T=0 single-
particle spectral function for the orbitally nondegener-
ate and degenerate Anderson model �Frota and Ol-
iveira, 1986; Sakai et al., 1989; Brito and Frota, 1990;
Costi and Hewson, 1990, 1992b�. The resulting spectral
functions are obtained on all energy scales, with a reso-
lution proportional to the frequency, as discussed in Sec.
III.B. The calculation of finite-temperature spectral
functions A�� ,T� is more problematic since in principle
all excitations can contribute. Nevertheless, the NRG
method has been shown to give accurate results for
A�� ,T� too, which also allows one to calculate transport
properties �Costi and Hewson, 1992b; Costi et al., 1994a;
Suzuki et al., 1996�. A subsequent development was the
introduction of the reduced density matrix, which allows
one to calculate dynamic quantities in equilibrium in the
presence of external fields �Hofstetter, 2000�. The calcu-
lation of nonequilibrium transient dynamics requires a
multiple-shell NRG procedure �Costi, 1997a� and has
been accomplished with the aid of a complete basis set
and the reduced density matrix �Anders and Schiller,
2005�. The first applications of this approach show prom-
ising results, for both fermionic and bosonic systems
�Anders and Schiller, 2005, 2006; Anders et al., 2007�.
Another recent generalization of the NRG approach is
to quantum impurities coupled to a bosonic bath
�bosonic NRG method, see Bulla et al. �2005�; for early
related approaches see Evangelou and Hewson �1982��.
The bosonic NRG method has already been successfully
applied to the sub-Ohmic spin-boson model, which
shows a line of quantum critical points separating local-
ized and delocalized phases �Bulla et al., 2003�.

Additional motivation to further improve the NRG
method came from the development of the dynamical
mean-field theory �DMFT� �Metzner and Vollhardt,
1989; Georges et al., 1996� in which a lattice model of
correlated electrons, such as the Hubbard model, is
mapped onto a single-impurity Anderson model with
the impurity coupled to a bath whose structure has to be
determined self-consistently. This requires the NRG
method to handle impurity models with an arbitrary
density of states of conduction electrons and to calculate
directly the impurity self-energy �Bulla et al., 1998�. The
first applications of the NRG method within the DMFT
framework concentrated on the Mott transition in the
Hubbard model, and accurate results could be obtained
for both T=0 �Sakai and Kuramoto, 1994; Bulla, 1999�
and finite temperatures �Bulla et al., 2001�. Within

DMFT, the NRG method has been applied to the peri-
odic Anderson model �Pruschke et al., 2000�, the Kondo
lattice model �Costi and Manini, 2002�, multiband Hub-
bard models �Pruschke and Bulla, 2005�, the ferromag-
netic Kondo lattice model with interactions in the band
�Liebsch and Costi, 2006�, and lattice models with a cou-
pling to local phonon modes such as the Holstein model
�Meyer et al., 2002� and the Hubbard-Holstein model
�Koller, Meyer, et al., 2004�.

The observation that the coupling between electronic
degrees of freedom in quantum dots and the surround-
ing leads can give rise to Kondo-like features in the
transport characteristics has also led to a resurgence of
interest in quantum impurity systems, both experimen-
tally and theoretically. An important feature of quantum
dot systems is their flexibility, and a number of different
setups have been realized so far, and investigated theo-
retically by various methods including the NRG. Appli-
cations of the NRG method in this field include the stan-
dard Kondo effect �Izumida et al., 1998; Gerland et al.,
2000; Costi, 2001; Borda et al., 2005�, coupled quantum
dots �Hofstetter and Schoeller, 2002; Borda et al., 2003;
Hofstetter and Zaránd, 2004; Cornaglia and Grempel,
2005b; Galpin et al., 2006b�, quantum dots in a supercon-
ductor �Choi, Lee, et al., 2004�, and quantum dots
coupled to ferromagnetic leads �Martinek et al., 2003;
Choi, Sánchez, and López, 2004�.

From this brief overview one can see that the range
of applicability of the NRG method has widened con-
siderably since Wilson’s original paper, covering physical
phenomena such as the Mott transition, quantum dot
physics, local criticality, quantum dissipative systems,
etc. Further applications still lie ahead and various op-
timizations of the technique itself are yet being
developed—we return to this point in the summary sec-
tion.

This paper is the first review of the NRG method
�since Wilson’s original paper on the Kondo problem�
that attempts to cover both the technical details and the
various applications. In this way, the reader should get
an overview of the field, learn about the current status of
the individual applications, and come up with ideas for
further calculations. This review can only be a start for a
deeper understanding of the NRG method. The follow-
ing shorter reviews on selected topics are also helpful:
Sec. IV in Hewson �1993a� contains a pedagogical intro-
duction to the NRG method as applied to the Kondo
problem, Gonzalez-Buxton and Ingersent �1998� dis-
cussed the soft-gap Anderson and Kondo models, Costi
�1999� gives a general overview of the key concepts, in-
cluding the application to the anisotropic Kondo model,
Bulla et al. �2005� presented a detailed introduction to
the bosonic NRG method, and, finally, the first calcula-
tions for the single-impurity Anderson model by
Krishna-murthy et al. �1980a, 1980b� are still valuable as
an overview of the method and details of the analysis of
fixed points.

The review is organized as follows. In Sec. II we start
with an introduction to the basic concepts of the NRG
approach. The single-impurity Anderson model serves
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as an example here, but the strategy applies to quantum
impurity systems quite generally. At the end of this sec-
tion, we discuss the flow of the many-particle eigenval-
ues and the appearance of fixed points in this flow. This
analysis already gives important insights into the physics
of a given model, but the calculation of physical quanti-
ties needs some extra care, as described in Sec. III. This
section is divided into Sec. III.A �thermodynamic and
static quantities, such as entropy, specific heat, and sus-
ceptibilities� and Sec. III.B �dynamic quantities, both in
and out of equilibrium�.

The following two sections deal with the various ap-
plications of the NRG method and we distinguish here
between quantum impurity systems �Sec. IV� and lattice
models within DMFT �Sec. V�. Section IV covers most
work using the NRG method that has been published so
far. We present results for systems which show the stan-
dard Kondo effect �Sec. IV.A; this also includes most of
the NRG results on quantum dots�, the two-channel
Kondo problem �Sec. IV.B�, models displaying impurity
quantum phase transitions �Sec. IV.C�, quantum impu-
rity systems with orbital degrees of freedom �Sec. IV.D�,
and, finally, impurities coupled to bosonic degrees of
freedom �Sec. IV.E�. The section on lattice models
within DMFT �Sec. V� covers calculations for the Hub-
bard model �Sec. V.A�, the periodic Anderson and
Kondo lattice models �Sec. V.B�, and lattice models with
coupling to phonons �Sec. V.C�. In the summary we dis-
cuss open problems as well as possible directions for
future developments of the NRG approach.

We finish the Introduction with a few remarks on the
selection of the material presented and the references:
Due to the flexibility of the NRG method, the review
covers a broad range of physical phenomena, in particu-
lar in Secs. IV and V. We, however, give only brief intro-
ductions to these phenomena and refer the reader to the
references in particular reviews or seminal books. Fur-
thermore, due to lack of space, we shall not usually re-
view results from other theoretical approaches that have
been applied to quantum impurity systems, such as
Bethe ansatz, quantum Monte Carlo, resolvent pertur-
bation theory, local-moment approach, etc., unless these
appear crucial for an understanding of relevant NRG
results. Comparisons between the results from the NRG
method and these approaches are, in most cases, in-
cluded in the papers cited here �see also Hewson
�1993a��. This means that we focus, almost completely,
on references that use the NRG method.

II. INTRODUCTION TO THE NUMERICAL
RENORMALIZATION GROUP METHOD

The NRG method can be applied to systems of the
following form: a quantum mechanical impurity with a
small number of degrees of freedom �so that it can be
diagonalized exactly� coupled to a bath of fermions or
bosons, usually with a continuous excitation spectrum.
There is no restriction on the structure of the impurity
part of the Hamiltonian; it might contain, for example, a
Coulomb repulsion of arbitrarily large strength. The

bath, however, is required to consist of noninteracting
fermions or bosons, otherwise the various mappings de-
scribed below cannot be performed.

In this review, whenever we discuss models of a differ-
ent kind, such as the Hubbard model, they will be
mapped onto impurity models of the above type. For the
Hubbard model and other lattice models of correlated
electrons, this is achieved via the dynamical mean-field
theory �see Sec. V�.

A few remarks about the dimensionality of quantum
impurity systems are in order. The impurity itself forms
a zero-dimensional object, whereas the environment ex-
ists in d=1, 2, or 3 dimensions; for a magnetic impurity
in a conduction band one usually considers a three-
dimensional host. To study impurity properties of such a
model, however, it is not necessary to treat the model in
its original dimension. For a noninteracting bath, the
bath degrees of freedom can be integrated out, with the
effect that all information about the environment �from
the perspective of the impurity� can be encoded in the
bath spectral function ����. Information about the di-
mensionality of the environment has been lost at this
stage, but the knowledge of ���� is sufficient to calculate
the impurity properties. Such a representation is used as
the starting point for the NRG procedure, as shown in
Fig. 1�a�.

Before we start with the technical details of the NRG
approach, we give a brief overview of the general strat-
egy. For basically all NRG applications, one proceeds as
follows.

�a� Division of the energy support of the bath spectral
function into a set of logarithmic intervals.

�b� Reduction of the continuous spectrum to a discrete
set of states �logarithmic discretization�.

�c� Mapping of the discretized model onto a semi-
infinite chain.

�d� Iterative diagonalization of this chain.

�e� Further analysis of the many-particle energies, ma-
trix elements, etc., calculated during the iterative
diagonalization. This yields information on fixed
points and static and dynamic properties of the
quantum impurity model.

Parts �a�–�c� of this strategy are sketched in Fig. 1,
where we consider a constant bath spectral function
within the interval �−1,1�. The NRG discretization pa-
rameter � defines a set of discretization points ±�−n, n
=0,1 ,2 , . . ., and a corresponding set of intervals. The
continuous spectrum in each of these intervals �Fig. 1�a��
is approximated by a single state �Fig. 1�b��. The result-
ing discretized model is mapped onto a semi-infinite
chain with the impurity �filled circle� corresponding to
the first site of this chain. Due to the logarithmic dis-
cretization, the hopping matrix elements turn out to de-
crease exponentially with increasing distance from the
impurity, tn��−n/2.

While the various steps leading to the semi-infinite
chain are fairly straightforward from a mathematical
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point of view, the philosophy behind this strategy is not
so obvious. Quite generally, numerical diagonalization
of Hamiltonian matrices allows one to take into account
the various impurity-related terms in the Hamiltonian,
such as a local Coulomb repulsion, in a nonperturbative
way. The actual implementation of such a numerical di-
agonalization scheme requires some sort of discretiza-
tion of the original model, which has a continuum of
bath states. There are, however, many ways to discretize
such a system, so we will try and explain why the loga-
rithmic discretization is the most suitable one here. As it
turns out, quantum impurity models are often character-
ized by energy scales orders of magnitudes smaller than
the bare energy scales of the model Hamiltonian. If the
ratio of these energy scales is, for example, of the order
of 105, a linear discretization would require energy inter-
vals of size at most 10−6 to properly resolve the lowest
scale in the system. Since for a finite system the splitting
of energies is roughly inversely proportional to the sys-

tem size, one would need of the order of 106 sites, which
renders an exact diagonalization impossible.

The logarithmic discretization reduces this problem in
that the low-energy resolution now depends exponen-
tially on the number of sites in the discretized model. Of
course, the accuracy of such an approach has to be
checked by suitable extrapolations of the discretization
parameters, in particular a �→1 extrapolation, which
recovers the original continuum model. Often it turns
out that for � of the order of 2 the results are already
accurate to within a few percent and a �→1 extrapola-
tion indeed reproduces exact results, if these are avail-
able.

However, this argument in favor of the logarithmic
discretization neither explains the need for a mapping to
a chain Hamiltonian, as in Fig. 1�c�, nor resolves the
problem of an exponentially growing Hilbert space with
increasing chain length. As far as the first point is con-
cerned, an iterative diagonalization of the discretized
model as shown in Fig. 1�b� has been implemented for
the spin-boson model �Bulla et al., 2005�. For reasons
that are not yet completely clear, such an approach is
only partly successful. We mention here that, for a fer-
mionic model such as the single-impurity Anderson
model, iterative diagonalization of the model in the
semi-infinite chain form is more convenient, since one
site of the chain can be added in each step without vio-
lating particle-hole symmetry �for a detailed discussion
of this point, see Bulla et al. �2005��.

The quantum impurity model in the semi-infinite
chain form is solved by iterative diagonalization, which
means that in each step of the iterative scheme one site
of the chain is added to the system and the Hamiltonian
matrices of the enlarged cluster are diagonalized nu-
merically. As already pointed out, without taking further
steps to reduce the size of the Hilbert space, this proce-
dure would have to end for chain sizes of �10. Here the
renormalization group concept enters the procedure
through the dependence of the hopping matrix elements
on the chain length, tn��−n/2. Adding one site to the
chain corresponds to decreasing the relevant energy
scale by a factor ��. Furthermore, because the coupling
tn to the newly added site falls off exponentially, only
states of the shorter chain within a comparatively small
energy window will actually contribute to the states of
the chain with the additional site. This observation al-
lows one to introduce a simple truncation scheme: after
each step only the lowest-lying Ns many-particle states
are retained and used to build up the Hamiltonian ma-
trices of the next iteration step, thus keeping the size of
the Hilbert space fixed as one goes along the chain.

All these technical steps will be discussed in detail in
the following. We briefly remark on the general setup
of this section. We keep this section as general as pos-
sible because it should serve as an introduction to the
NRG technique, whose application to a variety of prob-
lems is then the subject of the remainder of this review.
This quest for generality is, however, contrasted by the
large variety of possible impurity-bath interactions. In-

−Λ−1 Λ−3 Λ−2 Λ−1−3−Λ−Λ−2 ... ω

∆(ω)

ω
−1

−1 1

1

∆(ω)

ε ε ε ε

t tV t 0 1 2

0 1 2 3

b)

a)

c)

FIG. 1. �Color online� Initial steps of the NRG method illus-
trated for the single-impurity Anderson model in which an im-
purity �filled circle� couples to a continuous conduction band
via the hybridization function ����. �a� A logarithmic set of
intervals is introduced through the NRG discretization param-
eter �. �b� The continuous spectrum within each of these in-
tervals is approximated by a single state. �c� The resulting dis-
cretized model is mapped onto a semi-infinite chain where the
impurity couples to the first conduction electron site via the
hybridization V; the parameters of the tight-binding model
�see Eq. �26�� are �n and tn.
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stead of presenting explicit formulas for all possible
quantum impurity models, we restrict ourselves to the
single-impurity Anderson model as a specific—and most
important—example here. The original introductions to
the technique for the Kondo model �Wilson, 1975a� and
the single-impurity Anderson model �Krishna-murthy et
al., 1980a, 1980b� were restricted to a constant bath den-
sity of states �or better, a constant hybridization function
���� as defined below�. Here, we consider a general
frequency-dependent ���� from the outset. This gener-
alization is essential for various applications of the NRG
method �the soft-gap models �see Sec. IV.C.2� and lattice
models within DMFT �see Sec. V�� where the physics is
largely determined by the frequency dependence of
����. If the hybridization function is nonzero for posi-
tive frequencies only, manipulations of the bath degrees
of freedom equally hold for a bosonic bath �see Bulla et
al. �2005��.

In this section we cover the steps �a�–�d� of the list
given above. Concerning the analysis of the data �step
�e� in the list�, we discuss the flow of the many-particle
spectra and all related issues here. The calculation of
static and dynamic quantities will be described in Sec.
III.

A. Structure of the Hamiltonian

The Hamiltonian of a general quantum impurity
model consists of three parts, the impurity Himp, the bath
Hbath, and the impurity-bath interaction Himp-bath:

H = Himp + Hbath + Himp-bath. �1�

For the single-impurity Anderson model �SIAM�
�Anderson, 1961� with the Hamiltonian H=HSIAM, these
three terms are given by

Himp = �
�

�ff�
†f� + Uf↑

†f↑f↓
†f↓,

Hbath = �
k�

�kck�
† ck�,

Himp-bath = �
k�

Vk�f�
†ck� + ck�

† f�� . �2�

In this Hamiltonian, the fermionic operators ck�
�†� corre-

spond to band states with spin � and energy �k, and f�
�†�

to impurity states with energy �f. The Coulomb interac-
tion between two electrons occupying the impurity site
is parametrized by U, and the two subsystems are
coupled via a k-dependent hybridization Vk.

The influence of the bath on the impurity is com-
pletely determined by the so-called hybridization func-
tion ����:

���� = 	�
k

Vk
2
�� − �k� . �3�

Thus, if we are interested only in the impurity contribu-
tions to the physics of the SIAM, we can rewrite the
Hamiltonian in a variety of ways, provided the manipu-

lations involved do not change the form of ����. With-
out loss of generality, we assume that the support of
���� completely lies within the interval �−D ,D�, with
D�0 chosen suitably. Henceforth, we use D=1 as the
energy unit.

One such possible reformulation is given by the fol-
lowing Hamiltonian:

H = Himp + �
�
�

−1

1

d� g���a��
† a��

+ �
�
�

−1

1

d� h����f�
†a�� + a��

† f�� . �4�

Here we introduced a one-dimensional energy represen-
tation for the conduction band with band cutoffs at en-
ergies ±1, a dispersion g���, and a hybridization h���.
The band operators satisfy the standard fermionic com-
mutation relations: �a��

† ,a�����+=
��−���
���. It has been
shown by Bulla, Pruschke, and Hewson �1997� that the
two functions g��� and h��� are related to the hybridiza-
tion function ���� via

���� = 	
d����

d�
h������2, �5�

where ���� is the inverse function to g���, g������=�.
For a given ���� there are many possibilities to divide
the � dependence between ���� and h������. This fea-
ture will turn out to be useful later.

For a constant ����=�0 within the interval �−1,1�,
Eq. �5� can be satisfied by choosing ����=� �this corre-
sponds to g���=�� and h2���=�0 /	.

An alternative strategy to arrive at the one-
dimensional energy representation Eq. �4� was used by
Krishna-murthy et al. �1980a�, with the impurity in the
original model in a three-dimensional metallic host, with
dispersion �k� and hybridization Vk�. Here the conduction
band states are expressed as a set of spherical waves
around the impurity and the impurity couples only to
the s-wave states. Labeling the s-wave states by energy
rather than by momentum directly gives a representa-
tion analogous to Eq. �4�.

B. Logarithmic discretization

The Hamiltonian in the integral representation Eq. �4�
is a convenient starting point for the logarithmic dis-
cretization of the conduction band. As shown in Fig.
1�a�, the parameter ��1 defines a set of intervals with
discretization points

xn = ± �−n, n = 0,1,2, . . . . �6�

The width of the intervals is given by

dn = �−n�1 − �−1� . �7�

Within each interval we now introduce a complete set of
orthonormal functions
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�np
± ��� = 	 1

�dn

e±i�np� for xn+1 � ± � � xn,

0 outside this interval.

�8�

The index p takes all integer values between −
 and +
,
and the fundamental frequencies for each interval are
given by �n=2	 /dn. The next step is to expand the con-
duction electron operators a�� in this basis, i.e.,

a�� = �
np

�anp��np
+ ��� + bnp��np

− ���� , �9�

which corresponds to a Fourier expansion in each of the
intervals. The inverse transformation reads

anp� = �
−1

1

d���np
+ ����*a��,

bnp� = �
−1

1

d���np
− ����*a��. �10�

The operators anp�
�†� and bnp�

�†� defined in this way fulfill the
usual fermionic commutation relations. The Hamil-
tonian Eq. �4� is now expressed in terms of these discrete
operators.

In particular, the transformed hybridization term �first
part only� is

�
−1

1

d�h���f�
†a�� = f�

†�
np

anp��+,n

d�h����np
+ ���

+ bnp��−,n

d�h����np
− ���� , �11�

where we have defined

�+,n

d� � �
xn+1

xn

d�, �−,n

d� � �
−xn

−xn+1

d� . �12�

For a constant h���=h, the integrals in Eq. �11� filter out
the p=0 component only

�±,n

d�h�np
± ��� = �dnh
p,0. �13�

In other words, the impurity couples only to the p=0
components of the conduction band states. It will be-
come clear soon that this point was essential in Wilson’s
original line of arguments, so we maintain this feature
�h��� being constant in each interval of the logarithmic
discretization� also for a general, nonconstant ����.
Note that this restriction for the function h��� does not
lead to additional approximations for a nonconstant
���� as one can shift all the remaining � dependence to
the dispersion g���, see Eq. �5�.

As discussed by Chen and Jayaprakash �1995a� in the
context of the soft-gap model �see also Chen and
Jayaprakash �1995b��, one can even set h���=h for all �.
Here we follow the proposal by Bulla, Pruschke, and
Hewson �1997�, that is, we introduce a step function for
h���

h��� = hn
±, xn+1 � ± � � xn, �14�

with hn
± given by the average of the hybridization func-

tion ���� within the respective intervals,

hn
±2 =

1

dn
�±,n

d�
1

	
���� . �15�

This leads to the following form of the hybridization
term:

�
−1

1

d� h���f�
†a�� =

1
�	

f�
†�

n
��n

+an0� + �n
−bn0�� , �16�

with �n
±2=
±,nd� ����.

Next, we turn to the conduction electron term, which
transforms into

�
−1

1

d� g���a��
† a�� = �

np
��n

+anp�
† anp� + �n

−bnp�
† bnp��

+ �
n,p�p�

��n
+�p,p��anp�

† anp��

− �n
−�p,p��bnp�

† bnp��� . �17�

The first term on the right-hand side of Eq. �17� is diag-
onal in the index p. The discrete set of energies �n

± can
be expressed as �Bulla, Pruschke, and Hewson, 1997�

�n
± =

�±,n

d� �����

�±,n

d� ����
�=

1
2

�−n�1 + �−1�� , �18�

where we added the result for a constant ���� in paren-
theses. The coupling of the conduction band states with
different p ,p� �the second term� recovers the continuum
�no approximation has been made so far; Eq. �17� is still
exact�. For the case of a linear dispersion g���=�, the
prefactors �n

±�p ,p�� are the same for both positive and
negative � and take the following form:

�n
±�p,p�� =

1 − �−1

2	i

�−n

p� − p
exp�2	i�p� − p�

1 − �−1 � . �19�

The actual discretization of the Hamiltonian is now
achieved by dropping the terms with p�0 in the expres-
sion for the conduction band, Eq. �17�. This is, of course,
an approximation, the quality of which is not clear from
the outset. To motivate this step we can argue that �i� the
p�0 states couple only indirectly to the impurity �via
their coupling to the p=0 states in Eq. �17�� and �ii� the
coupling between the p=0 and p�0 states has a prefac-
tor �1−�−1� which vanishes in the limit �→1. In this
sense one can view the couplings to the states with p
�0 as small parameters and consider the restriction to
p=0 as the zeroth-order step in a perturbation expan-
sion with respect to the coefficients an

±�p ,p�� �Wilson,
1975a�. As it turns out, the accuracy of the results ob-
tained from the p=0 states only is surprisingly good
even for values of � as large as �=2, so that in all NRG
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calculations the p�0 states have not been considered so
far.

Finally, after dropping the p�0 terms and relabeling
the operators an0��an�, etc., we arrive at the discretized
Hamiltonian as depicted by Fig. 1�b�,

H = Himp + �
n�

��n
+an�

† an� + �n
−bn�

† bn��

+
1

�	
�
�

f�
†�

n
��n

+an� + �n
−bn��

+
1

�	
�
�
��

n
��n

+an�
† + �n

−bn�
† ��f�. �20�

Before we continue with the mapping of the Hamil-
tonian Eq. �20� onto a semi-infinite chain, Fig. 1�c�, we
make a few remarks on alternative discretizations of the
continuous bath spectral function.

The above procedure applies for general ����, and
also for different upper and lower cutoffs Du and Dl. A
special case is Dl=0, which occurs for a bosonic bath
�see Bulla et al. �2005��; here the logarithmic discretiza-
tion is performed for positive frequencies only, and the
operators bn�

�†� in Eq. �20� are no longer present.
In Sec. III we discuss the problems that the discrete-

ness of the model Eq. �20� can �in some cases� cause for
the calculation of physical quantities. As it is not pos-
sible in the actual calculations to recover the continuum
by taking the limit �→1 �or by including the p�0
terms�, averaging over various discretizations for fixed �
has been suggested �Frota and Oliveira, 1986; Yoshida et
al., 1990; Oliveira and Oliveira, 1994�. The discretization
points are then modified as

xn = �1, n = 0,

�−n+z, n � 1,
�21�

where z covers the interval �0,1�. This z averaging is,
indeed, successful, as it removes certain artificial oscilla-
tions �see Sec. III.A.4�, but it should be stressed here
that the continuum limit introduced by integrating over
z is not the same as the true continuum limit �→1.

Another shortcoming of the discretized model is that
the hybridization function ���� is systematically under-
estimated. It is therefore convenient to multiply ���� by
a correction factor A� which accelerates the conver-
gence to the continuum limit. For a constant hybridiza-
tion the correction factor takes the value

A� =
1
2

� + 1

� − 1
ln � . �22�

For a recent derivation of this correction factor, see
Campo and Oliveira �2005�, where it was also shown
that by a suitable modification of the discretization pro-
cedure, the factor A� can be taken into account from the
outset.

In general, the discretization correction A� depends
on the shape of ����; for the soft-gap case, ����� ���r,
the corresponding result is given in Eq. �5.14� of
Gonzalez-Buxton and Ingersent �1998�.

C. Mapping on a semi-infinite chain

According to Figs. 1�b� and 1�c�, the next step is to
transform the discretized Hamiltonian Eq. �20� into a
semi-infinite chain form with the first site of the chain
�filled circle in Fig. 1�c�� representing the impurity de-
grees of freedom. In the chain Hamiltonian, the impu-
rity directly couples only to one conduction electron de-
gree of freedom with operators c0�

�†�, the form of which
can be directly read off from the second and third lines
in Eq. �20�. With the definition

c0� =
1

��0
�
n

��n
+an� + �n

−bn�� , �23�

in which the normalization constant is given by

�0 = �
n

���n
+�2 + ��n

−�2� = �
−1

1

d� ���� , �24�

the hybridization term can be written as

1
�	

f�
†�

n
��n

+an� + �n
−bn�� =��0

	
f�

†c0� �25�

�similarly for the Hermitian conjugate term�. Note that,
for a k-independent hybridization, Vk=V in Eq. �2�, the
coupling in Eq. �25� reduces to ��0 /	=V.

The operators c0�
�†� represent the first site of the con-

duction electron part of the semi-infinite chain. These
operators are of course not orthogonal to the operators
an�

�†� and bn�
�†�. Constructing a new set of mutually orthogo-

nal operators cn�
�†� from c0�

�†� and an�
�†�, bn�

�†� by a standard
tridiagonalization procedure leads to the desired chain
Hamiltonian, which takes the form

H = Himp +��0

	
�
�

�f�
†c0� + c0�

† f�� + �
�n=0




��ncn�
† cn�

+ tn�cn�
† cn+1� + cn+1�

† cn��� , �26�

with the operators cn�
�†� corresponding to the nth site of

the conduction electron part of the chain. The param-
eters of the chain are the on-site energies �n and the
hopping matrix elements tn. The operators cn�

�†� in Eq.
�26� and the operators �an�

�†� ,bn�
�†�� in Eq. �20� are related

via an orthogonal transformation,

an� = �
m=0




umncm�, bn� = �
m=0




vmncm�,

cn� = �
m=0




�unmam� + vnmbm�� . �27�

From the definition of c0� in Eq. �23� we can read off the
coefficients u0m and v0m,

u0m =
�m

+

��0

, v0m =
�m

−

��0

. �28�

For the remaining coefficients unm, vnm, as well as for the
parameters �n, tn, one can derive recursion relations fol-
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lowing the scheme described in detail in, for example,
Appendix A of Bulla et al. �2005�. The starting point
here is the equivalence of the free conduction electron
parts

�
n�

��n
+an�

† an� + �n
−bn�

† bn��

= �
�n=0




��ncn�
† cn� + tn�cn�

† cn+1� + cn+1�
† cn��� . �29�

The recursion relations are initialized by

�0 =
1

�0
�

−1

1

d� ����� ,

t0
2 =

1

�0
�
m

���m
+ − �0�2��m

+ �2 + ��m
− − �0�2��m

− �2� ,

u1m =
1

t0
��m

+ − �0�u0m,

v1m =
1

t0
��m

− − �0�v0m. �30�

For n�1, the recursion relations read

�n = �
m

��m
+ unm

2 + �m
− vnm

2 � ,

tn
2 = �

m
���m

+ �2unm
2 + ��m

− �2vnm
2 � − tn−1

2 − �n
2 ,

un+1,m =
1

tn
���m

+ − �n�unm − tn−1un−1,m� ,

vn+1,m =
1

tn
���m

− − �n�vnm − tn−1vn−1,m� . �31�

Note that for a particle-hole symmetric hybridization
function, ����=��−��, the on-site energies �n are zero
for all n.

For a general hybridization function, the recursion re-
lations have to be solved numerically. Although these
relations are fairly easy to implement, it turns out that
the iterative solution typically breaks down after about
20–30 steps. The source of this instability is the wide
range of values for the parameters entering the recur-
sion relations �e.g., the discretized energies �m

± �. In most
cases this problem can be overcome using arbitrary pre-
cision routines for the numerical calculations. Further-
more, it is helpful to enforce the normalization of the
vectors unm and vnm after each step.

Analytical solutions for the recursion relations have
so far been given only for a few special cases. Wilson
derived a formula for the tn for a constant density of
states of the conduction electrons in the Kondo version
of the impurity model �Wilson, 1975a�; this corresponds

to a constant hybridization function ���� in the interval
�−1,1�. Here we have �n=0 for all n, and the expression
for the tn reads

tn =
�1 + �−1��1 − �−n−1�

2�1 − �−2n−1�1 − �−2n−3
�−n/2. �32�

�Similar expressions have been given for the soft-gap
model; see Bulla, Pruschke, and Hewson �1997�.� In the
limit of large n this reduces to

tn →
1
2

�1 + �−1��−n/2. �33�

The fact that the tn fall off exponentially with the dis-
tance from the impurity is essential for the following
discussion, so we briefly explain where this n depen-
dence comes from. Consider the discretized model Eq.
�20� with a finite number 1+M /2 �M even� of conduction
electron states for both positive and negative energies
�the sum over n then goes from 0 to M /2�. This corre-
sponds to 2+M degrees of freedom, which result in 2
+M sites of the conduction electron part of the chain
after the mapping to the chain Hamiltonian. The lowest
energies in the discretized model Eq. �20� are the ener-
gies �M/2

± which, for a constant hybridization function,
are given by �M/2

± = ± 1
2�−M/2�1+�−1� �see Eq. �18��. This

energy shows up in the chain Hamiltonian as the last
hopping matrix element tM, so we have tM��M/2 equiva-
lent to Eq. �33�.

Equation �26� is a specific one-dimensional represen-
tation of the single-impurity Anderson model Eq. �2�
with the special feature that the hopping matrix ele-
ments tn fall off exponentially. As mentioned above, this
representation is not exact since, in the course of its
derivation, the p�0 terms have been dropped. We
should stress here that the dimensionality of the chain
Hamiltonian is not related to that of the original model,
which describes, for example, an impurity in a three-
dimensional host �clearly, this holds only for a noninter-
acting conduction band�. Nevertheless, the conduction
electron sites of the chain do have a physical meaning in
the original model, as they can be viewed as a sequence
of shells centered around the impurity. The first site of
the conduction electron chain corresponds to the shell
with the maximum of its wave function closest to the
impurity �Wilson, 1975a; Hewson, 1993a�; this shell is
coupled to a shell further away from the impurity, and so
on.

D. Iterative diagonalization

The transformations described so far are necessary to
map the problem onto a form �the semi-infinite chain,
Eq. �26�� for which an iterative renormalization group
�RG� procedure can be defined. This is the point at
which, finally, the RG character of the approach enters.

The chain Hamiltonian Eq. �26� can be viewed as a
series of Hamiltonians HN �N=0,1 ,2 , . . . � which ap-
proaches H in the limit N→
:
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H = lim
N→


�−�N−1�/2HN, �34�

with

HN = ��N−1�/2�Himp +��0

	
�
�

�f�
†c0� + c0�

† f��

+ �
�n=0

N

�ncn�
† cn� + �

�n=0

N−1

tn�cn�
† cn+1� + cn+1�

† cn��� .

�35�

The factor ��N−1�/2 in Eq. �35� �and, consequently, the
factor �−�N−1�/2 in Eq. �34�� has been chosen to cancel the
N dependence of tN−1, the hopping matrix element be-
tween the last two sites of HN. Such a scaling is useful
for the discussion of fixed points, as described below.
For a different n dependence of tn, as for the spin-boson
model �Bulla et al., 2005�, the scaling factor has to be
changed accordingly. �The n dependence of �n is, in most
cases, irrelevant for the overall scaling of the many-
particle spectra.�

Two successive Hamiltonians are related by

HN+1 = ��HN + �N/2�
�

�N+1cN+1�
† cN+1�

+ �N/2�
�

tN�cN�
† cN+1� + cN+1�

† cN�� , �36�

and the starting point of the sequence of Hamiltonians is
given by

H0 = �−1/2�Himp + �
�

�0c0�
† c0�

+��0

	
�
�

�f�
†c0� + c0�

† f��� . �37�

This Hamiltonian corresponds to a two-site cluster
formed by the impurity and the first conduction electron
site. Note that, in the special case of the single-impurity
Anderson model, one can also choose H−1=�−1Himp as
the starting point �with a proper renaming of parameters
and operators� since the hybridization term has the same
structure as the hopping term between the conduction
electron sites.

The recursion relation Eq. �36� can now be under-
stood in terms of a renormalization group transforma-
tion R:

HN+1 = R�HN� . �38�

In a standard RG transformation, the Hamiltonians are

specified by a set of parameters K� and the mapping R

transforms the Hamiltonian H�K� � into another Hamil-

tonian of the same form H�K� �� with a new set of param-

eters K� �. In the context of the Kondo problem, it is the
so-called poor man’s scaling approach �Anderson, 1970�
which works along these lines. In this approach, high-
energy excitations close to the band edges of the con-
duction band are successively absorbed as renormaliza-

tions of the Hamiltonian parameters. When this is done
to lowest order in perturbation theory, one obtains cer-
tain scaling equations, in the simplest case for the flow of
the exchange coupling J only. As it turns out, the ex-
change coupling scales to stronger and stronger values
upon reducing the band cutoff, beyond the regime of the
perturbation method used in the derivation.

For more details and the physical interpretation of
this result—a scaling of J to strong coupling implies a
screening of the impurity spin—we refer the reader to
Hewson �1993a�. We now come back to the RG trans-
formation as it is performed with the NRG method.

A representation in which the Hamiltonian can be

identified with a fixed set of parameters K� does not exist,
in general, for the HN which are obtained in the NRG
iterations. Instead, we characterize HN, and thereby also
the RG flow, directly by the many-particle energies
EN�r�,

HN�r�N = EN�r��r�N, r = 1, . . . ,Ns, �39�

with the eigenstates �r�N and Ns the dimension of HN.
This is particularly useful in the crossover regime be-
tween different fixed points, where a description in
terms of an effective Hamiltonian with certain renormal-
ized parameters is not possible. Only in the vicinity of
the fixed points �except for certain quantum critical
points� can one go back to an effective Hamiltonian de-
scription, as shown below.

Our primary aim now is to set up an iterative scheme
for the diagonalization of HN, in order to discuss the
flow of the many-particle energies EN�r�. Assume that,
for a given N, the Hamiltonian HN has already been
diagonalized, as in Eq. �39�. We now construct a basis for
HN+1, as sketched in Fig. 2:

�r ;s�N+1 = �r�N � �s�N + 1�� . �40�

The states �r ;s�N+1 are product states consisting of the
eigenbasis of HN and a suitable basis �s�N+1�� for the
added site �the new degree of freedom�. From the basis
Eq. �40� we construct the Hamiltonian matrix for HN+1:

ε

V t 0

0 ε

t N−1

N

H :N

V

ε0

t 0 t N−1

εN

|r,s
N+1

: |r
N

|s (N+1)

ε0

V t 0 t N−1

εN

t N

εN+1

HN+1:

FIG. 2. �Color online� In each step of the iterative diagonal-
ization scheme one site of the chain �with operators cN+1

�†� and
on-site energy �N+1� is added to the Hamiltonian HN. A basis
�r ;s�N+1 for the resulting Hamiltonian HN+1 is formed by the
eigenstates of HN, �r�N and a basis of the added site �s�N+1��.
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HN+1�rs,r�s�� = N+1�r ;s�HN+1�r�;s��N+1. �41�

For the calculation of these matrix elements it is useful
to decompose HN+1 into three parts:

HN+1 = ��HN + X̂N,N+1 + ŶN+1 �42�

�see, for example, Eq. �36��, where the operator ŶN+1
contains only the degrees of freedom of the added site,

while X̂N,N+1 mixes these with the ones contained in HN.

The structure of the operators X̂ and Ŷ, as well as the
equations for the calculation of their matrix elements,
depend on the model under consideration.

The following steps are illustrated in Fig. 3. In Fig.
3�a� we show the many-particle spectrum of HN, that is,
the sequence of many-particle energies EN�r�. Note that,
for convenience, the ground-state energy has been set to
zero. Figure 3�b� shows the overall scaling of the ener-
gies by the factor ��; see the first term in Eq. �36�.

Diagonalization of the matrix Eq. �41� gives the new
eigenvalues EN+1�w� and eigenstates �w�N+1 which are
related to the basis �r ;s�N+1 via the unitary matrix U:

�w�N+1 = �
rs

U�w,rs��r ;s�N+1. �43�

The set of eigenvalues EN+1�w� of HN+1 is displayed in
Fig. 3�c� �the label w can now be replaced by r�. The
number of states increases on adding the new degree of
freedom �when no symmetries are taken into account,
the factor is the dimension of the basis �s�N+1���. The
ground-state energy is negative, but will be set to zero in
the following step.

The increasing number of states is, of course, a prob-
lem for numerical diagonalization; the dimension of
HN+1 grows exponentially with N, even when we con-
sider symmetries of the model so that the full matrix
takes a block-diagonal form with smaller submatrices.
This problem can be solved by a simple truncation
scheme: after diagonalization of the various submatrices
of HN+1 one keeps only the Ns eigenstates with the low-
est many-particle energies. In this way, the dimension of
the Hilbert space is fixed to Ns and the computation

time increases linearly with the length of the chain. Suit-
able values for the parameter Ns depend on the model;
for the single-impurity Anderson model, Ns of the order
of a few hundred is sufficient to get converged results for
many-particle spectra, but the accurate calculation of
static and dynamic quantities usually requires larger val-
ues of Ns. The truncation of high-energy states is illus-
trated in Fig. 3�d�.

Such an ad hoc truncation scheme needs further ex-
planation. First of all, there is no guarantee that this
scheme will work in practical applications, and its qual-
ity should be checked for each individual application.
An important criterion for the validity of this approach
is whether the neglect of high-energy states spoils the
low-energy spectrum in subsequent iterations—this can
be easily seen numerically by varying Ns. The influence
of the high-energy on the low-energy states turns out to
be small since the addition of a new site to the chain can
be viewed as a perturbation of relative strength �−1/2

�1. This perturbation is small for large values of �, but
for �→1 it is obvious that one has to keep more and
more states to get reliable results. This also means that
the accuracy of the NRG results decreases when Ns is
kept fixed and � is reduced �vice versa, it is sometimes
possible to improve the accuracy by increasing � for
fixed Ns�.

From this discussion, we see that the success of the
truncation scheme is intimately connected to the special
structure of the chain Hamiltonian �that is, tn��−n/2�
which in turn is due to the logarithmic discretization of
the original model. Note that a mapping to a one-
dimensional chain can also be performed directly for a
continuous conduction band, via a tridiagonalization
scheme as described in detail by Hewson �1993a�. The
resulting chain Hamiltonian takes the same form as Eq.
�26�, but with tn→const. For this Hamiltonian, the trun-
cation scheme clearly fails. A similar observation is
made when such a truncation is applied to the one-
dimensional Hubbard model �see the discussion in Sec.
V�.

E
N+1

(r)E
N

(r) E
N

(r)
1/2

Λ
a)

after truncation
b) c) d)

0

FIG. 3. �a� Many-particle spectrum EN�r� of
the Hamiltonian HN with the ground-state en-
ergy set to zero. �b� The relation between suc-
cessive Hamiltonians, Eq. �36�, includes a
scaling factor ��. �c� Many-particle spectrum
EN+1�r� of HN+1, calculated by diagonalizing
the Hamiltonian matrix Eq. �41�. �d� The
same spectrum after truncation where only
the Ns lowest-lying states are retained.
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We now go into more details about construction of the
basis �r ;s�N+1. For this we have to decide, first of all,
which of the symmetries of the Hamiltonian should be
used in the iterative diagonalization. In the original cal-
culations of Wilson �1975a� and Krishna-murthy et al.
�1980a, 1980b�, the following quantum numbers were
used: total charge Q �particle number with respect to
half filling�, total spin S, and z component of the total
spin Sz. It was essential in the 1970s to reduce the size of
the matrices and hence the computation time as much as
possible by invoking as many symmetries as possible.
This is no longer necessary to such an extent on modern
computer systems, i.e., one can, at least for single-band
models, drop the total spin S and classify the subspaces
with the quantum numbers �Q ,Sz� only. This simplifies
the program considerably, as one no longer has to worry
about reduced matrix elements and the corresponding
Clebsch-Gordan coefficients �see, for example, Krishna-
murthy et al. �1980a��. As we use this representation in
Sec. III.A, here we explicitly state the form of �r ;s�N+1:

�Q,Sz,r ;1�N+1 = �Q + 1,Sz,r�N,

�Q,Sz,r ;2�N+1 = cN+1↑
† �Q,Sz −

1
2

,r�
N

,

�Q,Sz,r ;3�N+1 = cN+1↓
† �Q,Sz +

1
2

,r�
N

,

�Q,Sz,r ;4�N+1 = cN+1↑
† cN+1↓

† �Q − 1,Sz,r�N. �44�

Note that the quantum numbers �Q ,Sz� on the two sides
of these equations refer to different systems; on the left-
hand side they are for the system including the added
site, and on the right-hand side without the added site.
We do not go into the details of how to set up the
Hamiltonian matrices Eq. �41�, as this procedure is de-
scribed in Appendix B in Krishna-murthy et al. �1980a�.

For fermionic baths, the discretization parameter �
and the number of states Ns kept in each iteration are
the only parameters that govern the quality of the re-
sults of the NRG procedure. As discussed in Sec. IV.E,
for the case of a bosonic bath the infinite-dimensional
basis �s�N+1�� for the added bosonic site requires an
additional parameter Nb, which determines the dimen-
sion of �s�N+1��.

E. Renormalization group flow

The iterative diagonalization scheme yields the many-
particle energies EN�r� with r=1, . . . ,Ns �the number of
states is less than Ns for the very first steps before the
truncation sets in�. The index N goes from 0 to a maxi-
mum number of iterations Nmax, which usually has to be
chosen such that the system has approached its low-
temperature fixed point.

As illustrated in Fig. 3, the sets of many-particle ener-
gies cover roughly the same energy range independent
of N, due to the scaling factor ��N−1�/2 in Eq. �35�. The

energy of the first excited state of HN is of the order of
��N−1�/2tN−1, a constant according to Eq. �33�. The energy
of the highest excited state kept after truncation de-
pends on Ns—for typical parameters this energy is ap-
proximately 5–10 times larger than the lowest energy.

When multiplied by the scaling factor �−�N−1�/2 �see
Eq. �34��, the energies EN�r� are an approximation to the
many-particle spectrum of the chain Hamiltonian Eq.
�26� within an energy window decreasing exponentially
with increasing N. Note that the energies for higher-
lying excitations obtained for early iterations are not al-
tered in later iteration steps due to the truncation pro-
cedure. Nevertheless one can view the resulting set of
many-particle energies and states from all NRG itera-
tions N as an approximation to the spectrum of the full
Hamiltonian and use them to calculate physical proper-
ties in the whole energy range �see Sec. III�.

Here we focus directly on the many-particle energies
EN�r� and show how one can extract information about
the physics of a given model by analyzing their flow, that
is, the dependence of EN�r� on N. As a typical example
for such an analysis, we show in Fig. 4 the flow of many-
particle energies for the symmetric single-impurity
Anderson model, with parameters �f=−0.5�10−3, U
=10−3, V=0.004, and �=2.5 �the same parameters as
used in Fig. 5 in Krishna-murthy et al. �1980a�; note that
we show here a slightly different selection of the lowest-
lying states�. The energies are plotted for odd N only,
that is, an odd total number of sites �which is N+2�. This
is necessary because the many-particle spectra show the
usual even-odd oscillations of a fermionic finite-size sys-
tem �the patterns for even N look different but contain,
of course, the same physics�. The data points are con-
nected by lines to visualize the flow. As in Krishna-
murthy et al. �1980a�, the many-particle energies are la-
beled by total charge Q and total spin S.

What is the information one can extract from such a
flow diagram? First of all we note the appearance of

0 20 40 60 80
N

0.0

1.0

2.0

3.0

4.0

E
N
(r

)

Q=0, S=1/2

Q=1, S=0

Q=1, S=1

FIG. 4. �Color online� Flow of the lowest-lying many-particle
levels of the single-impurity Anderson model for �f=−0.5
�10−3, U=10−3, V=0.004, and �=2.5. The states are labeled
by the quantum numbers total charge Q and total spin S. See
text for a discussion of the fixed points.

406 Bulla, Costi, and Pruschke: Numerical renormalization group method for …

Rev. Mod. Phys., Vol. 80, No. 2, April–June 2008



three different fixed points of the RG transformation:
for early iteration numbers N�10, for intermediate val-
ues of N, and for N�60 �strictly speaking, because we
look at N odd only, these are fixed points of R2, not of
R�. The physics of these fixed points cannot be extracted
by just looking at the pattern of the many-particle ener-
gies. This needs some further analysis, in particular the
direct diagonalization of fixed point Hamiltonians
�which usually have a simple structure� and the compari-
son of their spectrum with the numerical data. An excel-
lent account of this procedure for the symmetric and
asymmetric single-impurity Anderson model has been
given by Krishna-murthy et al. �1980a, 1980b� and there
is no need to repeat this discussion here. The analysis
shows that, for N�3–9, the system is very close to the
free-orbital fixed point, with the fixed point Hamiltonian
given by Eq. �26� for U=0 and V=0. This fixed point is
unstable and for N�11–17 we observe a rapid crossover
to the local-moment fixed point in the range N�20–50.
This fixed point is characterized by a spin weakly
coupled via a Kondo exchange to the conduction band.
The local-moment fixed point is unstable as well, and
after a characteristic crossover �see below�, the system
approaches the stable strong-coupling fixed point of a
screened spin. Note that the terminology “strong cou-
pling” was introduced originally because the fixed point
Hamiltonian can be obtained from the limit V→
, so
“coupling” here refers to the hybridization, not the Cou-
lomb parameter U.

The NRG method does not only allow one to match
the structure of the numerically calculated fixed points
with those of certain fixed point Hamiltonians. One can
in addition identify the deviations from the fixed points
�and thereby part of the crossover� with appropriate per-
turbations of the fixed point Hamiltonians. Again, we
refer the reader to Krishna-murthy et al. �1980a, 1980b�
for a detailed description of this analysis. The first step is
to identify the leading perturbations around the fixed
points. The leading operators can be determined by ex-
pressing them in terms of the operators that diagonalize
the fixed point Hamiltonian; this tells us directly how
these operators transform under the RG mapping R2.
One then proceeds with the usual classification into rel-
evant, marginal, and irrelevant perturbations. The final
results of this analysis perfectly agree with the flow dia-
gram of Fig. 4: There is a relevant perturbation which
drives the system away from the free-orbital fixed point,
but for the local-moment fixed point there is only a mar-
ginally relevant perturbation, therefore the system only
moves slowly away from this fixed point. Note that this
marginal perturbation—which is the exchange interac-
tion between the local moment and the spin of the first
conduction electron site—gives rise to the logarithms
observed in various physical quantities. Finally, there are
only irrelevant operators which govern the flow to the
strong-coupling fixed point. These are responsible for
the Fermi-liquid properties at very low temperatures
�Hewson, 1993a�.

Having identified the leading operators for each fixed
point, it is possible to calculate physical properties close
to the fixed points perturbatively. We do not want to go
into the calculational details here; see Krishna-murthy et
al. �1980a� and also Sec. IV in Hewson �1993a�.

Recently, Hewson et al. �2004� and Hewson �2005� de-
veloped an alternative approach to analyze the data
from NRG calculations, based on the renormalized per-
turbation theory as developed by Hewson �1993b� for
the single-impurity Anderson model. The ingredients of
this method are an effective impurity model with renor-
malized parameters and a perturbation expansion in
these parameters. As it turns out, the NRG method is a
convenient �but not the only� way to calculate the renor-
malized parameters. The renormalized perturbation
theory has been used to describe the physics close to the
strong-coupling fixed point and is, in principle, appli-
cable also on all energy scales. Higher-order expansions
in the renormalized interactions require the careful use
of counterterms, in order to avoid overcounting of
renormalization effects. The approach has also been ap-
plied to study magnetic field effects in the Anderson
impurity model �Hewson et al., 2006� and for calcula-
tions of the conductance of quantum dots in nonequilib-
rium �Hewson et al., 2005�.

Flow diagrams as in Fig. 4 also give information about
the relevant energy scales for the crossover between
the fixed points. For example, an estimate of the
Kondo temperature TK �the temperature scale that char-
acterizes the flow to the strong-coupling fixed point� is

given by TK��c�
−N̄/2, with N̄�55 for the parameters in

Fig. 4.
The discussion of flow diagrams as in Fig. 4 concludes

our introduction to the basics of the NRG approach. An
important part is still missing, of course: the calculation
of physical quantities from the flow of many-particle en-
ergies �and from certain additional matrix elements�.
This is the topic of the following section.

In Sec. IV we shall return to the discussion of flow
diagrams and the structure of fixed points when studying
various other quantum impurity systems, in particular
the two-channel Kondo model, which displays a non-
Fermi-liquid fixed point �see Sec. IV.B�, and the soft-gap
Anderson model, which has a quantum critical point
separating the strong-coupling and local-moment phases
�see Sec. IV.C.2�.

We conclude this section with a few remarks on the
relation between the NRG method and the density ma-
trix renormalization group �DMRG� method, which is
widely used for the investigation of one-dimensional in-
teracting systems �Noack and Manmana, 2005; Scholl-
wöck, 2005; Hallberg, 2006�. The DMRG method works
with a similar philosophy, that is, a stepwise increase of
the system size within an iterative procedure, but it uses
a different criterion for the selection of states, based on
the density matrix. The DMRG method works for sys-
tems where the parameters do not fall off exponentially
as one goes along the chain �a necessary requirement for
the NRG method to work�; therefore the range of appli-
cability of the two methods is somewhat different. Note
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that the DMRG method has been applied to quantum
impurity systems as well �Nishimoto and Jeckelmann,
2004�; nevertheless, the NRG approach is more suitable
when it comes to describing the low-energy properties of
impurity systems, in particular the appearance of fixed
points and the crossover between fixed points.

III. CALCULATION OF PHYSICAL PROPERTIES

In the previous section we discussed information that
can be gained from the low-lying energy levels during
the RG flow. Clearly, a lot can already be learned on this
level about the physical properties of the system. How-
ever, an obvious aim of any method is also to calculate
thermodynamic quantities like specific heat or suscepti-
bilities, or even dynamical properties.

We start by reminding the reader that the coefficients
tn appearing in the transformed Hamiltonian Eq. �26�
decay like �−n/2 for large n. This aspect can be used to
relate a certain chain length N with a temperature �en-
ergy� scale of the model in the following way �Wilson,
1975a; Krishna-murthy et al., 1980a; Oliveira and Ol-
iveira, 1994�: Diagonalizing the scaled Hamiltonian �35�
for a given chain length N yields a set of eigenvalues
El

�N�, where the spacing of the lowest eigenvalues is of
order 1 due to the rescaling with ��N−1�/2. Clearly, for a
given temperature T, the eigenvalues El

�N�−E0
�N�

���N−1�/2kBT, where EN
�0� is the ground-state energy, will

not contribute significantly to the calculation of physical
properties because they will be exponentially suppressed
by the Boltzmann factor. Thus, for an inverse tempera-
ture �N= �kBTN�−1 with

�N�−�N−1�/2
¬ �̄ �45�

and �̄ of order 1, it is permissible to approximate the full
Hamiltonian HN by the truncated one for the same N,
provided that enough states are kept to ensure El

�N�

−EN
�0����N−1�/2kBTN for large eigenvalue index l.

On the other hand, longer chains will significantly
modify only the first few eigenvalues El

�N�−EN
�0�

���N−1�/2kBTN, i.e., for the calculation of impurity prop-
erties on the temperature or energy scale kBTN they do
not introduce significant contributions, and it will thus
be sufficient to use the truncated Hamiltonian HN in-

stead of the full Hamiltonian �26�. The actual choice of �̄
depends on the value of the discretization parameter �

and the number of states kept. In practice, a value �̄
=0.5–1 has been proven to be appropriate.

Thus, provided we can keep enough states in the trun-
cation scheme introduced in Sec. II, it is permissible to
use the truncated Hamiltonian at level N obtained from
the iterative diagonalization to calculate thermodynamic
properties for the impurity on the temperature scale

kBTN=�−�N−1�/2 / �̄ �see the next section�.
The situation becomes more complicated when one is

interested in quantities that mix information on different
energy scales, as is the case for dynamical response func-

tions. Here a more elaborate scheme has to be devel-
oped, which will be discussed in Sec. III.B.

A. Thermodynamic and static properties

1. Entropy, specific heat, and susceptibility

The simplest physical quantities related to the impu-
rity degrees of freedom are the impurity contribution to
the entropy Simp, specific heat Cimp, and magnetic sus-
ceptibility �imp.

The entropy and specific heat are the first derivatives
of the free energy F=−kBT ln Z and internal energy U
= �H� with respect to temperature, i.e.,

S = −
�F

�T

and

C =
�U

�T
.

From a numerical point of view, performing differentia-
tions is something to avoid if possible. For the numerical
implementation of the NRG method, another complica-
tion arises. To avoid an exponential increase of energies,
it is necessary to subtract the ground-state energy at
each NRG level N, i.e., one would have to keep track of
these subtractions. Clearly, a more convenient approach
is to evaluate the derivative analytically, yielding

S/kB = ��H� + ln Z

for the entropy and

C/kB = �2��H2� − �H�2�

for the specific heat.
Other local properties usually involve the calculation

of correlation functions. Here one has to distinguish be-
tween equal-time correlators and susceptibilities. In the
following we will concentrate on the latter and address
the former in Sec. III.A.2.

The prescription to calculate the impurity contribu-
tion to the isothermal magnetic susceptibility requires
some more thought. The standard definition for the iso-
thermal magnetic susceptibility is �we set g�B=1�

��T� = �
0

�

�Sz���Sz�d� − ��Sz�2, �46�

with � the imaginary time �0�����, Sz the z compo-
nent of the impurity spin operator, and

�Sz���Sz� =
1

Z
Tr�e−�He�HSze−�HSz� .

However, evaluation of the latter expectation value is
equivalent to the calculation of a dynamical correlation
function. This, as well as the calculation of the adiabatic
static susceptibility from the dynamic response function
in the limit �→0, is in general a much more complex
task and will be discussed in the next section.
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Alternatively, one can apply a finite magnetic field B
to the model and calculate numerically the derivative
�m /�B, where m is the local magnetization due to the
presence of B. This approach requires at least two NRG
calculations �one with and one without the field B�. Fur-
thermore, as we need �m�B� /�B in the limit B→0, it is
often necessary to calculate a series of B values to be
sure that one has indeed reached this limit with a linear
dependence m�B��B. From this point of view, this ap-
proach appears to be rather costly in computer re-
sources.

Here we employ a different approach, which in turn is
also more closely related to the experimental definition
of this quantity. In general, experiments address the sus-
ceptibility of the whole system. Since the total spin
commutes with the Hamiltonian, i.e., �Stot,z���Stot,z�
= �Stot,zStot,z� is time independent, Eq. �46� simplifies to

�tot�T� = ���Stot,z
2 � − �Stot,z�2�

in this case. From this, one subtracts the susceptibility of
a reference system, i.e., one without impurity, leading to
Wilson’s definition �Wilson, 1975a� of the impurity con-
tribution to the susceptibility,

�imp�T� = �tot�T� − �tot
�0��T� . �47�

Since Stot,z is a quantum number used to classify the
states in the calculation, the expectation values in Eq.
�47� can be evaluated straightforwardly.

Similarly, the impurity contributions to the entropy
and specific heat can be calculated as

Simp�T� = Stot�T� − Stot
�0��T� �48�

and

Cimp�T� = Ctot�T� − Ctot
�0��T� , �49�

where Stot
�0��T� and Ctot

�0��T� are again the entropy and spe-
cific heat of a suitable reference system.

We discuss the details of the actual calculation for the
entropy as a specific example. Following the introduc-
tory remarks, we can—for a given temperature
kBT—restrict the Hilbert space to the NRG iteration N
satisfying Eq. �45�. If we denote the corresponding
Hamiltonian by H�N�, we can introduce the quantity

S�N�/kB ª ��H�N�� + ln Z�N�, �50�

where, using the notation of Sec. II �see, for example,
Eq. �40��,

�¯��N�
ª

1

Z�N� �
Q,Sz

�
r

e−�EN�Q,Sz,r�

�N�Q,Sz,r� ¯ �Q,Sz,r�N �51�

and

Z�N�
ª �

Q,Sz

�
r

e−�EN�Q,Sz,r�. �52�

The impurity contribution to the entropy for a tempera-

ture kBTNª�−�N−1�/2 / �̄ can then be obtained as

Simp�TN�/kB � S�N�/kB − Scb
�N�/kB. �53�

Here we introduced the free entropy

Scb
�N�/kB ª ��Hcb

�N���N� + ln Zcb
�N�, �54�

obtained from the bare conduction Hamiltonian

Hcb
�N� = �

�n=0

N

��ncn�
† cn� + tn�cn�

† cn+1� + cn+1�
† cn��� . �55�

Similarly, for kBTN=�−�N−1�/2 / �̄, the specific heat and
magnetic susceptibility are obtained as

Cimp�TN�/kB � Ctot
�N� − Ccb

�N� �56�

and

�imp�TN� � �tot
�N� − �cb

�N�. �57�

Since the Hamiltonian �55� is a noninteracting system,
these quantities Scb

�N�, etc., can be expressed via the ei-
genvalues �l� of Eq. �55� in standard fashion.

For T→0 the behavior of Simp�T� and �imp�T� given by
Eqs. �56� and �57� can be obtained analytically from the
fixed point spectra. We refer the reader interested in this
derivation to Wilson �1975a� and concentrate here on
the actual numerical calculations.

Another aspect is that the fixed points and the flow to
them are different for N even and odd. This in turn
means that one in principle has to calculate thermody-
namic properties for either N even or odd only and thus
lose half of the temperature values. One can, however,
use all information by averaging odd and even steps.

• For a given N, calculate the quantities O�N−1�, O�N�,
and O�N+1�.

• Approximate O�TN� as

O�TN� �
1
2
�O�N� + O�N−1� +

O�N+1� − O�N−1�

TN+1 − TN−1

��TN − TN−1�� .

The first term in the large parentheses is the observ-
able calculated at step N. The second and third terms
are a linear interpolation of the values at N−1 and
N+1 to iteration N.

• Continue with N+1.

As a positive side effect, this averaging also improves
the accuracy of the thermodynamic quantities calculated
�see, e.g., Fig. 5�.

At this point some remarks about potential numerical
problems should be made. The arguments given in the
introduction to this section rely on the assumption that
one can keep states with high enough energy to ensure
�i� the accuracy of the states at medium and low energies
and �ii� the convergence of the partition function and
expectation values. Depending on the actual quantity to
be calculated, the latter point can in principle lead to
problems. As an example, consider �H� and �H2�. While
for a given energy cutoff Ecut the contribution
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�̄Ecute
−�̄Ecut to �H� can already be small enough to use

the sum up to Ecut as an approximation to �H�, this need
not necessarily be true for �H2�. Thus the resulting val-

ues for the specific heat �̄��H2�− �H�2� can be rather
poor, although the entropy and susceptibility are much
more accurate. In this case numerical differentiation of
the entropy is the better choice �Costi et al., 1994a�.

2. Other local properties

While entropy, specific heat, and impurity susceptibil-
ity can be obtained directly from the spectra of the
Hamiltonian, other local quantities require the calcula-
tion of the corresponding local matrix elements. As an
example, we discuss here the local occupancy n�= �f�

†f��
and double occupancy D= �f↑

†f↑f↓
†f↓� for the single-

impurity Anderson model Eq. �2�. Both quantities are of
interest in actual applications. Expectation values of
other local operators can be calculated in a similar man-
ner.

As before, on a given temperature scale kBTN

=�−�N−1�/2 / �̄, we approximate the expectation values by

n��TN� �
1

Z�N� �
Q,Sz

�
r

e−�EN�Q,Sz,r�

�N�Q,Sz,r�f�
†f��Q,Sz,r�N �58�

for the occupancy and a corresponding expression for
the double occupancy. The matrix elements

n��Q,Sz,r,r�;N� ª N�Q,Sz,r�f�
†f��Q,Sz,r��N �59�

at a given step N can be calculated from those of the
previous step N−1 with the help of the basis transforma-
tion �43� for the step N. The same scheme works for the
matrix elements of the double occupancy
D�Q ,Sz ,w ,w� ,N� and the matrix elements of general
local operators—like f�

† needed in the calculation of the
single-particle Green’s function �see Sec. III.B�.

All that is left to specify are the initial values for
n��Q ,Sz ,w ,w� ;−1� and D�Q ,Sz ,w ,w� ;−1� on the level
of the impurity. For the Anderson model Eq. �2� they
are explicitly given as

n��0,0,0,0;− 1� = 0,

n��1,�,0,0;− 1� = 1,

n��2,0,0,0;− 1� = 2,

D�0,0,0,0;− 1� = 0,

D�1,�,0,0;− 1� = 0,

D�2,0,0,0;− 1� = 1. �60�

With these prerequisites we are now in the position to
do actual calculations for the thermodynamic properties
of quantum impurity models using the NRG method.

3. Example: The Kondo model

As an example for the method we present results for
the Kondo model,

H = �
k��

�kck��
† ck�� + J�

�

S · s�, �61�

with � the channel index and S �s�� the spin operators of
the impurity �the conduction band electrons at the im-
purity site with channel index ��. Depending on the
number of bands coupling to the local spin, one observes
a conventional Kondo effect with the formation of a lo-
cal Fermi-liquid or non-Fermi-liquid fixed point with
anomalous temperature dependencies of the specific
heat and susceptibility as well as a residual entropy
S�0�= 1

2 ln 2 at T=0 �Cragg et al., 1980; Nozières and
Blandin, 1980� �this will be discussed in Secs. IV.A and
IV.B�.

In Fig. 5 we show the entropy Simp�T�, susceptibility
�imp�T�, Sommerfeld coefficient �imp=Cimp�T� /T, and
Wilson ratio RWª4	2�imp�T� / �3�imp�T�� as a function of
T /TK for the single-channel Kondo model. As the
Kondo coupling we choose J=0.05D, where D is the
half-bandwidth of the conduction band, for which we
assume a density of states �cb���=NF��D− �� � �. The
value of TK is obtained from Wilson’s definition �Wilson,
1975a� 4TK�imp�0�=0.413. Calculations are performed
with a discretization parameter �=4, keeping 400 states
at each NRG step. Although this value of � seems to be
fairly large, experience tells us that for static properties
such large values of � are still permissible, considerably
reducing the number of states one has to keep in the
truncation procedure.

One sees in Fig. 5 the quenching of the local moment
by the Kondo effect for temperatures of the order of TK.
The high-temperature values for the entropy Simp�T
→ 
 �=ln 2 and the Wilson ratio RW=2 below TK �Wil-
son, 1975a� are also obtained with high precision.
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FIG. 5. �Color online� Entropy Simp�T�, susceptibility �imp�T�,
Sommerfeld coefficient �imp=Cimp�T� /T, and Wilson ratio RW
for the single-channel Kondo model. The Kondo temperature
is defined by the Wilson relation �imp�0�=0.413/4TK.
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If one adds a second screening channel to the Kondo
model, one arrives at the so-called two-channel Kondo
model. The rather interesting physics of this model will
be discussed in Sec. IV.B. Here we want to demonstrate
that NRG calculations for this model are possible too;
however, the additional bath degrees of freedom, which
lead to Hilbert spaces larger by a factor of 4, make cal-
culations more cumbersome and for some quantities
also less accurate. In Fig. 6 we show as before the impu-
rity contributions to the entropy, susceptibility, and Som-
merfeld coefficient as well as the Wilson ratio as a func-
tion of T /TK. The impurity parameters are the same as
in Fig. 5; for the NRG method we again choose �=4 but
keep 8100 states per iteration. The value of TK is that of
the corresponding single-channel model. As emphasized
before, the entropy and susceptibility come out quite
accurately; in particular, the residual entropy S�0�
= 1

2 ln 2 is obtained as well as the logarithmic increase of
�imp�T�� ln�T /TK� for T�TK �Cragg et al., 1980; Pang
and Cox, 1991; Affleck et al., 1992�. The specific heat,
however, is less accurate; it does show the logarithmic
increase as expected, although with strong oscillations
superimposed. By fitting both quantities with a logarith-
mic form, one can recover the correct Wilson ratio RW
=8/3 for T→0. Note, however, that the latter value is
approached only logarithmically.

4. Improving the accuracy: The z averaging

For more complex quantum impurity models, like the
two-channel Kondo model �discussed in the previous
section and in Sec. IV.B� or multiorbital models, the Hil-
bert space per NRG step increases more strongly than
for single-channel models. Consequently, the fraction of
states kept in the truncation procedure has to be re-
duced. As has been pointed out by Oliveira and Oliveira
�1994�, this leads to an exponential decrease of accuracy,
which can, however, be compensated by an increase of
the discretization parameter �. However, the use of a
large � �i� takes one further away from the continuum
limit �→1 of interest and �ii� introduces oscillations into

the thermodynamic expectation values. A way out of
this dilemma, proposed by Oliveira and Oliveira �1994�,
is as follows.

• Instead of the discretization Eq. �6� choose

xn = �−n+z, n � 1, z � �0,1� . �62�

The mapping to a semi-infinite chain is done as be-
fore �see Sec. II.C� with the replacement �−n

→�−n+z for n�1.

• For fixed z� �0,1� perform a NRG calculation for a

fixed set of temperatures TN=�−�N−1�/2 / �̄ as before.

• Average over several calculations for different z.
This averaging is meant to reintroduce the con-
tinuum limit to some extent �Oliveira and Oliveira,
1994� and also can be shown to remove oscillations
introduced by the use of large ��1.

For two different values of z this procedure already
removes spurious oscillations in thermodynamic quanti-
ties and reproduces the exact result with good accuracy
for � as large as �=10. This technique can be incorpo-
rated straightforwardly into the NRG code �for applica-
tions, see Silva et al. �1996�; Costa et al. �1997�; Paula et
al. �1999�; Campo and Oliveira �2003, 2004�; Ramos et al.
�2003��.

B. Dynamic properties

As for static properties, there exist a variety of inter-
esting local dynamical quantities, for example, the
single-particle Green’s function, the dynamical magnetic
susceptibility, or the density-density response function.
Depending on the actual model and questions at hand,
one may also be interested in response functions of
other observables.

In Sec III.B.1 we discuss the application of the NRG
method to the calculation of the equilibrium single-
particle Green’s function and the corresponding spectral
density as a specific example �Frota and Oliveira, 1986;
Sakai et al., 1989; Costi and Hewson, 1992b; Costi et al.,
1994a�. Calculations can be carried out at both T=0 and
finite temperature, thereby allowing the calculation also
of transport properties �Costi et al., 1994a�. The scheme
can also be applied to other observables; one just has to
replace the annihilation and creation operators by the
corresponding observables and respect the differences
between fermionic and bosonic operators in the Leh-
mann representation �see Eq. �67��. Two improvements
to dynamics, using the correlation self-energy �Bulla et
al., 1998� and the reduced density matrix �Hofstetter,
2000�, are described in Sec. III.B.2. Section III.B.3 deals
with the calculation of the transient dynamics of impu-
rities subject to sudden local perturbations.

1. Equilibrium dynamics and transport

For definiteness we consider the Anderson impurity
model and illustrate the procedure for the impurity
spectral density A��� ,T�=− 1

	 Im G��� ,T�, with
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FIG. 6. �Color online� Entropy Simp�T�, susceptibility �imp�T�,
Sommerfeld coefficient �imp=Cimp�T� /T, and Wilson ratio RW
for the two-channel Kondo model. The value for the Kondo
temperature is the same as in Fig. 5.
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G���,T� = �
−


+


d�t − t��ei��t−t��G��t − t�� , �63�

G��t − t�� = − i��t − t����f��t�,f�
†�t���+��, �64�

with � the density matrix of the system and f��t�
=eiHtf��0�e−iHt the f-electron annihilation operator in the
Heisenberg representation. Suppose, for the moment,
that we know all the many-body eigenstates �r� and ei-
genvalues Er of the Anderson impurity Hamiltonian H
exactly. Then the density matrix ��T� and partition func-
tion Z�T� of the full system at temperature kBT=1/� are
given by

��T� =
1

Z�T��r
e−�Er�r��r� , �65�

Z�T� = �
r

e−�Er, �66�

and the impurity spectral density A� can be written in
the Lehmann representation as

A���,T� =
1

Z�T��
r,r�

�Mr,r��
2�e−Er/kBT + e−Er�/kBT�

�
„� − �Er� − Er�… , �67�

with Mr,r�= �r � f� �r�� the relevant many-body matrix ele-
ments.

Consider first the T=0 case �T�0 is described below�.
Then

A���,T = 0� =
1

Z�0��r
�Mr,0�2
„� + �Er − E0�…

+
1

Z�0��
r�

�M0,r��
2
„� − �Er� − E0�… ,

�68�

with E0=0 the ground-state energy. In order to evaluate
this from the information that is obtained from an itera-
tive diagonalization of H, we consider the impurity spec-
tral densities corresponding to the sequence of Hamilto-
nians HN, N=0,1 , . . ., whose characteristic scale is �N

= 1
2 �1+�−1��−�N−1�/2,

A�
N��,T = 0� =

1

ZN�0��r
�Mr,0

N �2
�� + Er
N�

+
1

ZN�0��
r�

�M0,r�
N �2
�� − Er�

N� . �69�

Here Er
N and �r�N are the eigenvalues and eigenstates of

HN, i.e.,

HN�r�N = Er
N�r�N �70�

and

Mr,r�
N = N�r�f��r��N �71�

are the relevant many-body matrix elements, whose cal-
culation will be outlined below. Since the spectrum of
HN is truncated, the range of excitations it describes is
limited to 0���K����N, where K��� depends on both
� and the actual number of states retained at each itera-
tion and is typically 5–10 for �=1.5–2.0 and Ns
=500–1000 retained states. Moreover, excitations and
eigenstates below the characteristic scale �N of HN will
only be approximations to the excitations and eigen-
states of the infinite system described by H. These exci-
tations and eigenstates are refined in subsequent itera-
tions. Hence, for each N=1,2 , . . ., we can evaluate the
spectral density from A�

N at a frequency � chosen to lie
in the window �N���K����N,

A���,T = 0� � A�
N��,T = 0� . �72�

A typical choice, for �=1.5–2.0, is �=2�N.
The above procedure still only yields discrete spectra.

For comparison with experiment, smooth spectra are re-
quired, so we replace the delta functions 
��±Er

N� ap-
pearing in Eq. �69� by smooth distributions P��±Er

N�. A
natural choice for the width �N of P is �N, the charac-
teristic scale for the energy level structure of HN. Two
commonly used choices for P are the Gaussian, PG, and
the logarithmic Gaussian, PLG, distribution �Sakai et al.,
1989; Costi et al., 1994a; Bulla et al., 2001�:

PG�� ± Er
N� =

1

�N
�	

e−��� ± Er
N�/�N�2

, �73�

PLG�� ± Er
N� =

e−b2/4

bEr
N�	

e−�ln����/Er
N�/b�2

. �74�

For the Gaussian, a width �N=0.3�N–0.8�N is typi-
cally used �Costi et al., 1994a�, whereas, for the logarith-
mic Gaussian, a typical width parameter b=0.3–0.7 is
used �Sakai et al., 1989; Bulla et al., 2001�. Note that the
logarithmic Gaussian gives little weight to excitations
below �N and more weight to higher-energy excitations.
Due to the logarithmic discretization, this might appear
to be the better choice. In practice, the difference in
using a Gaussian is small.

In general, spectra for even and odd N differ by a few
percent at most as a result of finite-size effects �see also
the discussion of the reduced density matrix approach in
Sec. III.B.2�, so generally either even N or odd N spectra
are calculated �as for thermodynamics�. It is also pos-
sible to combine information from shells N and N+2 by
an appropriate weighting �Bulla et al., 2001�. We note
also that, since the broadening is proportional to the
energy, a peak of intrinsic width � at frequency  0 will
be well resolved by the above procedure provided that
 0��, which is the case for the Kondo resonance and
other low-energy resonances. In the opposite case, the
low �logarithmic� resolution at higher frequencies may
be insufficient to resolve the intrinsic widths and heights
of such peaks, although their weights are correctly cap-
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tured. In cases where the width of such high-energy
peaks is due to single-particle effects, e.g., the resonant
level in the empty orbital regime of the Anderson
model, one can use the representation of the spectral
density in terms of the correlation self-energy, as de-
scribed in the next section, with the single-particle
broadening explicitly included so that essentially the cor-
rect peak widths and heights are obtained. In other
cases, when the width of such peaks is due to correla-
tions, one inevitably has some overbroadening. An ex-
treme example is the spin-resolved Kondo resonance at
high magnetic fields B�TK, which is sharply peaked at
�=B and is highly asymmetrical, as shown in Fig. 7. The
extent of the problem is quantified here by comparison
with analytic perturbative results with and without the
NRG broadening procedure.

A procedure for obtaining smooth spectra that re-
solves finite-frequency peaks without broadening the
discrete spectra involves an averaging over many differ-
ent discretizations of the band �the z averaging discussed
in the previous section on thermodynamics�. We refer
the reader to Yoshida et al. �1990� for details.

In calculating the impurity spectral density, one re-
quires the matrix elements Mr,r�

N at each iteration. The
matrix elements are obtained recursively using the uni-
tary transformation Eq. �43�, yielding

Mr,r�
N = �

p,sN

�
p�,sN�

UN�r,psN�UN�r�,p�sN� �
sN,sN�
Mp,p�

N−1.

�75�

Hence the matrix elements Mr,r�
N can be evaluated recur-

sively from knowledge of the eigenstates of finite-size
Hamiltonians up to HN starting from the initial matrix
elements −1�r � f� �r��−1 of the isolated impurity Himp

=�f��f�
†f�+Uf↑

†f↑f↓
†f↓. Similar considerations apply to

other local dynamical quantities such as dynamical spin
and charge susceptibilities. Figure 8 shows T=0 spectral

densities for single-particle, magnetic, and charge excita-
tions calculated using the above procedure. These NRG
calculations have been shown to satisfy exact Fermi-
liquid relations, such as the Friedel sum rule for the
single-particle spectral density and the Shiba relation for
the magnetic excitation spectrum, to within a few per-
cent irrespective of the interaction strength U /	� in the
Anderson model or the value of the exchange J in the
Kondo model �see Costi et al. �1994a� and Costi �1998�
for a discussion�. We note that fulfillment of these low-
energy and low-temperature Fermi-liquid relations is in-
dication that the recursive evaluation of matrix elements
and excitations, inherent to the NRG procedure, re-
mains stable and accurate down to the lowest energies,
i.e., for large iterations N�1. In the case of excitations,
the accuracy and stability of the recursive diagonaliza-
tion scheme can also be judged by the exact results ob-
tained for fixed point eigenvalues �see Sec. II and Wilson
�1975a��.

The case of finite-temperature dynamics is more com-
plicated. Contributions to the spectral density at fre-
quency ���N now arise from excitations between arbi-
trary excited states, i.e., �=Er−E0=Er�−Ep�=Er�−Ep�
=¯ with E0=0�Ep��Ep��¯; see Fig. 9. Conse-
quently, the finite-T spectral density at ���N will have
contributions from all energy shells n=1, . . . ,N. These
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FIG. 7. Spin-resolved Kondo resonance at high magnetic fields
calculated with the NRG method and perturbative RG. The
large Gaussian broadening used at �=g�BB=100TK reduces
the height of the sharp peak and overestimates its width, as is
evident on applying the NRG broadening procedure to the
analytic perturbative RG result �Rosch et al., 2003�.

FIG. 8. T=0 spectral densities for single-particle �solid line�,
magnetic �dashed line�, and charge �dot-dashed line� excita-
tions of the spin degenerate symmetric, Anderson model ver-
sus energy � /D for U=0.6D, D=1.0, and � /	=M=0.03D.
From Sakai et al., 1989.

0

ω N ω
ω

ω
...

ω

Κω N

a) E b) E
N

r
N

r

FIG. 9. �Color online� Excitations of HN contributing to the
spectral function at frequency � for �a� T=0 and �b� T�0.
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need to be summed up, as in the calculation of transient
quantities described in Sec. III.B.3. It is clear, however,
that in the case of equilibrium spectral densities the con-
tributions from shells n�N will be suppressed by Boltz-
mann factors. This motivates the following approxima-
tion. At �=2�n�kBT one can calculate A��� ,T� as in
the T=0 case,

A���n,T� � A�
n��n,T�

=
1

Zn�T��
r,r�

�Mr,r�
n �2�e−Er

n/kBT

+ e−Er�
n

/kBT�
„�n − �Er�
n − Er

n�… . �76�

In the other limit, �=2�n�kBT, there is no completely
satisfactory procedure. One approach assumes that the
main contribution to the spectral density for �=2�n
�kBT comes from the energy window containing ther-
mal excitations O�kBT� �Costi and Hewson, 1992b; Costi
et al., 1994a�. In this case, the relevant shell M is deter-

mined by temperature via �M� �̄kBT, as in the evalua-
tion of thermodynamic properties in the previous sec-
tion, so that, for �=2�n�kBT, we use

A���n,T� � A�
M��n,T�

=
1

ZM�T��
r,r�

�Mr,r�
M �2�e−Er

M/kBT

+ e−Er�
M

/kBT�
„�n − �Er�
M − Er

M�… . �77�

In practice, this procedure gives a smooth crossover as �
is lowered below kBT for temperatures comparable to
the Kondo scale and higher, but becomes less reliable at
��kBT�TK.

Once the finite-T spectral density is known, one can
also calculate transport properties, since the transport
time �tr for electrons scattering from a small concentra-
tion ni of magnetic impurities is given in terms of the
spectral density by

1

�tr��,T�
=

2ni�

NF
A���,T� , �78�

where NF is the conduction electron density of states
and � is the hybridization strength. For example, the
resistivity R�T� due to Kondo impurities in a clean metal
is given by

R�T� =
1

e2� d��− �f/����tr��,T�
, �79�

and the conductance through a quantum dot �or the re-
sistivity of Kondo impurities in a dirty metal� modeled
by an Anderson impurity model is given by

G�T�/G�0� = �
�
� d��−

�f

��
�A���,T� . �80�

Figure 10 compares the scaled resistivity R�T� /R�0� for
the Kondo and Anderson models with the scaled con-
ductance G�T� /G�0� for the Kondo model. The conduc-
tance and resistivity are seen to be almost identical uni-
versal functions of T /TK. At finite magnetic field, the
two quantities deviate from each other in the region T
�B �Costi, 2000�. The NRG results can be compared to
analytic results at low and high temperatures. The resis-
tivity of the Anderson model in the low-temperature
Fermi-liquid regime is given by the result of Nozières
�1974�,

R�T�/R�0� = G�T�/G�0� = 1 − c� T

TK
�2

, T � TK,

�81�

where c=	4 /16=6.088 and TK is the low-temperature
Kondo scale defined from the static spin susceptibility
via

��T = 0� = �g�B�2/4kBTK. �82�

At high temperatures T�TK, Hamann used the
Nagaoka-Suhl approximation �Hewson, 1993a� to obtain
for the resistivity of the Kondo model

R�T�/R�0� =
1
2
�1 −

ln�T/TKH�
�ln�T/TKH�2 + 	2S�S + 1��1/2� ,

�83�

where S is the impurity spin and TKH is a Kondo scale
defined by

R�T = TKH� = R�0�/2. �84�

Micklitz et al. �2006� found numerically that TKH
�0.91TK. We see from Fig. 10 that the NRG result for
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FIG. 10. �Color online� Scaled resistivity and conductance of
the S=1/2 Kondo model. For comparison the resistivity of the
symmetric Anderson model for U /	�=4 is also shown �Costi
and Hewson, 1993� and seen to be identical to that for the
Kondo model, up to nonuniversal corrections arising from
charge fluctuations at higher temperatures �for U /	�=4 these
corrections occur for T�10TK�. Adapted from Costi, 2000.
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the resistivity of the Kondo model agrees with the Ha-
mann result for T�TK. The T2 Fermi-liquid behavior at
low temperature T�TK is also recovered. In contrast,
the Hamann result violates Fermi-liquid behavior and
cannot be reliable for T�TK. Numerical determination
of the coefficient c in Eq. �81� requires obtaining
�tr�� ,T� accurately up to second order in both � and T
�Costi et al., 1994a�. Typical errors for c can be as large
as 10–30 % so there is room for further improvement of
the finite-T dynamics in the Fermi-liquid regime T
�TK. Recent multiple-shell techniques, described in
Sec. III.B.3, look promising in this respect. For a discus-
sion of other transport properties of Kondo systems,
such as thermopower and thermal conductivity, see
Costi and Hewson �1993�, Zlatić et al. �1993�, and Costi
et al. �1994a�.

2. Self-energy and reduced density matrix approach

We now describe two improvements to the calculation
of dynamical quantities. The first of these, a direct cal-
culation of the correlation part of the self-energy of the
Anderson impurity model �Bulla et al., 1998�, is particu-
larly important for applications to DMFT, where the im-
purity self-energy plays a central role. The second, intro-
duction of the reduced density matrix into the
calculation of dynamics, is important, for example, in
correcting large finite-size errors in spin-resolved spectra
of the Anderson and Kondo models when a magnetic
field perturbs the ground state �Hofstetter, 2000�.

The correlation part of the self-energy for the Ander-
son impurity model !� is defined via

G���,T� =
1

� − �f + i� − !���,T�
�85�

and can be expressed, via the equation of motion for G�

�Bulla et al., 1998�, as the ratio of a two-particle and a
one-particle Green’s function,

!���,T� = U��f�f−�
† f−�;f�

†��/��f�;f�
†�� , �86�

where the notation ��A ;B�� represents the retarded
Green’s function for the operators A ,B. Evaluating the
spectral densities of the two Green’s functions in Eq.
�86� as in the previous section, and calculating from
these, via a Kramers-Kronig transformation, the corre-
sponding real parts of the Green’s functions one obtains
the self-energy, shown in Fig. 11. Using this in Eq. �85�,
one is able to obtain the impurity spectral density with
improved resolution of high-energy peaks, since in this
procedure the single-particle broadening � is included
exactly. In particular, this scheme recovers the limit U
→0 exactly. It is also found to improve the spectral sum
rule

−
1

	
�

−


+


d� Im� 1

� − �f + i� − !���,T�� = 1, �87�

with typical errors as low as 0.1% or less.
Evaluation of spectral densities described in the pre-

vious section is subject to systematic errors due to ne-

glect of high-energy states in constructing HN. These are
the same as for thermodynamic properties, and they can
be controlled by decreasing � and increasing the num-
ber of retained states Ns. Another source of error, spe-
cific to the method used to calculate the dynamics, is
that, while we chose the frequency � in evaluating spec-
tra from HN carefully so that ���N, nevertheless the
eigenstates in the range 0�Er

N��N, which for small N
are only crude approximations to the eigenstates of H,
are also used in the evaluation. They enter the calcula-
tion directly, as can be seen from Fig. 9, and also via the
density matrices �e.g., at T=0 via �N= �0�NN�0�� which
are used to find Eqs. �69�, �76�, and �77�. As a result, the
spectral density is subject to errors for small N, i.e., for
high energies, due to the use of low-lying states which
are not converged �Hofstetter, 2000�. With increasing N,
i.e., lower energies, this error will decrease. An improve-
ment, due to Hofstetter �2000�, is to use in place of �N
the reduced density matrix �N,red of HN, obtained from
the density matrix of the largest finite-size Hamiltonian
diagonalized, HNmax

, i.e.,

�N,red = TrsN+1,. . .,sNmax
��Nmax

� , �88�

where sN+1 , . . . ,sNmax
are the extra degrees of freedom

contained in HNmax
but absent in HN. As �N,red for N

�Nmax is not diagonal in the eigenbasis of HN, the re-
sulting spectral function takes on a more complicated
form,

A�
N��,0� = �

r�,r

Cr�,rMr,r�
N 
„� − �Er�

N − Er
N�… , �89�

Cr�,r = �
p

�p,r
N,redMr�,p

N + �
p

�r�,p
N,redMp,r

N . �90�

The reduced density matrices �n,red are calculated itera-
tively backward starting from the density matrix of
HNmax

. One situation where the reduced density matrix is
important is in obtaining correctly the spin-resolved
spectral density of the Anderson model in a magnetic
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FIG. 11. �Color online� Real and imaginary parts of the self-
energy for the Anderson impurity model for �f=−0.1, U=0.2,
and a constant hybridization strength �=0.015. The inset
shows the region around the Fermi level where the Hartree
term was subtracted off the real part. From Bulla et al., 1998.
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field �Hofstetter, 2000�. A magnetic field comparable to
TK changes the magnetization and therefore the occupa-
tion of up and down states by O�1�, so large shifts in
spectral weight occur at high energies in the impurity
spectral density which are captured correctly only using
the reduced density matrix �see Fig. 12�. Results for dy-
namical susceptibilities in a magnetic field using the re-
duced density matrix have been discussed by Hewson
�2006�. The reduced density matrix also eliminates to a
large extent the difference between the spectra calcu-
lated for even and odd N and allows a correct descrip-
tion of the asymptotics of the Kondo resonance in high
magnetic fields �Rosch et al., 2003�.

3. The x-ray problem and transient dynamics

We consider here the calculation of the response of a
system to a sudden local perturbation, such as the exci-
tation of an electron from a core level to the conduction
band of a metal in the x-ray problem �Mahan, 1974�, or
the time-dependent response of a spin in the spin-boson
model following an initial-state preparation �Leggett et
al., 1987�. These problems represent a special kind of
nonequilibrium problem where one is interested in the
relaxation of the system to a new equilibrium state fol-
lowing a sudden local perturbation. As shown below,
one can calculate the nonequilibrium dynamics of these
special kinds of problem within the NRG method be-
cause one needs only the information contained in the
initial- and final-state Hamiltonians. In this review, we
do not address the more difficult problem of global per-
turbations giving rise to nonequilibrium steady states, as,
for example, in transport through a quantum dot far
from the linear response regime.

The NRG approach to the x-ray problem �Oliveira
and Wilkins, 1981� was the first application of the
method to dynamical quantities. The approach devel-
oped by Oliveira and Wilkins �1981� treats the localized
core-hole potential exactly and calculates the absorption
spectrum within linear response theory using the tech-
niques of Sec. III.B.1. It uses the idea of formulating the
calculation of the absorption spectrum in terms of
initial- and final-state Hamiltonians �Nozières and De

Dominicis, 1969�, which is also inherent in the recent
NRG approach to transient dynamics �Costi, 1997a;
Anders and Schiller, 2005�, so we discuss both problems
together in this section.

A simple model for describing the x-ray absorption
spectra in metals is given by the following spinless
Hamiltonian:

H = �
k

�kck
†ck + Edd†d + �

k,k�

Udcck
†ck�dd†, �91�

where d† creates a core electron with energy Ed, and the
attractive screening interaction Udc acts only when the
core level is empty �dd†=1�. The core-level lifetime is
assumed infinite, and the interaction with the x-ray field
is taken to be of the form

Hx = w�c0
†de−i�t + H.c.� , �92�

where c0=�kck. The x-ray absorption spectrum ���� is
obtained using linear response theory from the imagi-
nary part of the optical conductivity �cd= ��c0

†d ;d†c0��. At
zero temperature, one finds for the absorption spectrum
a power-law singularity of the form

���� � �� − ET�−�, �93�

where ET is the absorption threshold and � is an expo-
nent which depends on the strength of the core-hole po-
tential. The exponent � has two contributions, �=��
−�, an excitonic part �� due to Mahan �1967� and an
orthogonality part � which follows from Anderson’s or-
thogonality catastrophe theorem �Anderson, 1967�. An
exact solution of the x-ray problem for the asymptoti-
cally low-energy regime has been obtained by Nozières
and De Dominicis �1969� using the decomposition of Eq.
�91� into single-particle initial-state HI and final-state HF
Hamiltonians, corresponding to the situations before
�dd†=0� and after �dd†=1� a core electron is excited to
the conduction band:

HI = �
k

�kck
†ck + Ed, �94�

HF = �
k

�kck
†ck + �

k,k�

Udcck
†ck�. �95�

For the spinless model, Eq. �91�, Nozières and De Do-
minicis �1969� found the exponents

�� = 2
/	, � = �
/	�2, �96�

where the phase shift 
=arctan�−	NFUdc� is that for
conduction electrons scattering from the additional po-
tential created by the core hole, and NF is the conduc-
tion electron density of states at the Fermi level. In ad-
dition to the absorption spectrum, the core-level
photoemission spectrum Ad���=−Im���d ;d†��� /	 is also
of interest. In the core-level photoemission spectrum,
only the orthogonality effect is operative and the core-
electron spectral function, which has the quasiparticle
form Ad���=
��−Ed� in the absence of screening, is re-
placed by an incoherent spectrum of the form
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FIG. 12. Comparison of the spectral function for the Anderson
impurity model calculated in a magnetic field with and without
the reduced density matrix: �=0.01,U=0.1,�f=−0.05, and B
=0.001. From Hofstetter, 2000.
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Ad��� � ��Ed
˜ − ���Ed

˜ − ��−�1−�� �97�

in the presence of screening �Doniach and Šunjić, 1970�.
Oliveira and Wilkins �1981� applied the NRG method

to the initial-state and final-state Hamiltonians �94� and
�95� and calculated the zero-temperature linear response
absorption spectrum,

���� = 2	w2�
mF

��mF�c0
†d�mI,GS��2

�
„� − �EmF
− EmI,GS

�… , �98�

with HI,F �mI,F�=EmI,F
�mI,F� and �mI,GS� the ground state

of HI. In evaluating ����, truncated Hamiltonians HI,F
N

were used and the spectrum was evaluated at an appro-
priate frequency �=�N as in Sec. III.B.1 but with a box
broadening function on a logarithmic scale. They were
able to recover the exact threshold exponent of Nozières
and De Dominicis �1969� �see Líbero and Oliveira
�1990a� for similar calculations of the photoemission
spectra�. They also extended the calculation of absorp-
tion spectra to core-hole potentials of finite range Udc
→Udc�k ,k��, finding �see Fig. 13� that the threshold ex-
ponent remains universal, i.e., it depends only on the
phase shift 
 at the Fermi level, but that the asymptotic
scale for the onset of power-law behavior depends on
both the range �Oliveira and Wilkins, 1981� and the
strength of the core-hole potential �Cox et al., 1985�. It
also depends on any energy dependence in the density
of states �Chen et al., 1995�. These results reflect the fact
that the crossover scale to the low-energy fixed point,
determining universal properties, depends on details of
the density of states and the core-hole potential.

X-ray singularities also play an important role in the
dynamics of auxiliary particles in the slave-boson ap-
proach to the infinite-U Anderson impurity model
�Coleman, 1984; Müller-Hartmann, 1984�. A NRG cal-
culation of the T=0 photoemission spectra for slave
bosons Ab��� and pseudofermions Af���� showed that
these diverge with the exponents given above for the
photoemission and absorption spectra, respectively, gen-
eralized to include spin �Costi et al. 1994b, 1996�:

Af���� � �� − ET�−�f, �99�

Ab��� � �� − ET�−�b, �100�

�f = 2

�

	
− �

�
�
�

	
�2

, �101�

�b = 1 − �
�
�
�

	
�2

, �102�

with the phase shift 
�=	nf� and nf� the occupancy per
spin of the local level. Here, also, the scale for the onset
of power-law behavior is determined by the relevant
low-energy crossover scale, e.g., the Kondo scale in the
Kondo regime.

We turn now to a problem which is formally similar to
the x-ray problem, namely, the dynamics of a spin sub-
ject to an initial-state preparation, as in the case, for
example, of the dynamics of the spin in the spin-boson
model Eq. �141�. Further discussion of the effects of
screening on the spectra of impurity models is given in
Sec. IV.A.1. In the spin-boson model one is interested in
the dynamics of a spin �z described by P�t�= ��z�t���I

,
following an initial-state preparation of the system de-
scribed by an initial density matrix �I �Leggett et al.,
1987�. For example, the spin �z in Eq. �141� could be
prepared in state �↑ � at t�0 by an infinite bias �=
 with
the environment fully relaxed about this state, and the
bias could subsequently be switched off at t=0, allowing
the spin to evolve. The time evolution of the spin for t
�0 is then described by

��z�t���I
=

1

Tr �I
Tr��Ie

−iHFt/"�zeiHFt/"� , �103�

where �I=e−�HI and the initial- and final-state Hamilto-
nians are given by

HI = HSB�� = 
 � , �104�

HF = HSB�� = 0� , �105�

where HSB is the spin-boson Hamiltonian �141�.
This approach has been investigated within the NRG

method using, for the Ohmic case, in place of HSB, the
equivalent anisotropic Kondo model �Costi, 1997a�. De-
spite the similarity with the x-ray problem, the exact for-
mulation indicates the difficulties that have to be over-
come in calculating transient dynamical quantities.
Consider the spectral function

P��� =
1

ZI
�

mI,mF,mF�

e−�EmI�mI�mF��mF� �mI�

� �mF��z�mF��
„� − �EmF
− EmF�

�… , �106�

with

FIG. 13. Absorption spectrum normalized by the Nozières–De
Domenicis result �Eq. �93�� for several screening potentials of
the form Udc�k ,k��=G0+G1�k+k�� �Oliveira and Wilkins,
1981�.
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P�t� = �
0

+


P���cos��t�d� . �107�

We see that even at T=0, no ground state enters the
delta functions in Eq. �106�, in contrast to the linear re-
sponse expression �98� for ���� in the x-ray problem.
This implies that, in evaluating P��� at a frequency �
��N, contributions will arise from energy shells n
=1,2 , . . . ,N, as discussed previously for finite-T dynam-
ics. In the present situation, however, contributions from
higher-energy shells �i.e., n�N� are not suppressed by
Boltzmann factors, so it is not clear a priori that using a
single-shell approximation will give meaningful results.
Such an approximation shows that the short-time dy-
namics of the spin-boson model can be recovered and
that in order to obtain the long-time dynamics one has
to sum up contributions from all shells �Costi, 1997a�.
Adding up such contributions using the retained states
of successive Hamiltonians HI,F

N ,HI,F
N+1 , . . . is problematic

due to the overlap of the spectra at low energies. An
elegant solution of this problem, allowing multiple-shell
NRG calculations to be carried out, has been found by
Anders and Schiller �2005�. Their idea was to recognize
that the set of states discarded �r�m,disc at each NRG it-
eration m�mmin, with mmin the first iteration where
truncation starts, supplemented with the degrees of free-
dom �e ;m�= �sm+1� � ¯ � �sNmax

�, for m=mmin, . . . ,Nmax,
with Nmax the size of the largest Hamiltonian diagonal-
ized, forms a complete basis set,

�
m=mmin

Nmax

�
r��disc�

�r,e ;m��r,e ;m� = 1. �108�

Using this identity, their result for P�t� in the basis of
final states is

P�t� = �
m=mmin

N

�
mF,mF�

trun

ei�EmF

m −E
mF�
m �t/"�mF��z�mF���mF,mF�

m,red ,

�109�

where �rF,sF

m,red are the matrix elements of the reduced den-
sity matrix of HI

m introduced in the previous section and
the sum �mF,mF�

trun implies that at least one of the states

mF ,mF� is in the discarded sector for iteration m. Rotat-
ing �rF,sF

m,red to the initial-state basis gives overlap matrix
elements �mI �mF�, �mI �mF�� as in Eq. �106�. Within this
approach the time-dependent transient dynamics of a
number of models has been investigated, including the
Anderson and resonant level models �Anders and
Schiller, 2005�, the Kondo model �Anders and Schiller,
2006�, and the sub-Ohmic spin-boson model �Anders et
al., 2007�.

The use of a complete basis set �108� has the potential
to improve the finite-T calculation of spectral densities
also, particularly in the problematic range ��T �Weich-
selbaum and von Delft, 2007�. Further improvement in
using a complete basis set is that the sum rule for spec-
tral densities 
−



 d� A��� ,T�=1 is, by construction,

satisfied exactly when applied to the spectral density
in discrete form and with an error of 10−4 due to numeri-
cal integration when applied to the broadened form
�Peters et al., 2006; Weichselbaum and von Delft, 2007�.
In contrast, the higher-moment spectral sum rules

−



 d� �mA��� ,T�=�m with �m= ���f� ,H�m , f�
†��, �f� ,H�1

= �f� ,H�, �f� ,H�2= †�f� ,H� ,H‡, etc., and �¯� denoting an
anticommutator, are expected to be less well satisfied.
These involve summations over expressions containing
factors �Er

N−Er�
N�m where the eigenvalues Er

N are those
of the finite-size Hamiltonian HN in the NRG proce-
dure. Such eigenvalues are subject to truncation errors
for N�Ntrun, where Ntrun is the first NRG iteration at
which states are truncated. Consequently, the above sum
rules are expected to acquire errors. One expects, how-
ever, that these errors will decrease with increasing
Ntrun. For application of these sum rules to spectral func-
tions of the Hubbard model, see White �1991�. For the
Anderson impurity model, the first two moments are
�1=�f+U�n−�� and �2=V2+�f

2+2�fU�n−��+U2�n−��,
where n−�= f−�

† f−�. For m�3, the moments involve in-
creasingly complex correlation functions, so their evalu-
ation and subsequent calculation within the NRG
method will become increasingly difficult and impracti-
cal. We note that, in testing the above sum rules, one
should use the discrete spectra as the broadened spectra
have modified tails �and consequently altered higher
moments� due to the particular broadening function
used.

IV. APPLICATION TO IMPURITY MODELS

In this section we review the application of the NRG
method to a range of quantum impurity models. Section
IV.A reviews work on models with conduction electron
screening �Sec. IV.A.1�, underscreened and fully
screened Kondo models �Sec. IV.A.2�, and models ex-
hibiting the Kondo effect in nanostructured devices
�Sec. IV.A.3�. Section IV.B deals with the prototypical
overscreened Kondo model, the two-channel Kondo
model, which is often encountered as an effective model
describing the quantum criticial point of more complex
quantum impurity models, e.g., certain double-quantum-
dot systems �Zaránd et al., 2006�. Impurity quantum
phase transitions are reviewed in Sec. IV.C in the con-
texts of multi-impurity systems IV.C.1, soft-gap systems
IV.C.2, and in the context of magnetic impurities in su-
perconductors IV.C.3. Section IV.D reviews work on
multiorbital systems, including the effects of crystal-field
splittings in Anderson impurity models. Finally, models
with bosonic degrees of freedom are reviewed in Sec.
IV.E. Note also that a number of models of nanostruc-
tured devices, for example, the single-electron box,
quantum dots with phonons, or multiorbital quantum
dots, are discussed in Secs. IV.B–IV.E.
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A. Kondo effect and related phenomena

1. Charge screening and photoemission

Charge screening effects are important whenever an
electron is excited from a localized core or valence state
into the conduction band or removed completely, leav-
ing behind a hole which attracts conduction electrons.
Such effects can have a drastic influence on the photo-
emission and absorption spectra of impurity systems. In
this section we consider a number of extensions to the
basic screening model �91� introduced in Sec. III.B.3. We
consider first the generalization of Eq. �91� to a simpli-
fied model of an atom adsorbed on a metallic surface
�Oliveira and Wilkins, 1985�. In addition to a core level,
as in Eq. �91�, the atom has a resonant level �created by
b†� whose position, EbI or EbF, depends on the occu-
pancy of the core level according to

Hdb = EbIb
†bd†d + EbFb†b�1 − d†d� , �110�

and the level hybridizes with the conduction band via

Hmix = V�
k

�ck
†b + H.c.� . �111�

Note that Hdb represents screening of the core hole by
electrons in the resonant level. Excitation of an electron
from the core level by an x ray can proceed either di-
rectly or via the resonant level, leading to a Fano anti-
resonance in the x-ray absorption at finite energy �in
addition to the usual edge singularity at �=ET�. This
Fano antiresonance, present also without the core hole
potential, is found to be significantly narrowed and
shifted in the presence of the core hole potential �Ol-
iveira and Wilkins, 1985�. It would be of interest to in-
vestigate also the core-level photoemission spectrum of
this model using the NRG method, as both this and the
absorption spectrum are accessible in experiments. Brito
and Frota �1990� have carried out such a calculation for
an appropriately generalized spinful version of the
above model, i.e., the Anderson model �2� in the pres-
ence of both an interaction

Hdc = Udcdd† �
kk��

ck�
† ck�� �112�

between the core hole and conduction electrons, and an
interaction

Hdf = Udfdd†�
�

f�
†f� �113�

between the core hole and the valence level. Signatures
of the valence states could be identified in the x-ray pho-
toelectron spectroscopy �XPS� spectra and their depen-
dence on Udc was investigated in the mixed valence and
empty orbital regimes. A reduction of the hybridization
between the valence level and the conduction band, aris-
ing from orthogonality effects, was found with increas-
ing Udc. The corresponding calculation in the Kondo re-
gime is still lacking. The x-ray absorption spectrum of
the same model has been investigated by Helmes et al.
�2005� in the context of excitons in Kondo-correlated

quantum dots and the expected absorption exponent
from the Nozières–De Domenicis theory was recovered.

In the models discussed so far, the core level was as-
sumed to have infinite lifetime. Consequently, the
screening interaction gave rise to true singularities in the
core-level absorption and photoemission spectra. These
singularities are cut off as soon as the core-level lifetime
is finite �Doniach and Šunjić, 1970�. Another situation
where the singularities due to screening are cut off, but
where screening effects may nevertheless be important,
is in the valence band photoemission spectra of heavy
fermions within a local impurity approach, which we
now address.

It is often assumed that the effects of conduction elec-
tron screening on the f-electron photoemission spectra
of heavy fermions can be taken into account by renor-
malizing the bare parameters of an effective Anderson
impurity model. However, this is not a priori clear, as the
screening interaction in these systems can be an appre-
ciable fraction of the local Coulomb repulsion. One of
the merits of the NRG method, which allows such ques-
tions to be investigated, is that it can deal with all local
Coulomb interactions on an equal footing and in a non-
perturbative manner, and some examples of this have
already been given above. For the particle-hole symmet-
ric Anderson model, Eq. �2�, it was shown by Costi and
Hewson �1991, 1992a� that the effect of a screening term
of the form

Hfc = Ufc �
kk����

f�
†f�ck��

† ck��� �114�

on the valence band photoemission spectrum could be
well-accounted for by a renormalization of the bare pa-
rameters of the Anderson model, both the local level
position �=−U /2 and the hybridization. An excitonic-
like enhancement of the hybridization was found with
increasing Ufc. Similar effects are reflected in the scan-
ning tunneling microscopy �STM� conductance of a mag-
netic adatom modeled by the screened Anderson model
�Cornaglia and Balseiro, 2003�. Calculations for the
infinite-U Anderson impurity model, for thermodynam-
ics �Alascio et al., 1986; Zhuravlev et al., 2007� and dy-
namics �Takayama and Sakai, 1993�, are consistent with
the above findings.

The above model for screening in heavy fermions as-
sumes that the largest contribution to screening of f
holes arises from conduction electrons in states that hy-
bridize with the f states. These hybridizing states are
usually the p levels from neighboring ligand ions, so the
screening from these �denoted Ufc above� should be ex-
pected to be smaller than the on-site screening Udf from
d electrons of the rare-earth ion. In the presence of in-
version symmetry, the latter do not hybridize with f
states. Neglecting Ufc and representing d electrons by a
spinless s-wave band, we represent the screening of f
holes by d electrons by adding to the Anderson model
�2� the term
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Hscr = �
k

�kdk
†dk + Udf�

kk�

�nf − 1�dk
†dk�, �115�

where nf=��f�
†f�. The result is a two-channel Anderson

model, in which one channel screens but does not hy-
bridize �the d electrons� and the other channel hybrid-
izes but does not screen. Assuming localized d electrons
gives the model studied by Brito and Frota �1990� and
discussed above. For the full model, Takayama and Sa-
kai �1993, 1997� calculated the valence band photoemis-
sion spectrum and, surprisingly, found that the effect of
Udc in the Kondo regime could be absorbed into a renor-
malization of the Anderson model parameters. This re-
sult was for infinite U, but should remain valid in the
Kondo regime for any finite U provided Udc remains
smaller than or comparable to U. In contrast to the
model �114� described above, where screening occurs in
the hybridizing channel, the effect of the screening inter-
action in the present model �115� is to reduce the effec-
tive hybridization of valence electrons to the conduction
band, which can be understood as an orthogonality ef-
fect. We conclude from these NRG calculations that in
the Kondo regime, and with realistic values of Udf �Ufc�,
the valence band photoemission spectra of the above
screening models can be well accounted for by an
Anderson model with renormalized parameters.

The two-channel screening model discussed above has
also been studied for finite U �Perakis et al., 1993; Per-
akis and Varma, 1994�. At particle-hole symmetry, in-
creasing Udc reduces both U and the effective hybridiza-
tion, resulting, for sufficiently large Udc, in an effective
attractive local Coulomb interaction and a charge
Kondo effect. For still larger Udc, a Kosterlitz-Thouless
transition to a non-Fermi-liquid state occurs �Perakis et
al., 1993; Perakis and Varma, 1994� with a collapse of the
Kondo resonance in the valence band photoemission
spectrum �Costi, 1997b�.

It is natural to ask whether the x-ray singularity in the
core-level photoemission spectrum of the spinless x-ray
model �91� persists on going to its periodic counterpart,
the Falicov-Kimball model �Freericks and Zlatić, 2003�,
whose Hamiltonian is given by

H = − �
ij

tijci
†cj + Ed�

i
di

†di + �
i

Udcci
†cidi

†di. �116�

Here tij are the hopping matrix elements of the itinerant
conduction electrons and Ed is the energy of the local-
ized �core-level� electrons. In the particle-hole symmet-
ric case �Ed=0� this question has been answered by
Anders and Czycholl �2005� within a DMFT approach
using the NRG method as the impurity solver �see Sec.
V for applications of the NRG method to DMFT�. In
the metallic regime of the model, they find that the core-
level photoemission spectrum diverges at the threshold
�=Ed=0 as in the usual x-ray problem, as a power law
���−�, and with an exponent � depending on Udc. It
would be interesting to carry out similar calculations
away from particle-hole symmetry, Ed�0. Recently Cor-
naglia and Georges �2007� have used the DMFT in com-

bination with the NRG method to study the x-ray singu-
larity in the core-level photoemission spectrum across
the metal-insulator transition in the Hubbard model.

2. Kondo effect in the bulk and underscreened models

Real magnetic impurities in metals have both orbital
and spin degrees of freedom and the resulting low-
energy effective impurity models can be very compli-
cated �Hewson, 1993a�. The NRG method has been ap-
plied so far to models with at most three orbitals �see
Sec. IV.D�. In cases where the ground state is an orbital
singlet, e.g., for dilute Mn ions in metals, Nozières and
Blandin �1980� have given a classification of the resulting
effective single-impurity Kondo models in terms of the
size of the impurity spin S and the number of conduction
channels, n, that couple to the spin via the Kondo ex-
change. These multichannel Kondo models are de-
scribed by

H = �
k��

�kck��
† ck�� + J�

�

S · s�, �117�

where �=1, . . . ,n is the channel index and the exchange
constant J is antiferromagnetic. For n=2S, complete
screening of the impurity spin takes place, leading to a
local Fermi liquid at low temperatures. The over-
screened case n�2S exhibits non-Fermi-liquid behavior
and is reviewed in Sec. IV.B. In this section, we deal with
some recent developments in the fully screened S=1/2
Kondo model, relevant to bulk Kondo impurities, and
also describe work on the single-channel underscreened
case n=1�2S.

One of the signatures of the Kondo effect is the ap-
pearance of the Kondo resonance in the impurity spec-
tral density at the Fermi level. Point contact spectros-
copy on Cu wires containing magnetic impurities, using
the mechanically controllable break junction technique,
shows a zero-bias anomaly, which is attributed to the
Kondo resonance �Yanson et al., 1995�. In addition,
these experiments show that the Kondo resonance splits
in a magnetic field. NRG calculations for the S=1/2
Kondo model in a magnetic field show that the Kondo
resonance splits in a magnetic field B, provided the Zee-
man splitting gi�BB exceeds 0.5TK �Costi, 2000�. Here gi
and �B are the impurity g factor and Bohr magneton,
and TK is the Kondo scale defined from the half width at
half maximum of the T=0 Kondo resonance. The latter
is obtained from the imaginary part of the many-body T
matrix Tkk�� for spin �, defined by

Gkk����� = 
kk�Gkk��
0 + Gkk�

0 Tkk��Gk�k��
0 , �118�

where Gkk�����= ��ck� ;ck��
† �� is the full conduction elec-

tron Green’s function and Gkk�
0 is the corresponding un-

perturbed Green’s function. From the equations of mo-
tion for Gkk� one finds for the orbitally isotropic Kondo
model

Tkk����� = �
J

2
�Sz� + � J

2
�2

��O�;O�
†�� , �119�
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O� = �
k

S� · �����ck��, �120�

with �� the Pauli matrices. From the T matrix one can
also extract the transport time and thereby the magne-
toresistivity. The latter is found to agree well with ex-
perimental data on diluted Ce impurities in LaAl2
�Costi, 2000�.

A recent development has been the realization by
Zaránd et al. �2004� that one can use the NRG method
to extract from the many-body T matrix both elastic and
inelastic scattering rates and cross sections. The total
scattering cross section �tot��� is related to the imagi-
nary part of the T matrix by the optical theorem

�tot�� = �k� = −
2

vk
Im�Tkk����� , �121�

with vk the velocity of electrons with wave vector k.
Consequently, by using the expression for the elastic
scattering cross section

�el�� = �k� =
2	

vk
�
k�


��k� − �k��Tkk������2, �122�

Zaránd et al. �2004� were able to calculate the inelastic
scattering cross section �inel=�tot−�el and the inelastic
scattering time �inel��inel

−1 . In order to shed light on the
expression for �inel, consider the Anderson model for a
flat band with density of states NF=�k�
��k�−�k� and
resonant level width �=	NFV2. We have Tkk�=V2Gd,
with Gd= ��−�d+ i�−!����−1 and ! the correlation part
of the self-energy. The inelastic scattering cross section
for �=�k reduces to �Zaránd et al., 2004�

�inel = −
2

vk

V2!����
�� − �d − !�����2 + �� − !�����2 , �123�

which shows that the inelastic scattering rate vanishes at
T=0 for electrons at the Fermi level due to the Fermi-
liquid property of the self-energy !�����−�2 for �→0.
Zaránd et al. �2004� evaluated �inel for the S=1/2 Kondo
model via the NRG method using the T matrix in Eq.
�119� at T=0 and for both zero and finite magnetic fields.
The maximum in the inelastic scattering rate occurs
close to ��TK �see Fig. 14�.

A quantity closely related to the inelastic scattering
time �inel�� ,T���inel

−1 is the dephasing time �#�T� for
electrons scattering from magnetic impurities and mea-
sured in weak-localization experiments on diffusive con-
ductors �Mohanty et al., 1997; Pierre et al., 2003;
Schopfer et al., 2003; Bäuerle et al., 2005�. A derivation
of the connection between these two quantities and ex-
act expressions relating them can be found in Micklitz et
al. �2006�. For samples of dimensionality d=1,3,

1

�#�T�
= �−� d� f�����inel��,T��2−d�/2�2/�d−2�

, �124�

where f���� is the derivative of the Fermi function at
temperature T �Micklitz et al., 2006�. For similar expres-

sions in d=2 and dephasing rates in mesoscopic ring ge-
ometries see Micklitz et al. �2006, 2007�.

Figure 15 shows the dephasing rate as a universal
function of T /TK for the S=1/2 Kondo model, obtained
by using the NRG method for finite-temperature dy-
namics. The maximum dephasing rate occurs at T�TK
and decreases at first linearly with temperature below
TK and eventually as T2 in the Fermi-liquid region T
�TK. The magnetic field dependence of the dephasing
time �#�B ,T� has also been calculated, and the expres-
sion for the dephasing rate has been generalized to ar-
bitrary dynamical scatterers �Micklitz et al., 2007�. Re-
cent experiments on Fe impurities in Ag wires show
better than expected agreement with the theoretical pre-
dictions for the dephasing rate of the S=1/2 Kondo
model �Alzoubi and Birge, 2006; Mallet et al., 2006�. Fe
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FIG. 14. �Color online� Elastic, inelastic, and total scattering
rates for the S=1/2 fully screened Kondo model at T=0. The
Kondo scale TK is that from the half width at half maximum of
the Kondo resonance and is approximately twice that from the
T=0 susceptibility defined in Eq. �82�. From Zaránd et al.,
2004.
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FIG. 15. �Color online� Universal dephasing rate for the S
=1/2 fully screened Kondo model calculated via the NRG
method for Kondo impurities in �d=1,2�-dimensional conduc-
tors. The solid line in the inset is the analytic T2 result from
Fermi-liquid theory valid for T�TK, where TK is the scale
defined in Eq. �82�. From Micklitz et al., 2006.
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impurities in Ag will have both an orbital moment and a
spin S�1/2 in the absence of crystal-field and spin-orbit
interactions. Inclusion of the latter, may, however, result
in an effective S=1/2 single-channel Kondo model at
the low temperatures T�1 K of the experiments,
thereby helping to explain the good agreement with the
S=1/2 theory. At the very lowest temperatures, T
�0.1TK, a slower decay of the dephasing rate has been
reported in these experiments, as compared to that ex-
pected from a fully screened model. One possible expla-
nation for this is that a small fraction of Fe impurities is
only partially screened. Underscreened Kondo models,
to which we now focus, are known to give a much slower
decay of the dephasing rate below the Kondo scale �see
below and Vavilov and Glazman �2003��.

Cragg and Lloyd �1979� investigated the single-
channel S=1 underscreened Kondo model and showed
that its low-energy fixed point corresponds to the spec-
trum of the ferromagnetic S�=1/2 Kondo model. Devia-
tions from the fixed point at iteration N are of the form

J̃�N�S�� ·s�0 with J̃�N� being O„−A / �N+C�J��… with A be-
ing a constant and C�J� depending on J, i.e., the devia-
tions are marginally irrelevant. These calculations were
extended by Koller, Hewson, and Meyer �2005� to mod-
els with S=1, . . . ,5 /2. They also determined C�J� explic-
itly for the different cases. Using the relation of N to
energy ���−N/2, the effective coupling can be written

as J̃����1/ ln�� /T0�, with T0 an appropriate Kondo
scale �Koller, Hewson, and Meyer, 2005�. Consequently,
there are logarithmic corrections to thermodynamic
quantities at low temperature, instead of the power-law
corrections characteristic of fully screened Kondo mod-
els. Nonanalytic corrections are also found in dynamical
quantities �Koller, Hewson, and Meyer, 2005; Mehta et
al., 2005�, so underscreened Kondo models have been
termed singular Fermi liquids �Mehta et al., 2005�. For
example, the spectral density �t��� obtained from the T
matrix �119� takes a finite value at the Fermi level, but
the approach to this value is nonanalytic �Koller, Hew-
son, and Meyer, 2005�:

�t��� = �t�0� − b/ln��/T0�2. �125�

Similarly, the T=0 inelastic cross section, also calculated
by Koller, Hewson, and Meyer �2005�, decays as
1/ ln�� /T0�2 at low energies, and consequently the
dephasing rate decays as �#

−1�T��1/ ln�T /T0�2. As men-
tioned above, a small fraction of underscreened Fe im-
purities may explain the excess dephasing observed at
the lowest temperatures in the experiments of Mallet et
al. �2006� and Alzoubi and Birge �2006�. Calculations for
the temperature dependence of the resistivity and
dephasing rates of the spin S�1/2 underscreened
Kondo models and their relevance to Fe impurities in
Ag can be found in Mallet et al. �2006�. It is also inter-
esting to note that calculations for ferromagnetic Kondo
models �Koller, Hewson, and Meyer, 2005� show that all
cross sections vanish at the Fermi level, with the inelas-
tic part contributing nearly all the scattering in this limit
and the elastic part being negligibly small.

Finally we mention recent work on calculating spatial
correlations such as spin-density correlations C�x�
= �S� ·s�x� around Kondo impurities, where s�x is the elec-
tron spin density at distance x from the impurity �for
earlier work involving perturbative aspects combined
with the NRG method see Chen et al. �1987, 1992��.
Borda �2007� worked with Wannier states centered at
both the impurity and x, thereby reducing the problem
to a two-impurity-type calculation �Sec. IV.C.1�. At T
=0 and in one dimension, the decay of C�x� is found to
change from 1/x to 1/x2 around x=�K="vF /TK, where
the coherence length �K describes the size of the Kondo
screening cloud. At finite temperature, the expected ex-
ponential decay of C�x� for x��T="vF /kBT is recov-
ered.

3. Kondo effect in nanostructures

Experimental work has demonstrated the importance
of the Kondo effect in determining the low-temperature
transport properties of nanoscale size devices such as
quantum dots �Cronenwett et al., 1998; Goldhaber-
Gordon et al., 1998; van der Wiel et al., 2000�. An ex-
ample of such a device, a quantum dot, is shown in Fig.
16. More complicated devices, such as capacitively
coupled double dots or dots contained in one or two
arms of an Aharanov-Bohm interferometer, can be built
up from this basic unit. A quantum dot consists of a
confined region of electrons coupled to leads via tunnel
barriers. It may be viewed as an artificial multielectron
atom, in which the different levels �filled, partially filled,
or empty� couple to electron reservoirs via one or more
channels. A quantum dot can be described, in general,
by the following multilevel Anderson impurity model:

H = Hdot + Hc + Htun,

Hdot = �
i�

�i�di�
† di� + EC�N̂ − N�2 − JHS�2,

2DEG 2DEGDOT

V V V

V

L

L

RG

V G V R

FIG. 16. �Color online� Schematic top view of a lateral quan-
tum dot, consisting of a confined region of typical size
10–100 nm defined in the two-dimensional electron gas
�2DEG� of a GaAs/AlGaAs heterostructure. The dot is con-
nected to the left and right electron reservoirs. Gate voltages
VL,R control the tunnel barriers into and out of the dot, while
VG controls the dot level positions.
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Hc = �
k��

�k�ck��
† ck��,

Htun = �
k�i�

t�i�di�
† ck�� + ck��

† di,�� , �126�

where �i� , i=1,2 , . . . are the dot level energies for spin �

electrons, N= �N̂�=�i��di�
† di�� is the dot occupancy, EC is

the charging energy, S� = 1
2�i�$di�

† �� �$di$ is the total spin of
the dot, and JH�0 is the Hund’s exchange coupling. In
the above, �=L ,R labels left �right� lead degrees of
freedom and k labels the wave vector of a single trans-
verse channel propagating through the constriction be-
tween the two-dimensional electron gas and the quan-
tum dot. Electrons tunnel into and out of the dot with
amplitudes t�i and give rise to a single-particle broaden-
ing �i of the levels.

The model above is essentially the same model as the
multiorbital model of Sec. IV.D, used to describe bulk
Kondo systems. The novel situation in quantum dots is
that parameters such as the tunnel couplings and level
positions can be controlled by gate voltages. This allows
such models to be experimentally investigated in all
physically interesting regimes, such as spin and charge
fluctuation regimes, and in principle also to be tuned
through quantum phase transitions. In addition, differ-
ent realizations of quantum dots �nanotubes, vertical
dots� may have level degeneracies or near level degen-
eracies, allowing the effects of Hund’s exchange to be
investigated. Finally, the devices described by Eq. �126�
can be driven out of equilibrium by a finite transport
voltage, allowing the study of nonequilibrium effects in
relatively simple quantum many-body systems. This
would be one motivation to further develop the NRG
method to steady-state nonequilibrium situations.

a. Single-level quantum dots

In the low-temperature limit, only one or two partially
filled levels close to the Fermi level of the leads will be
important for transport. The remaining levels will be ei-
ther filled or empty, and, at the low temperatures of in-
terest for quantum transport, they may be neglected.
The simplest model, therefore, to describe low-
temperature transport through a quantum dot is the
single-level Anderson impurity model �2� with level po-
sition �1=�f=−eVG controlled by the gate voltage and
Coulomb repulsion U given by the charging energy EC
=U /2. Only one conduction channel, the even combina-
tion of left and right electron states, ak� below, couples
to the local level, as can be seen by using the canonical
transformation

ak� = �tLckL� + tRckR��/�tL
2 + tR

2 , �127�

bk� = �− tRckL� + tLckR��/�tL
2 + tR

2 , �128�

with t�= t�i
i,1. We note that treating the Coulomb inter-
action classically implies that, for an integer number of
electrons on the dot, transport is blocked for large U,

since transferring electrons through the dot requires
overcoming the large Coulomb repulsion. Glazman and
Raikh �1988� and Ng and Lee �1988� pointed out, how-
ever, that in the situation where the total spin on the dot
is finite, as happens for an odd number of electrons �i.e.,
for N=1 in the effective single-level model�, one should
expect, on the basis of Eq. �2�, an enhancement of the
conductance to its maximum possible value of G
=2e2 /h via the Kondo effect in the limit of zero tem-
perature. A device representing a tunable Anderson im-
purity model has been realized �Cronenwett et al., 1998;
Goldhaber-Gordon et al., 1998�, and the predicted en-
hancement of the low-temperature conductance for dots
with an odd number of electrons was measured and
compared �Goldhaber-Gordon et al., 1998� to quantita-
tive NRG calculations �Costi et al., 1994b�, such as those
shown in Fig. 10 for the conductance in the Kondo re-
gime �see also Izumuda, Sakai, and Suzuki �2001��. Tun-
ing the quantum dot to the mixed valence and empty
orbital regimes has also enabled comparisons with
theory in those regimes �Schoeller and König, 2000;
Costi, 2003�.

The frequency dependence of the linear conductance
G���� of a single-level quantum dot described by Eq. �2�
has been considered �Izumida et al., 1997; Campo and
Oliveira, 2003; Sindel et al., 2005�. Sindel et al. �2005�
calculated G����, in the Kondo regime at T=0, and also
extracted the current noise

C��� = �
−


+


dt ei�t��I�0�I�t�� − �I�2� �129�

by making use of the fluctuation-dissipation theorem

C��� =
2"�

e"�/kBT − 1
G���� . �130�

The conductance and spin-resolved conductances of
single-level quantum dots in a magnetic field have also
been calculated and a strong spin-filtering effect has
been observed in the mixed valence regime �Costi,
2001�. For spin-filtering effects in quantum dots with fer-
romagnetic leads, see Martinek et al. �2003� and Simon et
al. �2007�.

One of the hallmarks of the S=1/2 single-channel
Kondo effect is the flow of the exchange coupling to
strong coupling �Wilson, 1975a�. This can be interpreted
as resulting in a phase shift of the conduction electrons
at the Fermi level, at T=0, of 
�=	 /2 �Nozières, 1974�.
A direct measurement of this phase shift is possible if
one embeds a quantum dot in one arm of an Aharanov-
Bohm interferometer. Assuming a single-level Anderson
model for the quantum dot and a multiterminal open
geometry, Gerland et al. �2000� carried out NRG calcu-
lations for the interference term GAB whose measure-
ment can be used to extract 
�. A similar setup has been
investigated by Hofstetter et al. �2001� for the flux de-
pendence G�#� of the conductance at T=0 and by Kang
et al. �2005� for the complex transmission. Izumida et al.
�1997� calculated G�#� for two single-level quantum dots
embedded in the arms of an Aharanov-Bohm interfer-
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ometer. This model reduces, in general, to a two-channel
two-orbital Anderson model, which we discuss next.

b. Two-level quantum dots

A quantum dot with two active levels for transport
introduces some new physics due to the competition be-
tween the level spacing 
=�2−�1, the charging energy
EC, and the Hund’s exchange JH. In particular, a Kondo
effect with an even number of electrons on the dot can
be realized. This can occur when the dot is occupied
with two electrons and 
�2JH so that the ground state
of the dot has S=1. Such a two-level dot will, in general,
couple to two channels so an S=1 Kondo effect will re-
sult, leading to a singlet ground state and an enhanced
conductance G�T� at low temperatures. In the opposite
case 
�2JH, the dot has S=0, the Kondo effect is ab-
sent, and the conductance is low. This behavior was
measured in the experiments of Sasaki et al. �2000� on
vertical quantum dots, where a magnetic field was used
to decrease the energy splitting �TS=
−2JH between the
triplet and singlet states, thereby leading to the above
mentioned crossover behavior in the conductance at N
=2. Theoretical calculations by Izumida, Sakai, and
Tarucha �2001�, shown in Fig. 17, are consistent with the
experimental results.

The singlet-triplet crossover behavior in a two-level
quantum dot can become a quantum phase transition
when only one conduction channel couples to the leads,
e.g., when all lead couplings are equal �Pustilnik and
Glazman, 2001; Hofstetter and Schoeller, 2002�. In this
case, for large Hund’s exchange, an effective single-
channel S=1 underscreened Kondo model results, which
has a doubly degenerate many-body ground state. For

small Hund’s exchange, a model with S=0 results, hav-
ing a nondegenerate many-body ground state. A sharp
transition separates these two different ground states.
As discussed above, however, two channels will, in gen-
eral, couple to the dot and this will result in perfect
screening of the S=1 spin so that the ground state is
always a singlet. Nevertheless, proximity to the singlet-
triplet transition can still be seen as a signature in vari-
ous quantities, such as a nonmonotonic dependence of
the conductance as a function of magnetic field on the
triplet side of the crossover �Hofstetter and Zaránd,
2004�. Experiments on lateral quantum dots at the
singlet-triplet crossover point �van der Wiel et al., 2002�
show behavior in the differential conductance similar to
predictions for the spectral density �Hofstetter and
Schoeller, 2002�.

The above is only a brief account of the simplest
nanostructured devices studied using the NRG method.
Further applications include numerous studies of
double-dot systems, including realizing an SU�4� Kondo
state �Borda et al., 2003� and quantum critical points of
two-impurity Kondo models �Garst et al., 2004; Zaránd
et al., 2006; Zhu and Varma, 2006� �see Sec. IV.C.1�,
static and dynamics of double dots �Galpin et al., 2006a,
2006b�, double dots with only one dot coupled to the
leads �Cornaglia and Grempel, 2005b�, applications to
quantum tunneling in molecular magnets �Romeike et
al., 2006a, 2006b�, a novel Kondo effect in a $=1 integer
quantum Hall system �Choi, Hwang, and Yang, 2003�,
and the conductance of ultrasmall tunnel junctions
�Frota and Flensberg, 1992; Frota, 2004�. Crossover from
two-channel Kondo behavior to Fermi-liquid behavior
on lowering the temperature has recently been investi-
gated for triple quantum dots attached to leads �Žitko
and Bon~a, 2007�.

B. Two-channel Kondo physics

Nozières and Blandin �1980� have proposed a varia-
tion of the Kondo model in which the localized spin
couples to two conduction bands �see Eq. �117� with �
=1,2�. An important feature of this model is the over-
screening of the impurity spin: in the strong-coupling
limit, the spins of both conduction bands try to screen
the impurity spin, so that again a net spin-1 /2 object is
formed. In other words, the strong-coupling fixed point
at J=
 �which gives rise to the Fermi-liquid fixed point
in the single-channel case� is unstable, and an
intermediate-coupling fixed point is realized. This new
fixed point shows a variety of non-Fermi-liquid proper-
ties such as a divergence of the specific heat ratio C /T
=�� ln T and of the spin susceptibility �� ln T for T
→0; an anomalous Wilson ratio R=� /�=8/3, in contrast
to the result for the standard Kondo model, R=8/4=2;
and a zero-point entropy of 1

2 ln 2, indicating that half-
fermionic excitations �Majorana fermions� play a crucial
role for the structure of the fixed point.

We have discussed these features in the section on the
calculation of thermodynamic and static quantities �see
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FIG. 17. The singlet-triplet crossover in the linear conductance
of the two-channel two-orbital Anderson model including
Hund’s exchange JH, intraorbital and interorbital Coulomb en-
ergy U, levels �d±
 /2, and temperature T. Top �bottom� panel
show G�T� on the triplet �singlet� side of the crossover and
��−�d� /U=0.5,1.5,2.5 correspond to N=1.0,2.0,3.0 electrons
on the dot. Adapted from Sakai and Izumida, 2003.
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Fig. 6�. An extensive review of the two-channel Kondo
model, its physical properties, and its relevance for non-
Fermi-liquid behavior in real materials has been given
by Cox and Zawadowski �1998�. This paper also reviews
earlier NRG calculations for this model.

Historically, the two-channel Kondo model has been
the first application of the NRG method to a quantum
impurity model in which the physics is not governed by
the Fermi-liquid fixed point of the standard Kondo
model. In this sense, the early work of Cragg et al. �1980�
on the two-channel Kondo model opened the way for a
variety of investigations of more complex impurity mod-
els, displaying both Fermi-liquid and non-Fermi-liquid
fixed points. Due to the importance of this and following
work, we focus this section purely on two-channel
Kondo physics and postpone the discussion of other
multiband models to Sec. IV.D.

As discussed already in Sec. II, the truncation of states
within the iterative diagonalization scheme severely lim-
its the applicability of the NRG method to multiband
models. In the calculations of Cragg et al. �1980�, itera-
tions were observed to break down after only a few �ap-
proximately 12� steps. The source of this problem is
mainly the small number of states �Ns�400� used in this
work, which corresponds to keeping Ns��400=20 states
in a one-channel calculation. Specific symmetries of the
two-channel Kondo model, such as the total axial
charge, have been used to reduce the matrix sizes in the
diagonalization �Pang and Cox, 1991�, but later calcula-
tions showed that by increasing the number of states the
iterations can be stabilized sufficiently. Independent of
the value of Ns, it is important to avoid any symmetry
breaking due to the truncation of states.

In order to approach the non-Fermi-liquid fixed point
within only a few iterations, Cragg et al. �1980� and Pang
and Cox �1991� used large values of either the exchange
coupling J or the discretization parameter �up to �
=9.0�. Nevertheless, these calculations give the correct
fixed point spectrum of the �isotropic� two-channel
Kondo model with the characteristic structure of excita-
tions at energies 1/8, 1/2, 5/8, 1, etc., at least for the
lowest-lying excited states. Figure 18 shows a typical
flow diagram for parameters J=0.05D, where 2D is the
bandwidth of the featureless conduction band density of
states, �=4, and Ns=4900, for both even �dashed curves�
and odd NRG iterations �full curves� �for similar plots,
see Fig. 1 in Cragg et al. �1980� and Figs. 1 and 2 in Pang
and Cox �1991��. After some initial even-odd oscilla-
tions, the flow reaches the non-Fermi-liquid fixed point
which does not show any even-odd effect.

Comparison with conformal field theory calculations
�Affleck et al., 1992� gave an excellent agreement with
the NRG method for both the excitation spectrum and
corresponding degeneracies. Such a comparison, how-
ever, requires the extrapolation of the NRG fixed point
spectra for �→1 �see Fig. 9 in Affleck et al. �1992�; the
analysis is not quite satisfactory for ��2 and it would
be interesting to repeat these calculations using larger
values of Ns�. This work, and that by Pang and Cox

�1991�, also focused on the stability of the non-Fermi-
liquid fixed point against various perturbations. As it
turns out, the non-Fermi-liquid fixed point is stable
against anisotropy in the exchange interaction �Jz�J��
but unstable against both the presence of a magnetic
field and the lifting of the exchange symmetry between
the two channels �Ja�Jb�. In the latter case, a tempera-
ture scale T*� �Ja−Jb�2 for the crossover between the
non-Fermi-liquid fixed point at intermediate tempera-
tures and the stable Fermi-liquid fixed point at T→0 has
been found. These instabilities were later investigated
by Yotsuhashi and Maebashi �2002�, via calculation of
the impurity entropy and the crossover temperature.

Further investigations concerning the stability of the
non-Fermi-liquid fixed point have been performed by
Pang �1994� �flavor exchange coupling� and Kusunose
and Kuramoto �1999� and Kusunose et al. �1996� �effect
of repulsion among conduction electrons and potential
scattering�.

A pedestrian approach for understanding the two-
channel Kondo model was introduced by Coleman et al.
�1995�. These authors argued that the two conduction
bands in the two-channel Kondo model can be replaced
by a single conduction band, with a coupling between
impurity spin S to both spin � and isospin � of the con-
duction band. The isospin � takes into account the
charge degrees of freedom of the conduction band and
the compactified �-� model takes the form

H = �
k�

�kck�
† ck� + J�S · � + S · �� . �131�

This model can be related to an Anderson-type model
�the O�3�-symmetric Anderson model� via a Schrieffer-
Wolff transformation �Coleman and Schofield, 1995�.

It was later verified with the NRG approach �Bulla
and Hewson, 1997� that these compactified models in-
deed show many of the anomalous non-Fermi-liquid
properties of the two-channel Kondo model, although
these models do not allow for an overscreening of the
impurity spin. Furthermore, the structure of the non-
Fermi-liquid fixed point has been studied in detail. It
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FIG. 18. Flow diagram of the lowest-lying many-particle levels
for the isotropic two-channel Kondo model �even iterations
dashed curves, odd iterations full curves�.
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turns out that the many-particle spectrum of this fixed
point is composed of single Majorana fermion excita-
tions �Bulla, Hewson, and Zhang, 1997�. This informa-
tion can then be extended to the fixed point structure of
the two-channel Kondo model, which can be described
by two towers of excitations which are both composed of
Majorana fermions �see Sec. 8 in Bulla, Hewson, and
Zhang �1997��.

Naturally, we expect that the non-Fermi-liquid prop-
erties of the two-channel Kondo model are also visible
in its dynamic properties, but, unfortunately, detailed
and comprehensive NRG calculations for the dynamics
have not been performed so far. Apart from a brief
sketch of the results for the T matrix and the magnetic
susceptibility by Sakai, Shimizu, and Kaneko �1993�, the
published data are only for models equivalent to the
two-channel Kondo model in certain limits.

It has been argued by Bradley et al. �1999� that the
dynamical spin susceptibility ���� of the compactified
models introduced above is exactly equivalent to that of
the two-channel Kondo model, and that this equivalence
holds for the full frequency range. The NRG results
show, for example, a ln��� divergence of ����� for �
→0, in agreement with the results of Sakai, Shimizu, and
Kaneko �1993�. On the other hand, there is no counter-
part of the single-particle dynamics calculated by Brad-
ley et al. �1999� in the two-channel Kondo model.

The two-channel Anderson model shows a line of
fixed points of the two-channel Kondo type when the
local level position is varied �Bolech and Andrei, 2002�.
In the Kondo limit, this model is connected to the two-
channel Kondo model via a Schrieffer-Wolff transforma-
tion �note that this holds only when the impurity degrees
of freedom in the Anderson model are written in terms
of Hubbard operators that include the channel index�.
This connection is visible in thermodynamic properties,
such as the zero-point entropy of 1

2 ln 2. Anders �2005�
investigated the single-particle dynamics �spectral func-
tion and self-energy� of the two-channel Anderson
model, quantities which, again, do not have a counter-
part in the two-channel Kondo model. Concerning the
results for the dynamic susceptibility ���� presented by
Anders �2005�, comparison to the corresponding results
of the two-channel Kondo model has not yet been done.

There is an ongoing discussion about the observability
of two-channel Kondo physics in experiments for a va-
riety of systems. We stress here that the instability of the
non-Fermi-liquid fixed point itself does not exclude its
observation. As for any system with a quantum critical
point, the corresponding anomalous properties domi-
nate a significant fraction of the finite-temperature
phase diagram �determined by the critical exponent� so
that a precise tuning of the Hamiltonian parameters is
not required. Nevertheless, two-channel Kondo physics
is now mainly discussed within systems in which alterna-
tive degrees of freedom �such as orbital quantum num-
bers� take the role of the spin or channel in the Hamil-
tonian, Eq. �61�; one example is the quadrupolar Kondo
model, which is discussed by Cox and Zawadowski
�1998�.

Here we discuss NRG calculations for two-channel
Kondo physics in quantum dot systems �Lebanon et al.,
2003a, 2003b; Anders et al., 2004, 2005�. Within a model
of a quantum box coupled to the leads via a single-mode
point contact �see Fig. 1 in Lebanon et al. �2003b��, the
physics at the degeneracy points of the Coulomb block-
ade staircase can be directly connected to that of the
two-channel Kondo model. Here the two charge con-
figurations in the box play the role of the impurity spin
and the physical spin of the conduction electrons corre-
sponds to the channel index. For such a system, the
NRG method allows the nonperturbative calculation of
the charge inside the box and the capacitance in the
whole parameter regime. The results show, for example,
that the shape of the charge steps is governed by the
non-Fermi-liquid fixed point of the two-channel Kondo
model.

To conclude this section we mention that there are
models involving a more complicated orbital structure of
the impurity—including, for example, excited crystalline
electric field levels—which reduce to the two-channel
Kondo model in certain limits or which display non-
Fermi-liquid fixed points of the two-channel Kondo
type. NRG studies of such models can be found in Koga
and Shiba �1995, 1996�; Sakai et al. �1997�; Koga and Cox
�1999�; and Hattori �2005�. Overscreening can also be
realized in single-channel models when the conduction
electron spin exceeds the impurity spin; for a discussion
of this issue see, for example, Kim et al. �1997�. We note
also a recent study �Kolf and Kroha, 2007� showing an
exponential dependence of the Kondo scale on −1/JNF
and −JNF, for small and large coupling cases, respec-
tively, which may explain the absence of a broad distri-
bution of Kondo scales in nanoconstrictions with two-
channel Kondo impurities.

C. Impurity quantum phase transitions

In this section, we focus on models which, as a func-
tion of one or more couplings in the model, give rise to
a phase transition in the ground state. Typically, this is
due to a competition between the Kondo effect, which
tends to favor a strong-coupling ground state with a
screened or partially screened local moment, and some
competing mechanism, which leads to a ground state
with a free or almost free local moment. In general, such
phase transitions are termed impurity quantum phase
transitions �for reviews, see Bulla and Vojta �2003� and
Vojta �2006��, as they are observable only in the impurity
contribution to physical properties and not connected to
possible phase transitions in the bulk to which the impu-
rity couples.

As impurity quantum phase transitions are usually as-
sociated with a vanishing low-energy scale, the NRG
method is ideally suited to their investigation, allowing
their detection and characterization with very high accu-
racy. This is most evident for continuous transitions
where the critical exponents connected to the quantum
critical point can only be calculated when a large range
of energy or temperature scales is accessible. In this sec-
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tion we give an overview of NRG results for multi-
impurity models �Sec. IV.C.1�, models with locally criti-
cal behavior �Sec. IV.C.2�, and models with magnetic
impurities in superconductors �Sec. IV.C.3�. Note that
impurity quantum phase transitions are also observed in
models which are discussed in other sections of this re-
view: the non-Fermi-liquid fixed point of the two-
channel Kondo model, Sec. IV.B, can be viewed as a
quantum critical point when the control parameter
“channel anisotropy” is tuned through zero; locally criti-
cal behavior is also connected to models with coupling
to a bosonic bath as discussed in Sec. IV.E.

1. Multi-impurity physics

An early extension of the NRG method to more com-
plex systems was the study of the two-impurity S=1/2
Kondo model �Jones and Varma, 1987; Jones et al.,
1988�, whose Hamiltonian is given by

H = �
k�

�kck�
† ck� + JK�

l=1

2

S�Rl� · s�Rl�

+ IDS�R1� · S�R2� . �132�

Here s�Rl� is the conduction electron spin density at the
impurity site Rl and JK�0 is the antiferromagnetic
Kondo exchange. The first two terms in Eq. �132� are
sufficient to generate an indirect Ruderman-Kittel-
Kasuya-Yosida �RKKY� interaction IRKKY between the
impurity spins. In some contexts a direct exchange inter-
action among the impurity spins of strength ID can arise
�Jones and Varma, 1987�, so the last term has been
added. The net effective exchange interaction between
the spins is given by Ieff=ID+IRKKY and can be either
ferromagnetic Ieff�0 or antiferromagnetic Ieff�0. The
properties of the model then depend solely on the ratio
Ieff /TK, where TK is the single-ion Kondo scale, and the
details of the dispersion relation �k. The model in Eq.
�132� also arises in the Schrieffer-Wolff limit �Schrieffer
and Wolff, 1966� of the two-impurity Anderson model,
which in the notation introduced in Eq. �2� reads

H = �
k�

�kck�
† ck� + �

l=1

2

�
�

�l�fl�
† fl� + U�

l=1

2

fl↑
† fl↑fl↓

† fl↓

+
1

�N
�
l=1

2

�
k�

Vk�eiRl·kfl�
† ck� + H.c.�

+ IDS�R1� · S�R2� . �133�

The motivation to study such two-impurity models origi-
nally arose in the context of heavy fermions. In these
systems, the competition between the local Kondo ex-
change and the intersite RKKY interaction is expected
to lead to a phase transition between nonmagnetic and
magnetically ordered ground states as a function of
Ieff /TK �Doniach, 1977�. The nature of this quantum
phase transition remains an open question in heavy fer-
mion physics �v. Löhneysen et al. 2007�. It is therefore of
some interest to investigate the possibility of a transition

in the two-impurity problem as this might shed light on
the physics of heavy fermions.

Jones et al. �1988� have established that such a phase
transition can occur under certain conditions �see below�
in the particle-hole symmetric two-impurity Kondo
model. This can be seen by considering the strong-
coupling limits Ieff→ ±
 �Affleck et al., 1995�. For Ieff
→−
 the two spins combine to form a spin S=1 inter-
acting antiferromagnetically with two conduction chan-
nels �characterized by even and odd parity� with, in gen-
eral, energy-dependent coupling strengths Je�k� and
Jo�k� replaced in Jones et al. �1988� by constants �see
below�. The resulting two-stage Kondo effect progres-
sively screens the S=1 spin down to a singlet and leads
to a Fermi-liquid ground state characterized by phase
shifts 
e,o for electrons in the even �odd� parity channels.
The assumed particle-hole symmetry and the nature of
the strong-coupling ground state ensures that these
phase shifts will be exactly 	 /2 �Millis et al., 1990�. In the
other limit, Ieff→
, the spins form an intersite singlet
S=0 and the Kondo effect is absent so that the phase
shifts are exactly zero. Since the fixed points at Ieff
= ±
 are both stable and characterized by different
�constant� phase shifts, it follows that there can be an
unstable fixed point at some critical intermediate value
of the intersite exchange Ic at which the phase shifts
change discontinuously. This phase transition has also
been found in the particle-hole symmetric two-impurity
Anderson model �Sakai and Shimizu, 1992a; Paula et al.,
1999�. Jones et al. �1988� estimated Ic /TK�2.2. The as-
sociated critical point has been characterized using con-
formal field theory �Affleck and Ludwig, 1992; Affleck et
al., 1995� and bosonization �Gan, 1995�, and the physics
is found to be similar to that of the two-channel Kondo
model. In particular, the staggered susceptibility �s�T�
diverges logarithmically at low temperature and the re-
sidual entropy has the same value as in the two-channel
Kondo model S�T=0�=ln �2 �Gan, 1995�. However, the
low-temperature form C�T�=�T persists through the
critical point, in contrast to the behavior in the two-
channel Kondo model C�T�=−T ln T. Close to the criti-
cal point, conformal field theory predicts ���Ieff−Ic�−2,
in agreement with numerical results �Jones, 1990�. The
level structure of the fixed point at quantum criticality
agrees well with NRG calculations and is rather com-
plex, exhibiting a hidden SO�7� symmetry �Affleck et al.,
1995�.

For generic situations, the natural energy dependence
of Je/o obtained from transforming the Kondo model
�132� or Anderson model �133� as described below in
Eq. �134�, as well as a charge transfer term of the form
t���f1�

† f2�+H.c.� in the two-impurity Anderson model,
breaks particle-hole symmetry and destroys the critical
point �Sakai et al., 1990; Affleck et al., 1995�. A similar
charge transfer term involving conduction electrons has
the same effect in the two-impurity Kondo model
�Zaránd et al., 2006; Zhu and Varma, 2006�. Potential
scattering, if it does not induce charge transfer, breaks
particle-hole symmetry but may not affect the critical
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point �for a discussion see Affleck et al. �1995�, Zaránd et
al. �2006�, and Zhu and Varma �2006��. Thus in general
the quantum phase transition discussed above will be
absent in the two-impurity models �132� and �133�, al-
though signatures of it might still be observable as cross-
over behavior in various properties. We note briefly here
the case of Ising coupled spins ISz�R1�Sz�R2�. In this
case, the ground state for large I will be doubly degen-
erate as compared to that for small I, where the Kondo
effect screens the individual spins to singlets, so a quan-
tum phase transition separating these two different
ground states arises and is found to be of the Kosterlitz-
Thouless type �Garst et al., 2004�.

In order to formulate Eq. �132� or Eq. �133� as a linear
chain problem for treatment with the NRG method, one
needs an orthonormal basis set. The local conduction
electron states on the impurity sites in Eq. �132� are not
orthogonal. Following Jones and Varma �1987�, the
Kondo exchange part of Eq. �132� is rewritten in terms
of orthonormal even �e� and odd �o� parity states for the
conduction electrons. This results in more complicated
interaction terms; in particular, one will obtain two ex-
change couplings Je/o�k�, with Je�k��Jo�k� in general,
which will depend on momentum or energy �Jones and
Varma, 1987�. The precise form of Je/o�k� will depend on
the details of the band structure of the conduction elec-
trons. For free electrons in D=3 they can be approxi-
mated as �Jones and Varma, 1987; Sakai et al., 1990�

Je/o�k� � JK�1 ±
sin kR

kR
� ,

where R= �R1−R2�. Jones and Varma �1987� used con-
stant couplings Je/o�k��Je/o�kF� to obtain for the interac-
tion part of the Hamiltonian �132�

Hint = S�e� · �
��

�Jece�
† ���ce� + Joco�

† ���co��

+ S�o� · �
��

��JeJoce�
† ���co� + H.c�

+ IDS�R1� · S�R�2, �134�

where S�e/o�
ªS�R1�±S�R2�. The conduction electron

Hamiltonian now consists of two decoupled linear
chains with even and odd parity symmetry. By neglecting
the energy dependence of the couplings a particle-hole
symmetric model results. This is the form used by Jones
et al. �1988� to investigate the phase transition discussed
above. The results of retaining the full energy depen-
dence of the couplings, using, for example, the formula-
tion of Sec. II, will be described below. We note here
that from the NRG point of view the two-impurity mod-
els �133� and �132� present a challenging task because, as
in the case of the two-channel Kondo model �61�, the
“impurity” now couples to two semi-infinite chains. Con-
sequently, the Hilbert space grows by a factor of 16 in
each NRG step. While this is still manageable with mod-
ern computer resources, it is apparent that larger clus-
ters or more complex situations quickly become too ex-
pensive to be treated with the NRG method with

sufficient accuracy, although the flow of the many-body
eigenstates can still be used to identify fixed points and
thus qualitatively describe the physics of more compli-
cated systems, like the two-channel two-impurity Kondo
model �Ingersent et al., 1992� and the three-impurity
Kondo model �Paul and Ingersent, 1996; Ingersent et al.,
2005�. A reliable calculation of dynamics for more com-
plex quantum impurities coupled to many channels will
likely require additional tools like the ones described in
Sec. III.A.4, allowing one to work with large ��1 and
so maintain low truncation errors.

The generic two-impurity Anderson model �133�, in-
cluding a charge transfer term, has been studied by Sa-
kai and co-workers �Sakai et al., 1990; Sakai and
Shimizu, 1992a, 1992b� using the NRG method. Single-
particle and magnetic excitation spectra were calculated,
and in the case of particle-hole symmetry, Sakai,
Shimizu, and Kaneko �1993� showed that on passing
through the transition, a peak in the impurity single-
particle spectra sharpened at Ieff=Ic into a cusp and
turned into a dip for Ieff�Ic. In the generic case, the
regime with Kondo screening, �Ieff � �TK, and the nonlo-
cal singlet regime, Ieff�TK, are connected via a smooth
crossover �Sakai et al., 1990; Sakai and Shimizu, 1992a,
1992b; Silva et al., 1996; Campo and Oliveira, 2004�.

Results from thermodynamic calculations are shown
in Fig. 19 for the squared effective magnetic moment
from Silva et al. �1996� for the two-impurity Kondo
model with ID=0. In these calculations Ieff=IRKKY and
the energy dependence of Je/o�k� is crucial to generate
the intrinsic RKKY exchange interaction IRKKY. Using
the result for free electrons in three dimensions �Sakai et
al., 1990�, an approximate formula for the energy depen-

FIG. 19. Effective local moment �2�T�ªT�imp�T� for the two-
impurity Kondo model �133� for the three regimes described in
the text. Arrows indicate the Kondo scale TK=1.4�10−4, and
the RKKY interactions for ferromagnetic �IFM=−8�10−3� and
antiferromagnetic cases �IAFM=3�10−3�. From Silva et al.,
1996.
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dence of the coupling constants is �Silva et al., 1996�

Je/o��� = JK�1 ±
sin�kFR�1 + ���

kFR�1 + �� � �135�

with �� �−1,1�; kF is the Fermi momentum of the con-
duction electron states. For the derivation of Eq. �135� a
linearized dispersion relation �k�D�k−kF� /kF was as-
sumed and D=1 used as the energy scale.

Depending on the value of kFR, different regimes can
then be identified �see, for example, Fig. 19�. For kFR
→
 we have IRKKY=0, single-impurity physics domi-
nates, and no nonlocal magnetic exchange is generated,
as expected �Jones and Varma, 1987�. For kFR=	 /2, the
RKKY exchange IRKKY=IFM is ferromagnetic, with
�IRKKY � /TK�1 and a two-stage screening scenario
arises. First, the system locks into an S=1 state at high
temperatures due to the RKKY interaction. In the inter-
mediate temperature regime this triplet is screened to a
doublet via the even channel, which then is further
screened to a singlet by the odd channel. Finally, for
kFR=	, the RKKY exchange IRKKY=IAFM is antiferro-
magnetic with IRKKY/TK�1 and a nonlocal singlet is
formed eventually. Similar results for entropy and spe-
cific heat of the two-impurity Kondo model, exhibiting a
smooth change of physical properties with changing
IRKKY, can be found in Campo and Oliveira �2004�.

We note here that, while two-impurity models with
energy-independent coupling constants are crude ap-
proximations in the context of bulk Kondo impurities
and heavy fermions, these can, however, be realized in
quantum dots. Correspondingly, they have been pro-
posed to describe various extensions of single quantum
dots and studied in this context with the NRG method
by several groups �Boese et al., 2002; Hofstetter and
Schoeller, 2002; Vojta, Bulla, and Hofstetter, 2002;
Borda et al., 2003; Zaránd et al., 2006; Žitko and Bon~a,
2006� over the past years. Since modern nanostructure
technology permits a rather broad tailoring of such me-
soscopic objects, the models discussed typically intro-
duce additional interactions as compared to the conven-
tional two-impurity Anderson model �133� like
capacitive couplings �Boese et al., 2002; Hofstetter and
Schoeller, 2002; Borda et al., 2003� or direct hopping
�Dias da Silva et al., 2006; Žitko and Bon~a, 2006�. Con-
sequently, these extended models show a much larger
variety in intermediate- and low-temperature fixed
points than the bare model �133�, ranging from the con-
ventional Kondo effect over a two-stage Kondo effect
�Jayaprakash et al., 1981; Vojta, Bulla, and Hofstetter,
2002�, two-channel physics as an intermediate fixed
point �Žitko and Bon~a, 2006, 2007�, to quantum phase
transitions �Vojta, Bulla, and Hofstetter, 2002; Dias da
Silva et al., 2006; Zaránd et al., 2006; Zhu and Varma,
2006; Žitko and Bon~a, 2006�.

2. Local criticality

The term local criticality was first used in the context
of phase transitions in certain heavy fermion systems,
such as CeCu6−xAux �Si et al., 1999, 2001; v. Löhneysen et

al., 2007�. It has been argued that the quantum critical
point separating the magnetically ordered and paramag-
netic phases at T=0 is characterized by critical excita-
tions which are local. This observation raised consider-
able interest in models which show such locally critical
behavior: these are either lattice models studied within
certain extensions of DMFT �see also Sec. V.B� or impu-
rity models as discussed in this section. Such impurity
models might not be directly connected to the locally
critical behavior in heavy fermion systems; nevertheless,
the insights gained in studying impurity models might be
helpful in constructing theories for lattice systems �for a
general discussion of the relation between quantum im-
purity physics and the physics of lattice systems, see
Bulla �2006��.

We focus here on the soft-gap Anderson model, origi-
nally proposed by Withoff and Fradkin �1990�. The
Hamiltonian is the same as the one for the standard
single-impurity Anderson model Eq. �2�, but the hybrid-
ization function is assumed to have a power-law form

���� = �0���r with r � − 1, �136�

either valid over the whole frequency range or restricted
to some low-frequency region. The competing mecha-
nisms leading to a quantum phase transition in this
model are local moment formation �favored by increas-
ing U� and screening of the local moments. For values of
the exponent r�0, corresponding to a soft gap in ����,
there are fewer degrees of freedom available to screen
the moment, and a quantum phase transition occurs at
some finite value of �0.

This quantum phase transition and the physical prop-
erties in the whole parameter regime have been studied
with a variety of techniques �for an overview, see Bulla
and Vojta �2003�; Vojta �2006�; Lee et al. �2005��. The
NRG method has been particularly helpful in clarifying
the physics of the soft-gap Anderson model �and the
related Kondo version of the model� as we briefly dis-
cuss in the following. The technical details necessary to
apply the NRG method to the soft-gap Anderson model
have already been introduced in Sec. II �see also Bulla,
Pruschke, and Hewson �1997��.

Thermodynamic and static properties of the various
phases of the soft-gap Anderson and Kondo models
have been presented by Chen and Jayaprakash �1995a�;
Ingersent �1996�; Bulla, Pruschke, and Hewson �1997�;
and Gonzalez-Buxton and Ingersent �1998�. The most
comprehensive review of these results is given by
Gonzalez-Buxton and Ingersent �1998�. This paper cov-
ers the discussion of thermodynamic properties and the
analysis of the various fixed points also for the under-
screened spin-1 Kondo model and the �overscreened�
two-channel Kondo model �both with a soft gap in the
conduction electron density of states�.

The key role of particle-hole symmetry has been iden-
tified by Ingersent �1996� and investigated in more detail
by Gonzalez-Buxton and Ingersent �1998�. As shown,
for example, in Fig. 5 of that work, the line of quantum
critical points separating the local moment �LM� and
strong-coupling �SC� phases is restricted to 0�r�1/2 in

429Bulla, Costi, and Pruschke: Numerical renormalization group method for …

Rev. Mod. Phys., Vol. 80, No. 2, April–June 2008



the particle-hole symmetric case �for r�1/2, only the
LM phase exists�. This is different in the asymmetric
case where the transition line extends up to r→
.
Particle-hole symmetry also influences the physical
properties of the various fixed points. The symmetric SC
fixed point, for example, shows a residual magnetic mo-
ment of �imp= �r /8�kBT and a residual entropy of Simp
=2rkB ln 2, whereas both values are zero in the asym-
metric SC fixed point. The appearance of unstable fixed
points is particularly complex in the asymmetric case;
see, for example, the schematic flow diagrams of Fig. 16
in Gonzalez-Buxton and Ingersent �1998�.

The impurity spectral function of the symmetric soft-
gap Anderson model was first investigated by Bulla,
Pruschke, and Hewson �1997�: the spectral function
shows a divergence A���� ���−r for both the SC and
quantum critical phases, whereas it varies as A���� ���r
in the LM phase �for the behavior in the asymmetric
case, see the discussion in Sec. IV.C.3�.

In the symmetric SC phase, the product F���
=c ���rA��� �where the prefactor cancels the divergence
in the spectral function� contains a generalized Kondo
resonance at the Fermi level with a pinning of F��=0�
�for a properly chosen constant c� and a width that goes
to zero upon approaching the quantum critical point.
This feature, together with the scaling properties and the
low-energy asymptotics has been discussed by Bulla et
al. �2000�, based on the results both from the NRG
method and from the local moment approach �also de-
scribed earlier by Logan and Glossop �2000��.

Dynamical properties at the quantum critical point
are particularly interesting: Ingersent and Si �2002� have
shown that the dynamical susceptibility at the critical
point exhibits � /T scaling with a fractional exponent,
similar to the locally critical behavior in the heavy fer-
mion systems mentioned above. This result also implies
that the critical fixed point is interacting, in contrast to
the stable fixed points �SC and LM� which both can be
composed of noninteracting single-particle excitations.

The interacting fixed point of the symmetric soft-gap
model has been further analyzed by Lee et al. �2005�.
The general idea of this work can be best explained with
Fig. 20, which shows the dependence of the many-
particle spectra for the various fixed points on the expo-
nent r.

For the limits r→0 and r→1/2, the many-particle
spectra of the quantum critical point approach those of
the LM and SC fixed points, respectively. The deviations
and splittings of the spectra at the quantum critical point
close to these limits can then be understood from a
proper perturbational analysis using suitable marginal
operators. Information on these operators can be ex-
tracted from epsilon-expansion techniques, as shown by
Lee et al. �2005�.

The case of negative exponents in the hybridization
function ����� ���r with −1�r�0, where the soft gap
turns into a divergence at the Fermi level, has been ana-
lyzed by Vojta and Bulla �2002a� in the context of the
Kondo model with both ferromagnetic and antiferro-

magnetic values of J. The behavior of this class of mod-
els turns out to be rather complex; see the schematic
flow diagrams of Fig. 1 in that work. A remarkable fea-
ture here is the appearance of a stable intermediate-
coupling fixed point with universal properties corre-
sponding to a fractional ground-state spin.

The case of a hard gap in the hybridization function,
that is, ����=0 within a certain gap region around the
Fermi level, can be viewed as the r→
 limit of the soft-
gap case, provided the power law is restricted to the gap
region �� � �Eg /2, with Eg the width of the gap. From a
technical point of view, two different strategies have
been developed to apply the NRG method to the hard-
gap case. Takegahara et al. �1992, 1993� considered the
case of a small but finite value of ���� in the gap region

����= �̄ for �� � �Eg /2, and based their conclusions on

the extrapolation �̄→0. In this approach, the standard
NRG method for nonconstant hybridization functions as
described in Sec. II can be applied.

If, on the other hand, the value of �̄ is set to zero from
the outset, the NRG approach has to be modified. As
discussed by Chen and Jayaprakash �1998�, the logarith-
mic discretization of a ���� with a hard gap results in a
discretized model which maps onto a chain with a finite
number of sites M, with Eg of the order of �−M. The
iterative diagonalization then has to be terminated at
site M. Thermodynamic properties at temperatures T
�Eg can nevertheless be computed using the Hamil-
tonian of the final iteration �see Chen and Jayaprakash
�1998� where a variety of correlation functions have
been calculated for both the Kondo and the Anderson
model with a hard gap�.

Certain features of the soft-gap case with finite r are
also visible in the fully gapped case. As expected from
the discussion above, there is no transition in the
particle-hole symmetric case, but a transition exists as
soon as one is moving away from particle-hole symmetry
�Takegahara et al., 1992; Ingersent, 1996; Chen and
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FIG. 20. �Color online� Dependence of the many-particle spec-
tra for three fixed points of the particle-hole symmetric soft-
gap Anderson model on the exponent r: SC �dot-dashed lines�,
LM �dashed lines�, and the �symmetric� quantum critical point
�solid lines�. From Lee et al., 2005.
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Jayaprakash, 1998�. This transition turns out to be of
first order.

3. Kondo effect in superconductors

We now consider magnetic impurities in supercon-
ducting hosts �for a general review on impurity effects in
conventional and unconventional superconductors, see
Balatsky et al. �2006��. In this case, the screening of the
magnetic moments competes with Cooper pair forma-
tion of the conduction electrons. We therefore expect a
quantum phase transition from a screened phase to a
local moment phase upon increasing the value of the
superconducting gap �sc similar to the phase transitions
in the soft-gap �and hard-gap� impurity models discussed
in Sec. IV.C.2. In fact, a relation between impurity mod-
els in superconductors and those in metallic hosts with a
soft or hard gap can be established as discussed below.

The first applications of the NRG method to magnetic
impurities in superconductors focused on the s-wave
case �Satori et al., 1992; Sakai, Shimizu, et al., 1993�, with
the standard Kondo Hamiltonian Eq. �117� supple-
mented by the BCS pairing interaction

− �sc�
k

�ck↑
† c−k↓

† + c−k↓ck↑� .

Several strategies have been developed to transform the
Hamiltonian including the BCS term onto a semi-infinite
chain which can then be diagonalized iteratively in the
usual way. Satori et al. �1992� performed a sequence of
transformations, including a Bogoliubov and a particular
particle-hole transformation, to map the original model
onto a Hamiltonian that conserves particle number �this
is somewhat easier for the numerical implementation
though not absolutely necessary�. The approach in Sa-
kai, Shimizu, et al. �1993� leads to the same Hamiltonian;
the difference here is that the Bogoliubov transforma-
tion is performed before the logarithmic discretization.
In both cases, the semi-infinite chain contains a stag-
gered potential of the form

− �sc�
n=0




�− 1�n�cn↑
† cn↑ + cn↓

† cn↓� .

This term does not fall off exponentially like the other
terms in the chain Hamiltonian so that the NRG itera-
tions should be terminated a few steps after the charac-
teristic scale �N of the chain Hamiltonian HN has
reached the superconducting gap �sc. This procedure
still allows one to access the properties of the localized
excited state within the energy gap, whose position and
weight can now be determined in the full parameter
space �in contrast to previous investigations; see the ref-
erences in Satori et al. �1992��. Figure 21 shows the po-
sition and weight of the localized excited state as a func-
tion of TK /�sc �TK is determined from the corresponding
Kondo model with �sc=0�. The position changes its sign
when TK is of the order of �sc �the precise value depends
on the model�, corresponding to a change of the ground
state from a doublet for small TK /�sc to a singlet for

large TK /�sc. This quantum phase transition can be char-
acterized as a level crossing transition �see Fig. 5 in Sa-
tori et al. �1992�� and is not connected to quantum criti-
cal behavior.

These studies of impurities in s-wave superconductors
were later extended to more complex impurity models.
Yoshioka and Ohashi �1998� investigated the case of an
anisotropic interaction between the impurity and the
conduction electron spin, with basically the same NRG
approach as in Sakai, Shimizu, et al. �1993�. The phase
diagram of this model turns out to be much more com-
plex than the one for the isotropic case. For example,
two localized excited states with different energies ap-
pear in certain regions of the parameter space.

Yoshioka and Ohashi �2000� considered the Anderson
version of the impurity model with coupling to an
s-wave superconductor. From a technical point of view,
this case is different from the corresponding Kondo
model, since the sequence of transformations used in,
for example, Sakai, Shimizu, et al. �1993� now produce
an extra impurity term of the form 
�f↑

†f↓
†+H.c.�, so that

the whole Hamiltonian no longer conserves charge �note
that the parameter 
 is zero for the particle-hole sym-
metric case�. The results for the Kondo regime of this
model are, as expected, the same as those obtained pre-
viously, but the approach of Yoshioka and Ohashi �2000�
also allows one to study other parameter ranges of the
model, such as the mixed valent regime.

It is important to note here that the final Hamiltonian
used by Satori et al. �1992� and Sakai, Shimizu, et al.
�1993� for the NRG iteration is the same as the one for
an impurity in a nonsuperconducting host with a gapped
density of states �which corresponds to the quasiparticle
density of states of the superconductor�. In addition, the
sequence of transformations also generates a potential
scattering term. In light of the results for the hard-gap
impurity models �Sec. IV.C.2�, this potential scattering

FIG. 21. Position Eb and weight �intensity� of the localized
excited state as a function of TK /�sc for the Kondo model in
an s-wave superconductor. At TK /�sc�0.2, the position
changes its sign and the weight jumps by a factor of 2; see also
Fig. 2�A� in Sakai, Shimizu, et al. �1993�. In this work, the
notation � is used for the superconducting gap �sc.
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term is essential to observe the quantum phase transi-
tion from a screened to an unscreened phase.

The question now arises whether the quasiparticle
density of states can be used as the sole bath character-
istic �possibly supplemented by a potential scattering
term� in more general situations, such as impurities in
unconventional superconductors. Before we address this
issue, we look at what happens when a similar sequence
of transformations as in the s-wave case is applied to
impurity models in p- or d-wave superconductors.

Matsumoto and Koga �2001, 2002� considered the
Kondo model with a coupling of the impurity spin to
superconductors with px+ ipy and dx2−y2 + idxy symmetry
�with extensions to spin-polarized superconducting
states investigated by Koga and Matsumoto �2002a� and
to S=1 impurities by Koga and Matsumoto �2002b��.
The quasiparticle density of states in these cases also
shows a full gap, as for s-wave superconductors, but the
sequence of transformations now results in a model with
a coupling of the impurity to two angular momenta of
the conduction electrons. NRG calculations for this two-
channel model give a ground state which is always a spin
doublet for arbitrary values of TK /�sc, in contrast to the
s-wave case, and no level crossing is observed. This is
supported by calculations of the impurity susceptibility
which show that the effective magnetic moment is al-
ways finite, although strongly reduced with increasing
TK /�sc �Matsumoto and Koga, 2002�. These authors ar-
gued that the orbital dynamics of the Cooper pairs is
responsible for the ground-state spin.

This interpretation has been questioned by Fritz and
Vojta �2005�, where it was shown that, indeed, the local
quasiparticle density of states of the superconductor is
the only necessary ingredient in a number of cases, in
particular for unconventional superconductors. Applied
to the model studied in Matsumoto and Koga �2001�,
this means that the results of the NRG calculations for
the effective two-channel model can also be understood
from a single-band calculation, where screening is ab-
sent for a hard-gap density of states and particle-hole
symmetry.

The results of Fritz and Vojta �2005� also have impor-
tant consequences for the study of impurities in uncon-
ventional superconductors with dx2−y2 symmetry. In this
case, the mappings which have been used for the models
discussed above result in an impurity model with cou-
pling to infinitely many bands to which the NRG
method clearly cannot be applied. For certain geom-
etries, however, it is sufficient to consider only the qua-
siparticle density of states which, for a pointlike impu-
rity, show a soft gap with exponent r=1.

This simplification was used earlier by Vojta and Bulla
�2002b� �at that time it was argued to be a reasonable
approximation�. The results of this work are therefore
valid for both the soft-gap Kondo model and impurities
in d-wave superconductors. Vojta and Bulla �2002b� mo-
tivated their investigations with experimental results for
nonmagnetic impurities in cuprate superconductors,
which have been seen to generate magnetic moments.

As discussed in this work, an effective model for this
problem then takes the form of a Kondo model in a
d-wave superconductor. Connections to experimental
results can indeed be made within this framework. For
example, the T matrix T��� displays a very narrow peak
at finite frequencies with the peak energy corresponding
to the energy scale which vanishes at the quantum phase
transition from a screened to an unscreened moment. A
very similar peak has been observed in STM experi-
ments.

This work was later extended in Vojta, Zitzler, et al.
�2002�, where the effects of local and global magnetic
fields have been investigated. For the case of a local field
hloc, the quantum phase transition for zero field persists
for hloc�0, but for a global field, the quantum phase
transition turns into a sharp crossover since the global
field induces a finite spectral weight at the Fermi level.

The investigations described so far are mainly appli-
cable to impurities in the bulk or on the surface of a
superconducting host. A different geometry is realized
in quantum dot systems �see Sec. IV.A.3�. For supercon-
ducting leads, such a setup introduces a new control pa-
rameter to the problem, that is, the phase difference %
=%L−%R between the phases of the two superconduct-
ing leads. The resulting Josephson current, in particular
the transition from 0- to 	-junction behavior, has been
studied by Choi, Lee, et al. �2004� and Oguri et al. �2004�.

Choi, Lee, et al. �2004� investigated various static and
dynamic properties for this geometry with identical
s-wave superconductors as the two leads. For zero phase
difference, %=0, the local pairing correlation shows a
sign change at TK /�sc�0.42. Physically, this is connected
to the same quantum phase transition as described
above since for %=0 and identical leads the model can
be mapped onto the same model as discussed by Satori
et al. �1992�. For finite phase difference �or for noniden-
tical leads� the system remains a two-channel problem
and the NRG analysis is more complicated. Neverthe-
less, detailed information on ground state properties
such as the single-particle excitation spectrum has been
obtained by Choi, Lee, et al. �2004�.

Oguri et al. �2004� studied the Hamiltonian of an
Anderson impurity coupling to two superconducting
leads simplified by the limit ��sc,L � � ��sc,R� in which the
model can be mapped exactly onto a single-channel one
with an extra superconducting gap on the impurity. Re-
sults for this limit show that the phase difference
changes both the energy and the wave function of the
bound state. In particular, the phase difference appears
to work against the screening of the local moment.

D. Orbital effects

1. Multiorbital Anderson model

The physics of the Kondo effect requires the existence
of local magnetic moments, as realized, for example, in
systems with open d or f shells, such as transition metal
or rare-earth impurities in nonmagnetic host metals. For
such systems, the local Coulomb correlations and
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Hund’s exchange determine the electronic structure of
the impurity and they usually give rise to finite spin and
orbital magnetic moments. Thus a realistic description
of such impurities in solids requires taking both spin and
orbital magnetic moments into account. The same is true
for the compounds of transition metal, rare-earth, and
actinide elements, where the interplay of orbital and
spin degrees of freedom gives rise to rich phase dia-
grams �Imada et al., 1998�. Among the methods to theo-
retically study the properties of these materials, the dy-
namical mean-field theory �see Sec. V� has become a
standard approach. Since in this approach one ends up
with an effective quantum impurity problem which re-
tains the full local orbital and spin structure of the origi-
nal lattice system, the development of a reliable method
to solve quantum impurity models with orbital and spin
degrees of freedom is of crucial importance.

In this section we, therefore, discuss the application of
the NRG method to situations where orbital and spin
degrees of freedom are both present. Some orbital ef-
fects in quantum dots have been introduced in Sec.
IV.A.3 and will be discussed below. The appropriate
model is again a suitable extension of the single-
impurity Anderson model �2� and is given by

H = �
k

�
mm��

�k�
mm�ckm�

† ckm�� + �
m�

�m�nm�
f

+
U

2 �
m�

nm�
f nm�̄

f +
2U� − J

4 �
m�m�

�
���

nim�
f nim���

f

− J �
m�m�

S�m
f · S�m�

f −
J

2 �
m�m�

�
�

fm�
† fm�̄

† fm��̄fm��

+
1

�N
�
k

�
mm��

�Vk�
mm�ckm�

† fm�� + H.c.� , �137�

where m labels the orbital degrees of freedom and

nm�
f = fm�

† fm�, with S�m
f = 1

2���fm�
† �� ��fm�. In addition to the

intraorbital Coulomb term U also occurring in Eq. �2�,
the following interaction terms are present now: an in-
terorbital Coulomb repulsion U� and an exchange term
J. We have split the exchange term in accordance with
standard notation �Imada et al., 1998� into a Heisenberg-
like spin exchange term �Hund’s coupling� and an orbital
exchange term. To account for the proper combination
of operators in the general exchange contribution, an
additional part proportional to J appears in the interor-
bital Coulomb term. For free atoms, rotational invari-
ance usually imposes U�=U−2J as a constraint for the
different Coulomb parameters �Imada et al., 1998�. Fur-
ther modifications to the model �137� can be made to
take into account, for example, spin-orbit and crystal-
field effects.

The mapping of Eq. �137� onto a linear chain model
�see Eq. �26� of Sec. II�, clearly leads to m semi-infinite
conduction chains coupled to the local Hamiltonian,
which in turn means that at each step of the iterative
diagonalization, the Hilbert space increases by a factor
4m. For large m, this exponential increase in the number

of states makes the NRG truncation scheme useless, be-
cause the number of states one can keep is much too
small to allow for a reasonable accuracy. Thus calcula-
tions for the model �137� involving a full d shell �m=5�,
or even a full f shell �m=7�, and taking into account all
interactions, seem to be impossible.

In practice, however, one is typically not interested in
rotationally invariant situations, as described by Eq.
�137�, but in situations where the impurity is embedded
in the crystalline environment of a solid. The reduced
point-group symmetry due to the crystalline electric field
then leads to a splitting of the orbital degeneracy. The
energy associated with this crystal-field splitting can be
much larger than the temperatures one is interested in
experiments, for example, in 3d transition metals. Fur-
thermore, the local Coulomb interaction can lead to a
localization of electrons in the lower crystal-field multi-
plets as happens, for example, in the case of manganese
in a cubic environment �Imada et al., 1998�. In this case,
these states form a localized spin according to Hund’s
rules. For manganese, for example, this results in a high-
spin state �S=3/2� of the threefold-degenerate t2g orbit-
als, which couples ferromagnetically to the twofold-
degenerate eg electrons. Thus the actual number of
relevant orbitals, and hence the number of semi-infinite
chains coupling to the local Hamiltonian, may be consid-
erably reduced. Similar effects can be observed in the
higher rare-earth elements, for example, in gadolinium.

If the local point-group symmetry is reduced suffi-
ciently, one may, in fact, be left with a localized spin S
coupled to a single spin-degenerate, correlated orbital
hybridizing with conduction states. This Kondo-
Anderson model is given by Eq. �2� supplemented with

the ferromagnetic exchange term −JHS� ·s�d, with s�d the
spin density of the correlated level in the Anderson
model. Such a Kondo-Anderson model was studied by
Sakai et al. �1996� and Peters and Pruschke �2006� and
shown to exhibit different types of screening, ranging
from conventional Kondo screening to two-stage screen-
ing and local singlet formation or the two-channel
Kondo effect.

2. NRG calculations: An overview

A first serious attempt to study effects of true orbital
degeneracy with the NRG method can be found in Sakai
et al. �1989�. However, these authors did not study the
full Hamiltonian �137�, but a SU�N� version of it, using
values of N ranging from 2 �i.e., the standard single-
impurity Anderson model �2�� to 5, representative for
rare-earth ions like samarium or thulium in solids under
the influence of a crystalline field �Shimizu et al., 1990;
Allub and Aligia, 1995�. Since the SU�N� model has a
large degeneracy of the individual levels, it allows for a
considerable size reduction of the individual Hilbert
spaces in the diagonalization. This enabled the authors
to use the NRG method to calculate physical properties,
including dynamical quantities, and to study, for ex-
ample, the development of the Kondo temperature or
the behavior of the Abrikosov-Suhl resonance as a func-
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tion of degeneracy �Sakai et al., 1989; Shimizu et al.,
1990�. Similar investigations for the model �137� with
fixed orbital degeneracy m=2 in the presence of a mag-
netic field were by Zhuravlev et al. �2004�, a comparison
with STM experiments for Cr�001� surface states by
Kolesnychenko et al. �2005�, and a detailed study of the
dependence of the low-energy properties of the multi-
orbital Anderson model for m=2 with J�0 by Pruschke
and Bulla �2005�. Furthermore, from the fixed-point
level structure, interesting information about quantities
like residual interactions in the heavy Fermi-liquid state
can be extracted �Hattori et al., 2005�. In particular for
an f2 ground state—as possibly realized in uranium
compounds—a subtle enhancement of interorbital inter-
actions can be observed �Hattori et al., 2005�, which can
lead to superconducting correlations in a triplet channel
when used as the effective interaction in a model for
heavy fermion superconductivity.

While these studies deal with the conventional Kondo
effect in multiorbital models, it was noted �Cox and
Zawadowski, 1998� that for higher rare-earth and ac-
tinide elements the orbital structure in connection with
spin-orbit coupling and crystal-field effects can result in
an orbital multiplet structure that leads to the two-
channel Kondo effect �see Sec. IV.B�. Multiorbital mod-
els of that type were studied by Sakai et al. �1996�;
Shimizu et al. �1998�; Shimizu, Hewson, and Sakai
�1999�; Shimizu, Sakai, and Suzuki �1999�; Koga �2000�;
and Hattori and Miyake �2005�, covering a wide range of
aspects possibly realized in actinide heavy fermion sys-
tems. The authors could identify parameter regimes
where non-Fermi-liquid properties related to the two-
channel Kondo effect can be observed and could, in ad-
dition, identify relevant symmetry breakings like crystal-
field splittings or external fields that eventually lead to
conventional Kondo physics below a temperature scale
connected to the energy scale of the symmetry breaking.

As mentioned in the introductory remarks of this sec-
tion, the crystal-field splitting is usually much larger than
the relevant low-energy scales. However, this does not
need to be true in general. Besides uranium-based com-
pounds �Kusunose, 2005�, a possible example where the
crystal-field splitting can actually be of the order of the
Kondo scale is Ce1−xLaxNi9Ge4 �Scheidt et al., 2006�. For
higher temperatures, the ground state seems to be a
quadruplet, i.e., it can be described by a multiorbital
Anderson model with m=2. The states building this qua-
druplet are obtained from spin-orbit coupled f states,
which results in different g factors for its members. In-
terestingly, these different g factors in connection with
the small crystal-field splitting can lead to behavior
where specific heat and susceptibility seem to have dif-
ferent low-energy scales �Scheidt et al., 2006�. However,
this discrepancy can be resolved by observing that the
difference in g factors leads to a “protracted” screening
behavior for the specific heat in NRG calculations, while
the system as a whole has only one, but strongly reduced
Kondo temperature. In addition, NRG results for the
low-energy spin dynamics show an anomalous energy

dependence, which is related to the difference in the g
factors entering the local susceptibility �Anders and
Pruschke, 2006�.

Conventionally, the Hund’s exchange J appearing in
Eq. �137� is positive, i.e., mediating a ferromagnetic in-
teraction leading to Hund’s first rule. However, there
may be circumstances, for example, coupling to vibra-
tional modes, Jahn-Teller distortions, or crystal-field-
induced anisotropies �De Leo and Fabrizio, 2004�, which
can lead to an effective J�0, i.e., antiferromagnetic ex-
change. In this case we encounter a situation similar to
the multi-impurity problem �see Sec. IV.C.1�, where the
exchange was generated by the RKKY effect. Under
special conditions, an antiferromagnetic exchange then
could lead to a quantum phase transition between
Kondo screening and nonlocal singlet formation. Conse-
quently, one may expect a similar transition for the mul-
tiorbital model, too, when one varies J from the ferro-
magnetic to the antiferromagnetic regime. Such a model
was studied by Fabrizio et al. �2003� and, with an addi-
tional single-ion anisotropy, by De Leo and Fabrizio
�2004� for two orbitals, i.e., m=2. The model indeed
shows the anticipated quantum phase transition, which
in this case is driven by the competition between the
local antiferromagnetic exchange coupling and the hy-
bridization to band states. Furthermore, one can study
the development of the spectral function across this
transition �De Leo and Fabrizio, 2004�. One finds that
the impurity spectral function on the Kondo screened
side of this transition shows a narrow Kondo peak on
top of a broader resonance. As has also been observed
by Pruschke and Bulla �2005� and Peters and Pruschke
�2006� this broad resonance is related to the exchange
splitting J. The narrow peak transforms into a
pseudogap on the unscreened side of the transition.

De Leo and Fabrizio �2005� have demonstrated that
NRG calculations are possible even for m=3, using the
symmetries of the model to reduce the size of the Hil-
bert space blocks. They studied a realistic model for a
doped C60 molecule, taking into account the orbitally
threefold-degenerate t2u lowest unoccupied molecular
orbitals. Again, coupling to vibrational modes can lead
to Hund’s coupling with negative sign. In this regime,
one observes non-Fermi-liquid behavior for half filling
n=3, associated with a three-channel, S=1 overscreened
Kondo model. Interestingly, the critical susceptibilities
associated with this non-Fermi-liquid appear to be a
pairing in the spin and orbital singlet channels �De Leo
and Fabrizio, 2005�. Using conformal field theory, these
authors deduced the residual entropy

S�T = 0� =
1
2

ln
�5 + 1
�5 − 1

� ,

and also corresponding fractional values for the local
spectral function �f�0� at the Fermi energy, which leads
to nonunitary values in the conductance and a noninte-
ger power law for �f���−�f�0�. Away from half filling, a
quantum phase transition occurs between Kondo
screening and local singlet formation as a function of
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filling �De Leo and Fabrizio, 2005�. Multiorbital models
also arise in the context of quantum dots as described in
Secs. IV.A.3 and IV.C.1.

3. Selected results on low-energy properties

In the following we present some selected results for
the properties of the multiorbital Anderson model �137�
with orbital degeneracy m=2.

Effect of Hund’s coupling. As a first example we dis-
cuss the influence of Hund’s exchange J on the low-
energy properties of the model Eq. �137�. We consider
only J�0, i.e., the usual atomic ferromagnetic exchange,
and in addition use the constraint U�=U−2J. For the
conduction electrons we assume a band with a flat den-
sity of states �c

�0����=NF��D− �� � � and use �0=	V2NF as
the energy scale. Results for thermodynamic quantities
are shown in Fig. 22.

The calculations in Fig. 22 are for U /�0=16	 and
particle-hole symmetry. NRG parameters are �=5 and
2500 retained states per iteration. The triangles are re-
sults from a calculation with m=1 for the same param-
eters. For J=0 �circles� we find the behavior expected
for an SU�4� symmetry, i.e., an energy scale TK

m that is
related to the Kondo scale at m=1, TK

m=1, by TK
m

= �TK
1 �1/m. However, even a small Hund coupling J

=U /100 leads to a dramatic reduction of TK, which in-
creases with increasing J. We note here that for J�0 the
effect of the orbital exchange term in Eq. �137� is negli-
gible, i.e., the results are indistinguishable if one does
the calculation with and without this contribution. Very
often, the orbital exchange term is neglected in theoret-
ical studies of transition metal compounds �Imada et al.,
1998�, an approximation which is supported by the
above result.

Crystal-field effects. Experiments showing unusual
specific heat, magnetic susceptibility, and resistivity data
for Ce1−xLaxNi9Ge4 have drawn attention because this

material has the “largest ever recorded value of the elec-
tronic specific heat at low temperature” �Killer et al.,
2004� of ��T�=�C /T�5 J K−2 mol−1. While the � coef-
ficient continues to rise at the lowest experimentally ac-
cessible temperature, the magnetic susceptibility tends
to saturate at low temperatures.

One possible scenario �Anders and Pruschke, 2006;
Scheidt et al., 2006� to account for the behavior of
Ce1−xLaxNi9Ge4 is a competition of Kondo and crystal-
field effects which leads to a crossover regime connect-
ing incoherent spin scattering at high temperatures and
a conventional strong-coupling Fermi-liquid regime at
temperatures much lower than the experimentally acces-
sible 30 mK. The Hund’s rule ground state of Ce3+ with
j=5/2 is split in a tetragonal symmetry �Killer et al.,
2004� into three Kramers doublets. If the crystalline
electric field �CEF� parameters are close to those of cu-
bic symmetry, the two low-lying doublets �7

�1� and �7
�2�,

originating from the splitting of the lowest �8 quartet,
are well-separated from the higher-lying �6 doublet. Ig-
noring this �6 doublet, we discuss two extreme limits. In
a cubic environment, the CEF splitting vanishes and the
low-temperature physics is determined by an SU�4�
Anderson model. In a strongly tetragonally distorted
crystal, on the other hand, the crystal-field splitting of
the quartets is expected to be large. In this case, the
low-temperature properties are determined by an SU�2�
Anderson model. If, however, the material parameters
lie in the crossover regime where the effective low-
temperature scale T* is of the order of the crystal-field
splitting 
CEF=E�7

�2� −E�7
�1�, then the excited doublet will

have significant weight in the ground state so that the
total magnetic response differs from a simple SU�4�
Anderson model.

Such a situation can be captured by an SU�4� Ander-
son model with infinite U whose Hamiltonian is given by
�Scheidt et al., 2006�

H = �
k�

�k��ck��
† ck�� + �

��

E����������

+ �
k��

V��������0�ck�� + ck��
† �0������ , �138�

where ���� represents the state �7
��� with spin � and en-

ergy E�� on the Ce 4f shell, and ck�� annihilates a cor-
responding conduction electron state with energy �k��.
Note that locally only fluctuations between an empty
and a singly occupied Ce 4f shell are allowed.

While the entropy and specific heat for the model
�138� can be calculated in the usual way, the Ce contri-
bution to the susceptibility requires some more thought
because the spin-orbit-coupled states �7

��� have different
g factors, which we label by g�. Thus the total suscepti-
bility is given by �Scheidt et al., 2006�

�imp = �B
2 �

�

g�
2�imp

��� . �139�

While the g factors are, in principle, determined by the
CEF states of the multiplets, we view them as adjustable
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FIG. 22. �Color online� Effective local moment T��T� �upper
panel� and entropy �lower panel� for a two-orbital impurity
Anderson model. Model parameters are U /�0=16	 at
particle-hole symmetry. For comparison the results for one or-
bital are included �triangles�.

435Bulla, Costi, and Pruschke: Numerical renormalization group method for …

Rev. Mod. Phys., Vol. 80, No. 2, April–June 2008



parameters and fix them together with E�7
��� by compari-

son with experiment �Scheidt et al., 2006�.
Comparison between the temperature dependence of

��T� and ��T� is shown in Fig. 23, assuming a ratio of
g2

2 /g1
2=2 for a good fit to the experimental data �Scheidt

et al., 2006�. The ground-state doublet dominates the
magnetic response at low temperature and tends to satu-
rate at temperatures higher than the � coefficient, con-
sistent with the experiments �Killer et al., 2004�. We find
this behavior only for CEF splittings 
CEF�T*�
CEF�,
while for much larger or much smaller values ��T� and
��T� saturate simultaneously.

E. Bosonic degrees of freedom and dissipation

In the models discussed so far, the bath consists of
noninteracting fermionic degrees of freedom while the
impurity is represented by either a fermion or a spin.
This section deals with quantum impurity systems in-
volving bosonic degrees of freedom. We distinguish be-
tween models in which only a small number of bosonic
degrees of freedom couples to the impurity and models
where the impurity couples to a bosonic bath �corre-
sponding to an infinite number of bosonic degrees of
freedom�. As we show below, the first case can be dealt
with in the usual scheme, provided the subsystem con-
sisting of impurity and bosons can be treated as a large
impurity which is then coupled to the fermions. The sec-
ond class, however, requires a different setup for the
NRG procedure.

We first consider the so-called Anderson-Holstein
model �Hewson and Meyer, 2002� in which the impurity
is linearly coupled to a single bosonic degree of freedom
�typically a phonon mode�:

H = HSIAM + &�b† + b��
�

f�
†f� + �0b†b , �140�

with HSIAM the Hamiltonian of the single-impurity
Anderson model as in Eq. �2�. The coupling to bosonic
operators �b† and b� does not influence the mapping of
the conduction electron part of the Hamiltonian to a

semi-infinite chain. This means that bosons enter the it-
erative diagonalization only in the very first step in
which the coupled impurity-boson subsystem has to be
diagonalized. The fact that only a limited number of
bosonic states nb can be taken into account in this diago-
nalization imposes some restrictions on the parameters &
�the electron-phonon coupling strength� and �0 �the fre-
quency of the phonon mode�. As discussed by Hewson
and Meyer �2002�, it should be sufficient to include a
number of nb�4&2 /�0

2 bosonic states for the initial di-
agonalization. With an upper limit of nb�1000 this
means that the limit �0→0 �with fixed &� cannot be
treated within this setup.

Apart from this minor restriction, Hewson and Meyer
�2002� showed that the NRG method �which is nonper-
turbative in both & and U� works well for this type of
impurity model. In particular, both electron and phonon
spectral functions as well as dynamic charge and spin
susceptibilities can be calculated with a high accuracy.

As discussed by Jeon et al. �2003� and Choi, Park, and
Jeon �2003�, the calculation of the phonon spectral func-
tion needs some extra care and the authors introduced
an improved method �as compared to Hewson and
Meyer �2002��. The proper calculation of the phonon
spectral function is important to discuss the softening of
the phonon mode; see also the discussion in Sec. V.C in
the context of lattice models with coupling to phonons.

The low-energy features of the model Eq. �140� can be
partly explained by an effective single-impurity Ander-
son model in which the coupling to phonons is included
in an effective interaction Ueff. An explicit form of this
interaction can only be given in the limit �0→
: Ueff
=U−2&2 /�0. Interestingly, Hewson et al. �2004� have
shown that an effective quasiparticle interaction can be
defined for any value of �0. This can be accomplished
with the renormalized perturbation theory by fitting the
lowest-lying energy levels obtained in the NRG calcula-
tions to those from a renormalized Anderson model.

These investigations represent a starting point for
various applications of the NRG method to coupled
electron-phonon systems. For investigation of transport
properties of single-molecule devices, for which the cou-
pling to local phonons is a natural ingredient, similar
models to Eq. �140� have been investigated by Cornaglia
et al. �2004� and Cornaglia and Grempel �2005a�. Not
only the coupling to the electron density as in Eq. �140�,
but also the change of the hybridization between mol-
ecule and leads due to phonons, has been shown to be
important for the conductance properties �Cornaglia et
al., 2005�.

Different physical phenomena can be expected in
multiorbital systems when the impurity degrees of free-
dom couple to Jahn-Teller phonons. Such a model has
been investigated by Hotta �2006� and it was argued that
within this model a new mechanism of Kondo phenom-
ena with nonmagnetic origin can be established.

Two different strategies have been developed to study
impurity models with a coupling to a bosonic bath, i.e., a
bosonic environment with a continuous spectral density
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J���. We discuss these strategies in the context of the
spin-boson model

H = −
�

2
�x +

�

2
�z + �

i
�iai

†ai +
�z

2 �
i

&i�ai + ai
†� .

�141�

This model naturally arises in the description of quan-
tum dissipative systems �Leggett et al., 1987�. The dy-
namics of the two-state system, represented by the Pauli
matrices �x,z, is governed by the competition between
the tunneling term � and the friction term &i�ai+ai

†�. The
ai constitute a bath of harmonic oscillators responsible
for the damping, characterized by the bath spectral func-
tion

J��� = 	�
i

&i
2
�� − �i� . �142�

A standard parametrization of this spectral density is

J��� = 2	��c
1−s�s, 0 � � � �c, s � − 1. �143�

The case s=1, known as Ohmic dissipation, allows a
mapping of the spin-boson model onto the anisotropic
Kondo model �for the definition of the Hamiltonian and
the relation of its parameters to those of the spin-boson
model, see Costi and Kieffer �1996��. The first strategy is
then to apply the NRG method to the anisotropic
Kondo model and to treat the fermionic conduction
band in the usual way. Though restricted to the Ohmic
case, such calculations have been shown to give accurate
results for dynamic and thermodynamic quantities of the
corresponding spin-boson and related models, as dis-
cussed in the following.

The focus of Costi and Kieffer �1996� has been the
equilibrium dynamics of the spin-boson model, in
particular the spin-spin correlation function ����
= ���z ;�z�� at temperature T=0. An interesting finding
of this study is that the spin relaxation function ����� /�
exhibits a crossover from inelastic to quasielastic behav-
ior as � exceeds the value 1/3 signaling the onset to
incoherent dynamics which occurs at ��1/2 �Leggett et
al., 1987�. The accuracy of this approach has been shown
via comparison to exactly solvable limiting cases, such as
the Toulouse point �=0.5, and via the generalized Shiba
relation. The issue of scaling and universality, concepts
which are quite naturally connected to renormalization
group treatments of the Kondo problem, have been dis-
cussed in the context of the spin-boson model by Costi
�1998�. Universal scaling functions have been calculated
for thermodynamic quantities �the specific heat�, the
static susceptibility, and the spin-relaxation function.
Scaling as a function of temperature or frequency has
been observed in the limit �→0 for fixed coupling
strength �; this means that the scaling functions depend
on the value of �. This is illustrated, for example, in Fig.
2 in Costi �1998�, which shows the temperature depen-
dence of the specific heat for different �. In particular, a
signature distinguishing weakly from strongly dissipative
systems is found in ��T�=C�T� /T, which exhibits a peak

for ��1/3 but is monotonic in temperature for ��1/3.
This, together with the above-mentioned behavior in the
spin-relaxation function, is reminiscent of measurements
on Ce1−xLaxAl3 �Goremychkin et al., 2002�, but applica-
bility of an anisotropic Kondo model here is controver-
sial �Pietri et al., 2001�.

Specific heats have also been calculated for more
complicated tunneling models, such as the ionic tunnel-
ing model with a spinless fermionic bath �Ferreira and
Líbero, 2000�, which shows similar behavior to the
Ohmic spin-boson model for ��1/4, and to an exten-
sion of this including an assisted tunneling term �Ramos
and Líbero, 2006�. The spectral density of the former has
also been investigated �Líbero and Oliveira, 1990b�.

The mapping of a bosonic bath to a fermionic one has
also been exploited for various other problems. Costi
and McKenzie �2003� have used the NRG method to
calculate the entropy of entanglement for the spin-boson
model, a quantity that measures the entanglement be-
tween the spin and the environment. Interestingly, en-
tanglement appears to be highest for �→1−, where the
system undergoes a quantum phase transition from a
delocalized to a localized phase.

The case of two bosonic baths which couple to differ-
ent components of the impurity spin operator has been
discussed by Castro Neto et al. �2003� and Novais et al.
�2005�. The bosonic baths in these models can be
mapped onto two independent fermionic baths, and a
generalization of the anisotropic Kondo model is ob-
tained. These models are of interest to study the effect
of quantum frustration of decoherence.

The second strategy to investigate impurity models
with a coupling to a bosonic bath does not rely on a
mapping to a fermionic impurity model. This
approach—which has been termed bosonic NRG—was
introduced by Bulla et al. �2003� in the context of the
spin-boson model �for full details see Bulla et al. �2005��.
We mention briefly the main differences from the stan-
dard �fermionic� NRG: the logarithmic discretization is
now directly performed for the bosonic bath �for the
spin-boson model, the bath spectral function J��� Eq.
�142� is discretized�; the subsequent mapping onto a
semi-infinite chain is similar to the fermionic case but
the resulting tight-binding chain is built up of bosonic
sites. This gives rise to additional difficulties in setting
up the iterative diagonalization scheme because only a
finite number of bosonic states Nb can be taken into
account when adding one site to the chain. Furthermore,
the set of Nb states should in general be optimized to
give the best description of the lowest-lying many-
particle states, see the discussion by Bulla et al. �2005�.

The first applications of the bosonic NRG method fo-
cused on the spin-boson model Eq. �141�, in particular
the sub-Ohmic case with exponents 0�s�1, in the pa-
rametrization of the bath spectral function J���, Eq.
�143�. The sub-Ohmic case does not allow for the map-
ping to a fermionic impurity model, in contrast to the
Ohmic case. Furthermore, the bosonic NRG method
turns out to have certain advantages over other ap-
proaches usually applied to the spin-boson model �Leg-
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gett et al., 1987� as it is nonperturbative in both � and �.
As an example of the success of the bosonic NRG
method, we show in Fig. 24 the T=0 phase diagram of
the spin-boson model with bias �=0 in the �-s plane for
different values of the tunneling amplitude �. The most
remarkable feature of the phase diagram is the line of
quantum critical points for 0�s�1 which terminates for
s→1− in the Kosterlitz-Thouless transition of the Ohmic
case. The critical exponents along this line have been
discussed by Vojta et al. �2005� where it was shown that
the exponents satisfy certain hyperscaling relations.

There are still quite a number of open issues and pos-
sible applications in the context of the sub-Ohmic spin-
boson model which can be investigated with the bosonic
NRG method �see, for example, Tong and Vojta �2006��.
In addition, the NRG method can be generalized to
more complex impurity models with a coupling to a
bosonic bath. Two examples are the investigations of the
Bose-Fermi Kondo model �Glossop and Ingersent, 2005�
and of models which are connected to electron and ex-
citon transfer phenomena �Tornow et al., 2006a, 2006b�.

Technically the most challenging of the recent NRG
applications is the study of impurity models which
couple to both fermionic and bosonic baths. Glossop
and Ingersent �2005, 2007b� presented the first treatment
of such a model, the Bose-Fermi Kondo model with
Ising-type coupling between spin and bosonic bath.
Here the two baths are mapped on two semi-infinite
chains, one for the bosonic and one for the fermionic
degrees of freedom. As described above, the hopping
matrix elements fall off as �−n for the bosonic chain,
while those for the fermionic chain fall off as �−n/2. To
ensure that fermions and bosons of the same energy
scale are treated at the same step, Glossop and In-
gersent �2005� devised an iterative scheme that adds one
site to the fermionic chain at each step, but extends the
bosonic chain only at every second step. The accuracy of
this approach has been tested extensively.

The physics of the Bose-Fermi Kondo model is domi-
nated by competition between dissipation and screening,
which results in a quantum phase transition from a
phase with screened impurity spin to a phase with an
unscreened spin. Glossop and Ingersent �2005� estab-

lished that for a sub-Ohmic bath spectral function �of
the bosonic bath� the two phases are separated by inter-
acting quantum critical points, characterized by hyper-
scaling of the critical exponents and � /T scaling in the
local magnetic response. Furthermore, they investigated
the destruction of the Kondo resonance in the Anderson
version of this quantum impurity model. The Kondo
resonance is visible in the screened phase of the model,
and its value at �=0 remains pinned right up to the
critical point, where the lowest-frequency part of the
spectral function develops a non-Fermi-liquid-like
power law. On the other side of the transition, the reso-
nance turns into a dip at �=0.

The quantum phase transitions in the Bose-Fermi
Kondo model turn out to be in the same universality
class as the transitions in the spin-boson model. This can
be understood through a mapping between the �Ising-�
Bose-Fermi Kondo model and the spin-boson model
where the bath spectral function has both an Ohmic and
a sub-Ohmic component �the Ohmic part represents the
coupling to the fermionic bath, while the sub-Ohmic
part is the same as the one in the original model; see also
Li et al. �2005��. On the other hand, the �Ising-�Bose-
Fermi Kondo model with an Ohmic bosonic bath can
also be mapped onto the anisotropic Kondo model; see,
for example, Borda et al. �2005�.

V. APPLICATION TO LATTICE MODELS WITHIN DMFT

Application of the NRG method is restricted to quan-
tum impurity systems with the impurity degrees of free-
dom coupled to a noninteracting bath. Therefore the
NRG method cannot be directly applied to lattice mod-
els of interacting particles, such as the Hubbard model
�see Eq. �144� in Sec. V.A�. Early attempts to extend
Wilson’s concepts to such models failed �Chui and Bray,
1978; Bray and Chui, 1979; Lee, 1979�. The reason for
this failure was later found to be connected with bound-
ary conditions between “system” and “environment”
�White and Noack, 1992; Noack and Manmana, 2005�,
and led to a novel scheme nowadays known as the
density-matrix renormalization group �Schollwöck, 2005;
Hallberg, 2006�, which today is a standard technique to
study one-dimensional interacting quantum models.

There exists, however, an approximation for corre-
lated lattice models, where the interacting lattice prob-
lem is mapped onto an effective quantum impurity
model, for which the NRG method can be applied. Un-
derlying this approach is the dynamical mean-field
theory �DMFT�. The DMFT has its origin in the inves-
tigation of correlated lattice models in the limit of infi-
nite spatial dimensionality �Metzner and Vollhardt,
1989�. A proper scaling of the hopping matrix element t
in models such as the Hubbard model �144� leads to a
vanishing of all nonlocal self-energy skeleton diagrams.
The resulting purely local self-energy !�z� can be iden-
tified with the self-energy of an effective single-impurity
Anderson model. In this sense we speak of a mapping of
a lattice model onto an effective quantum impurity
model, typically the single-impurity Anderson model as
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FIG. 24. Phase diagram of the spin-boson model for T=0 cal-
culated with the bosonic NRG method for various values of �.
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from the localized phase. Adapted from Bulla et al., 2003.
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introduced in Eq. �2�, supplemented by a self-
consistency condition, which determines the bath de-
grees of freedom of the effective quantum impurity.
Since the technical details of the DMFT are not the sub-
ject of this review, we refer the reader to the review by
Georges et al. �1996�.

To investigate lattice models in the DMFT we there-
fore need a technique �analytical or numerical� to calcu-
late the full frequency dependence of the self-energy for
a single-impurity Anderson model defined by arbitrary
input parameters ��f, U, T, and a manifestly energy-
dependent hybridization function �����. There are many
methods besides the NRG available to calculate dy-
namic quantities for quantum impurity models and we
shall not give an overview here �for reviews see, for ex-
ample, Sec. IV in Georges et al. �1996�, Sec. III in Maier
et al. �2005�, and Bulla �2006��, but rather concentrate on
the application of the NRG method to the Hubbard
model �see Sec. V.A�, the periodic Anderson and Kondo
lattice models �see Sec. V.B�, and lattice models with
coupling to phonons �see Sec. V.C� within the DMFT
approach.

Before we discuss the results obtained for those mod-
els, we comment on peculiarities of the NRG method
when applied to DMFT calculations. The DMFT self-
consistency specifies at each iteration an input hybridiza-
tion function ����, the form of which depends on the
model under investigation, its parameters, and also the
history of the previous DMFT iterations. The frequency
dependence of ���� has to be taken into account within
the logarithmic discretization scheme, as described in
Sec. II and already employed in the NRG investigations
of the soft-gap Anderson model �see Sec. IV.C.2�.

Concerning the output, the quantity of interest is usu-
ally the self-energy !AM of the effective single-impurity
Anderson model, although in some cases, as for the Be-
the lattice, knowledge of the single-particle Green’s
function is sufficient for the DMFT iteration �Georges et
al., 1996�. It has proven advantageous to calculate,
within DMFT, the self-energy !AM via the ratio of a
two-particle and a one-particle Green’s function �see Eq.
�86��. As discussed by Bulla et al. �1998� �see also Sec.
III.B.2� calculation of the self-energy via Eq. �86� signifi-
cantly improves the quality of the results. This approach
has been used in most NRG calculations within DMFT.

A. Hubbard model

The simplest model for correlated fermions on a lat-
tice is the single-band Hubbard model with the Hamil-
tonian

H = − t �
�ij��

�ci�
† cj� + cj�

† ci�� + U�
i

ci↑
† ci↑ci↓

† ci↓. �144�

Consequently, the first applications of the NRG method
within DMFT focused on this model; in particular on the
Mott transition, which the Hubbard model displays in
the half-filled paramagnetic case. These investigations
and further generalizations are described in the follow-
ing sections.

1. Mott metal-insulator transition

Although the qualitative features of the Mott transi-
tion were correctly described very early in the develop-
ment of the DMFT �see the review by Georges et al.
�1996��, the NRG method helped to clarify a number of
conflicting statements �see the discussion by Bulla �1999�
and Bulla et al. �2001��. The NRG method appears to be
ideally suited to investigate the Mott transition because
�i� the transition occurs at interaction strengths of the
order of the bandwidth, which requires the use of a non-
perturbative method; and �ii� at T=0 the Mott transition
is characterized by a vanishing energy scale, T*→0,
when approached from the metallic side. Thus a method
is needed that is able to resolve arbitrarily small energies
close to the Fermi level.

The first investigation of the Mott transition with the
NRG method was by Sakai and Kuramoto �1994� �see
also Shimizu and Sakai �1995��. These calculations did
not use an expression of the self-energy as in Eq. �86�,
but nevertheless a Mott transition and a hysteresis re-
gion were observed, with critical values very close to the
ones reported later by Bulla �1999�.

A detailed discussion of the NRG calculations for the
Hubbard model has been given by Bulla �1999� for T
=0 and by Bulla et al. �2001� for finite temperatures. The
main results are summarized in Fig. 25: Spectral func-
tions calculated with the NRG method for the half-filled
Hubbard model in the paramagnetic regime for different
values of U and T=0 are shown in Fig. 25�a�. Upon in-
creasing U from the metallic side, the typical three-peak
structure forms, with upper and lower Hubbard peaks at
�� ±U /2 and a central quasiparticle peak at �=0. The
width of this quasiparticle peak goes to zero when the
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FIG. 25. �Color online� �a� Spectral functions for the half-filled
Hubbard model at T=0 for various values of U �similar data as
in Fig. 2 in Bulla �1999��. �b� Phase diagram for the Mott tran-
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transition is approached from below, U↗Uc,2�1.47W,
with W the bandwidth of the noninteracting model.
Right at the transition, when the quasiparticle peak has
disappeared, an insulating solution with a preformed
gap is realized.

We remind the reader at this point that the NRG re-
sults for dynamic quantities have a certain fixed reso-
lution on a logarithmic scale �cf. the discussion in Sec.
III.B�. This means that structures close to �=0 are much
better resolved than structures at, for example, the band
edges of the Hubbard bands. In contrast, the dynamical
density-matrix renormalization group applied to the
DMFT for the Hubbard model works with a fixed reso-
lution on a linear scale; see, for example, Karski et al.
�2005�. The structures close to the inner band edges of
the Hubbard bands seen in these calculations �see Fig. 2
in Karski et al. �2005�� cannot be resolved in present
implementations of the NRG method.

Figure 25�b� shows the T-U phase diagram for the
Mott transition, considering only paramagnetic phases.
As observed earlier �Georges et al., 1996�, there are two
transition lines because the insulator-to-metal transition
occurs at a lower critical value �Uc,1�T�� than the metal-
to-insulator transition �Uc,2�T��. Within this hysteresis
region, both metallic and insulating solutions can be sta-
bilized within the DMFT self-consistency. With increas-
ing temperature, the hysteresis region shrinks to zero at
a critical Tc, above which there is only a crossover from
metalliclike to insulatinglike solutions; this crossover re-
gion is indicated by dashed lines in Fig. 25�b�. The NRG
values for Uc,1/2�T� were later verified by a number of
other, nonperturbative techniques �see, for example,
Tong et al. �2001� and Potthoff �2003��.

As discussed above, most of the NRG calculations
within DMFT have been performed using Eq. �86� for
the calculation of the self-energy. This quantity itself
shows interesting properties �see, for example, Fig. 3 in
Bulla �1999� and Fig. 5 in Bulla et al. �2001��, and allows
calculation of the U dependence of the quasiparticle
weight �see Fig. 1 in Bulla �1999��.

The Mott transition can also be induced by moving
away from half filling, provided the value of U is larger
than the Uc for the half-filled case. Unfortunately, no
systematic NRG calculations have been published for
this filling-induced Mott transition, despite the fact that
the NRG method can be easily extended to the Hubbard
model away from particle-hole symmetry. Only a few
results for the phase diagram �Ōno et al., 2001� and spec-
tral functions �Freericks et al., 2003; Krug von Nidda et
al., 2003� are available.

A nice feature of the DMFT is that it also allows for
the calculation of physical quantities other than the
single-particle Green’s function, in particular suscepti-
bilities and also transport properties, both static and dy-
namic. This aspect of the DMFT was used already in the
early applications �see, for example, the reviews by
Pruschke et al. �1995� and Georges et al. �1996��, employ-
ing different methods to solve the effective quantum im-
purity problem. However, apart from discussions of the

B1g Raman response �Freericks et al., 2001, 2003� and
calculations of the resistivity �Limelette et al., 2003;
Georges et al., 2004� and the local dynamic susceptibility
�Krug von Nidda et al., 2003�, no detailed studies of such
quantities for the paramagnetic phase of the Hubbard
model have been performed yet with the NRG method.

2. Ordering phenomena

The Mott transition from a paramagnetic metal to a
paramagnetic insulator is merely one of the many fea-
tures in the rich phase diagram of the Hubbard model
and its generalizations. In addition, various types of or-
dering phenomena occur, such as charge, orbital �in case
of multiorbital models�, and magnetic ordering, and,
possibly, superconductivity. The NRG method has been
used in particular to study magnetic ordering phenom-
ena in a wide range of parameters.

For the investigation of symmetry-broken phases
within DMFT, the self-consistency equations have to be
adapted appropriately �Georges et al., 1996�. The effec-
tive impurity models have the structure of the single-
impurity Anderson model so that the application of the
NRG method is straightforward �see the discussion by
Zitzler et al. �2002��. This work also contains a detailed
study of the magnetic phases of the Hubbard model at
T=0 both at and away from half filling. Right at half
filling and for a particle-hole symmetric band structure,
the ground state is always antiferromagnetically or-
dered. Upon doping, the situation is more complicated
as shown in Fig. 26: For small values of U, the compress-
ibility becomes negative, i.e., the system will undergo
phase separation within the antiferromagnetic phase
into a region with a half-filled antiferromagnet and a
region with zero filling �van Dongen, 1996�. Here the
long-ranged parts of the Coulomb interaction become
crucial, stabilizing charge-ordered phases like, e.g.,
stripes �Fleck et al., 2001�. For very large values of U,

FIG. 26. �Color online� Ground-state magnetic phase diagram
for the Hubbard model on a hypercubic lattice. The phases
show antiferromagnetic �AFM� order, which for smaller U and
doping 
�0 also shows phase separation �PS�, and ferromag-
netic order at large U. To display the whole interval �0, 
 �, the
vertical axis was rescaled as U / �W+U� �see also Fig. 10 in
Zitzler et al. �2002��.
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ferromagnetic solutions can be stabilized. For interme-
diate U and finite doping, magnetic ordering appears to
exist but its type could not be determined yet.

Note that at finite T�0 the phase-separated state will
be replaced by other phases comprising incommensurate
phases also �Freericks and Jarrell, 1995b�. Since we in-
tend to provide the possibilities of the NRG method
here, we do not dwell on the physics of the Hubbard
model, but refer the reader to the mentioned reviews on
the DMFT solutions of this model.

In contrast to this work, the NRG calculations by Zit-
zler et al. �2004� concentrated on the antiferromagnetic
phase at half filling in a Hubbard model with frustration.
As expected, the antiferromagnetic region in the T-U
phase diagram is suppressed upon increasing frustration.
However, the resulting phase diagram turns out to be
significantly different from the one proposed for the
frustrated Hubbard model by Georges et al. �1996�,
where the main effect of frustration was claimed to sup-
press TN such that the first-order Mott transition is vis-
ible above the antiferromagnetic region. This controver-
sial issue calls for more detailed calculations �with the
NRG and other methods�; after all, similarity of the
phase diagram for the Hubbard model in DMFT and the
experimental one for the transition metal oxide V2O3
has been claimed to be one of the early successes of
DMFT �Georges et al., 1996�.

The optical conductivity in the antiferromagnetic
phase of the Hubbard model at half filling and zero tem-
perature has been studied by Pruschke and Zitzler
�2003�. For small values of U, the antiferromagnetic
phase shows signatures of a Slater insulator, while for
large U a Mott-Heisenberg picture applies. There is a
smooth crossover between these two limiting cases upon
variation of U, in contrast to the Mott transition in the
paramagnetic phase. Evidence from optical data has
been supported by a detailed discussion of the local dy-
namical magnetic susceptibility, giving additional insight
into the subtle changes in the physics of charge and spin
degrees of freedom across the Mott metal-insulator tran-
sition �Pruschke and Zitzler, 2003; Pruschke, 2005�.

When the Hubbard model Eq. �144� is supplemented
by a nearest-neighbor Coulomb repulsion V, a transition
to a charge ordered state is observed upon increasing V.
This transition has been studied by Pietig et al. �1999� for
the quarter-filled case. NRG calculations, together with
results from the noncrossing approximation and exact
diagonalization, show a phase diagram with a reentrant
charge ordering transition, a feature that has also been
observed in a variety of transition metal oxides. The
NRG results in this work are restricted to T=0, where
the transition is of first order. It would be interesting to
extend the NRG calculations to a wider range of param-
eters, in particular to finite temperatures to study the
change of the transition, which is continuous at higher T.

3. Multiband Hubbard models

Application of the NRG method to the investigation
of multiband Hubbard models within DMFT is still in an

early stage. This is because �i� the computational effort
grows considerably with the number of orbitals and �ii�
the DMFT requires a very high accuracy for the calcu-
lated dynamic properties. Furthermore, self-consistent
solutions of the DMFT equations have to be obtained.

The first and only DMFT results for a two-band Hub-
bard model using the NRG method have been presented
by Pruschke and Bulla �2005�. In this work, two different
strategies have been used to handle the complexity of
the problem. The first one is to explicitly include the
orbital quantum numbers in the iterative construction of
the basis states. As for the impurity models discussed in
Sec. IV.D, this additional quantum number significantly
reduces the typical matrix size. However, this approach
fails as soon as the Hamiltonian contains terms that
break the orbital symmetry.

The second strategy is an asymmetric truncation
scheme: Instead of adding both orbital degrees of free-
dom simultaneously, the Hilbert space is truncated after
adding each orbital individually, which also leads to a
significant reduction of the typical matrix size. This ap-
proach works quite well for a wide range of parameters,
but it appears to violate the orbital symmetry, if present.
However, in the presence of a crystal-field splitting of
the orbitals, such a strategy might be usable.

The focus in Pruschke and Bulla �2005� was on the
role of the Hund exchange coupling J in the Mott tran-
sition in the two-band Hubbard model. It was found that
both the position in parameter space and the nature of
the Mott transition depend on the value of J and the
precise form of the coupling. For example, replacement
of a rotationally invariant Hund exchange by an Ising-
like exchange leads to a significant change in the physics
of the Mott transition. Note that such features can be
partly understood on the level of the corresponding ef-
fective impurity models, which underlines the impor-
tance of thoroughly investigating the properties of the
impurity models appearing in the DMFT.

4. Other generalizations of the Hubbard model

We conclude this section with a brief overview of ap-
plications of the NRG method to various other generali-
zations of the Hubbard model. The influence of correla-
tions in a conduction band �modeled by a Hubbard
model within DMFT� on the physics of the single-
impurity Anderson model has been investigated by Hof-
stetter et al. �2000�. The DMFT approach allows one to
map this model on an effective impurity model with two
coupled correlated sites, the first one corresponding to
the original impurity and the second one coming from
the DMFT treatment of the Hubbard model. This two-
site cluster couples to a free effective conduction band.
As discussed by Hofstetter et al. �2000�, correlations in
the conduction band have a significant influence on the
low-energy scale and also lead to a suppression of the
Kondo resonance.

Within the so-called Anderson-Hubbard model, disor-
der effects can be incorporated via a random distribu-
tion of the local energies �i. This model has been studied
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by Byczuk et al. �2004� within DMFT for binary alloy
disorder. Application of the NRG method here is
standard—two independent single-impurity Anderson
models have to be considered at each iteration step.
Nevertheless, the physics of this model is quite interest-
ing, in particular the occurrence of a Mott transition at
noninteger filling. The DMFT treatment in Byczuk et al.
�2004� does not allow for true Anderson localization �as
far as disorder is concerned, the DMFT is equivalent to
the coherent potential approximation and the main ef-
fect of the binary disorder is to split the bands�. This
deficiency was cured by Byczuk et al. �2005� where a
generalization of the DMFT approach was used, based
on the geometrically averaged �typical� local density of
states. This allows one to study both Mott insulating and
Anderson insulating phases; see Fig. 1 of that work. The
calculation has been performed using a continuous prob-
ability distribution, approximated by up to 30 different
values of �i, so that in each DMFT step a corresponding
number of independent single-impurity Anderson mod-
els have to be considered. All NRG calculations for the
Anderson-Hubbard model have been so far restricted to
T=0 and to phases without long-range order.

The NRG method has been used within an extension
of the standard DMFT. The DMFT+!k approach as in-
troduced by Sadovskii et al. �2005� and Kuchinskii et al.
�2005� adds to the local self-energy a k-dependent part
!k. Applied to the one-band Hubbard model, the effec-
tive single-impurity Anderson model is of the same type
as the one appearing in standard DMFT, the only differ-
ence is in the structure of the self-consistency equations.

For details of the NRG calculations and discussion of
the physics of the Falikov-Kimball model �Anders and
Czycholl, 2005� and the ionic Hubbard model �Jabben et
al., 2005�, see the respective references. Both papers
show the usefulness of the NRG approach to a wide
range of correlated lattice models within DMFT, in par-
ticular for the calculation of dynamic quantities at low
temperatures.

B. Periodic Anderson and Kondo lattice models

A variety of lanthanide- and actinide-based com-
pounds can be characterized as heavy fermion systems
with a strongly enhanced effective mass of quasiparti-
cles. These compounds contain well localized 4f or 5f
orbitals coupling via a hybridization to a conduction
band consisting of s, p, or d orbitals. The appropriate
microscopic model for these materials is the periodic
Anderson model �PAM�,

H = �f�
i�

fi�
† fi� + U�

i
fi↑

† fi↑fi↓
† fi↓ + �

k�

�kck�
† ck�

+ �
ij�

Vij�fi�
† cj� + cj�

† fi�� . �145�

When charge fluctuations of the f orbitals are negligible,
the low-energy physics of the PAM can equally be de-
scribed by the Kondo lattice model

H = J�
i

S� i · s�i + �
k�

�kck�
† ck�. �146�

In deriving the Kondo model from the PAM �145� via a
Schrieffer-Wolff transformation, we approximated Vij
→V
ij, which is justified if one is interested only in
qualitative aspects of the physics of both models.

The large effective mass in these models arises from a
strongly reduced lattice coherence scale T0; this is one of
the reasons why the NRG method is well suited for in-
vestigation of heavy fermion behavior when the PAM or
the Kondo lattice model is treated within DMFT. The
main difference for the NRG treatment �as compared to
the Hubbard model� lies in the DMFT self-consistency.
This means that the structure of the effective impurity
model is changed only via the effective hybridization
���� �which may lead to complications as discussed
later�.

The PAM with on-site hybridization Vij=V
ij and
particle-hole symmetry on a hypercubic lattice has been
discussed by Shimizu and Sakai �1995�, Pruschke et al.
�2000�, and Shimizu et al. �2000�. In this case, a hybrid-
ization gap at the Fermi level appears in the spectral
functions for both conduction and f electrons. This effect
for the f spectral function is shown in Fig. 27 by full lines
in the main panel and left inset. The Kondo resonance
of the corresponding single-impurity Anderson model
�dashed curves in the main panel and left inset in Fig.
27�, for which the hybridization function is given by the
bare density of states of the lattice, is split in the peri-
odic model. The energy scale of the gap in the PAM
�proportional to the lattice coherence scale T0� depends
exponentially on the model parameters, like the width of
the Kondo resonance in the impurity model �propor-
tional to the Kondo temperature TK�. Further analysis
shows that the lattice coherence scale T0 is enhanced

-2 -1 0 1 2
ω

0

0.2

0.4

0.6

0.8

1

A
f(ω

)

PAM
SIAM

-0.1 0
0

1

0
0ef

fe
ct

iv
e

hy
br

id
iz

at
io

n

FIG. 27. �Color online� Comparison of dynamic properties for
the particle-hole symmetric periodic Anderson model �solid
lines� and the corresponding single-impurity Anderson model
�dashed lines�. Main panel, f-electron spectral function; left in-
set, enlarged view of the region around the Fermi energy; and
right inset, �effective� hybridization function. Adapted from
Pruschke et al., 2000.
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over the impurity scale TK �for details, see Pruschke et
al. �2000��.

The right inset to Fig. 27 shows the hybridization
function of the effective impurity model after self-
consistency has been reached �full line� in comparison to
the same quantity entering the isolated impurity �dashed
line�. At first sight, the only difference seems to be the
gap at the Fermi level. However, for the particle-hole
symmetric case, one can show that ���� has a pole at the
Fermi level. This pole appears to be a problem for the
NRG method as the logarithmic discretization explicitly
excludes the point �=0, i.e., such a pole cannot be in-
corporated in the mapping to the semi-infinite chain.
The solution is to take the pole into account exactly by
choosing as “impurity” the complex consisting of f and
band states, i.e., including the bare hybridization explic-
itly, and building the DMFT around this complex
�Pruschke et al., 2000�. Note, however, that this approach
works only for a local hybridization Vij=V
ij.

Due to the appearance of the hybridization gap, the
particle-hole symmetric PAM seems suitable to describe
so-called Kondo insulators, but not the metallic heavy
fermion behavior. There are various ways to drive the
PAM into the metallic regime, two of which we discuss
in the following. One possibility is to use asymmetric
parameters for the f electrons ��f�−U /2� and to keep
the conduction band symmetric so that nc�1. More in-
teresting and physically more relevant is the opposite
case, namely, keeping �f=−U /2 and shifting the conduc-
tion band center of mass away from the Fermi level, so
that nc is reduced from 1. This situation has been dis-
cussed in the context of Nozières’ exhaustion principle
�Nozières, 1998, 2005� which states that, upon decreasing
nc, there will not be enough conduction electrons avail-
able to screen the impurity spins. Collective screening
then becomes effective only at a strongly reduced lattice
coherence scale. We do not want to go into the details
here and refer the reader to the discussion of the quan-
tum Monte Carlo results in Tahvildar-Zadeh et al. �1997,
1999� and the discussion in Sec. 5.4 of Vidhyadhiraja and
Logan �2004�, which is based on results for the PAM
obtained with the local-moment approach.

There is one particular feature found in the DMFT
calculations which at first sight seems to support
Nozières’ idea, namely that, as shown in Fig. 6�b� in
Pruschke et al. �2000�, the effective hybridization func-
tion is strongly reduced in a region close to the Fermi
level. Since this quantity can be interpreted as being
proportional to the conduction band density of states
effectively seen by the f states, it seems that indeed there
are fewer conduction electrons available to screen the
moments of the f electrons. Figure 6�a� in Pruschke et al.
�2000� shows the corresponding f spectral function,
which consequently displays metallic �heavy fermion�
behavior. The corresponding lattice coherence scale is
reduced as compared to TK; see Fig. 8 in Pruschke et al.
�2000� where the dependence of both T0 and TK on nc is
plotted. However, in contrast to Nozières’s original
claim, i.e., T0� �TK�2, a behavior T0�TK is found, with a

prefactor decreasing exponentially with decreasing nc.
Again, the ability of the NRG method to accurately
identify exponentially small energy scales proves to be
of great value here.

Another route to metallic behavior in the PAM is to
incorporate a dispersion of the f electrons of the form

tf �
�ij�,�

�fi�
† fj� + fj�

† fi�� . �147�

The effect of such a dispersion term—in particular the
closing of the gap upon increasing tf—has been studied
by Shimizu et al. �2000� for both the particle-hole sym-
metric and asymmetric cases. These authors also study
the relation between charge and spin gaps in the dy-
namical susceptibilities and the hybridization gap in the
spectral function.

A metallic ground state of the particle-hole symmetric
PAM can also be realized when the hybridization be-
tween f electrons and c electrons is only between nearest
neighbors:

Vij = �V , i,j nearest neighbors,

0, otherwise.
�148�

For T=0, the PAM with nearest-neighbor hybridization
shows a notable difference to the models discussed
above: the low-energy scale T0 no longer depends expo-
nentially on U but vanishes at a finite critical Uc �Held
and Bulla, 2000�. This behavior is reminiscent of the
physics of the Mott transition in the Hubbard model.
The difference, however, is that in the PAM defined by
Eqs. �145� and �148� the Mott transition occurs only in
the subsystem of the f electrons—a gap opens in the f
electron spectral function while the c electron part still
has finite spectral weight at the Fermi level �see Fig. 3 in
Held and Bulla �2000�� so that the overall system re-
mains metallic.

The calculations described so far have been restricted
to T=0. Finite-temperature calculations for single-
particle and magnetic excitation spectra have been pre-
sented by Costi and Manini �2002� for the Kondo lattice
model. As in Pruschke et al. �2000�, one focus of these
studies has been the variation of the spectra with con-
duction band filling nc. For this case it was found that
the spectra exhibit two energy scales, one being the
Kondo temperature TK of the corresponding single-
impurity Kondo model, the other the Fermi-liquid co-
herence scale T0, which, for low carrier densities nc�1
is strongly reduced as compared to TK, similarly to the
observations made by Pruschke et al. �2000� for the
PAM.

A ferromagnetic version of the Kondo lattice model
with Coulomb interactions in the conduction band was
studied by Liebsch and Costi �2006� in the context of the
orbital-selective Mott phase of the two-band Hubbard
model with inequivalent bands. The physics of this
model is quite different from that of the usual Kondo
lattice model. In particular, one finds, as in Biermann et
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al. �2005�, non-Fermi-liquid or bad metallic behavior, de-
pending on whether the ferromagnetic exchange is iso-
tropic or anisotropic, respectively.

All these results have been obtained for the paramag-
netic phases of the PAM or Kondo lattice model. Of
course, the presence of localized moments implies the
possibility for magnetic ordering �for quantum Monte
Carlo results within the DMFT framework, see Jarrell
�1995��, which is frequently observed in heavy fermion
compounds, partly in close vicinity to superconducting
phases. These issues have not been addressed yet with
the NRG method, but, as has been demonstrated for the
Hubbard model, are of course accessible with this
method, and are surely a promising project for future
NRG calculations for the PAM or Kondo lattice model
within the DMFT.

Magnetic quantum phase transitions in the Kondo lat-
tice model have been the focus of calculations within the
extended DMFT �Si et al., 2001�, for which the effective
impurity model includes a coupling to both fermionic
and bosonic baths. The NRG method has been general-
ized to such types of impurity model �see Sec. IV.E�, and
recent applications of the NRG method within the ex-
tended DMFT have been discussed by Glossop and In-
gersent �2007a� and Zhu et al. �2007�.

C. Lattice models with phonons

We consider the Hubbard model Eq. �144� and
supplement it by a local coupling of the electron density
to the displacement of Einstein phonons with frequency
�0. This results in the Hubbard-Holstein model with the
Hamiltonian

H = ��
i�

ci�
† ci� − t �

�ij��
ci�

† cj� + U�
i

ci↑
† ci↑ci↓

† ci↓

+ g�
i�

�bi
† + bi�ci�

† ci� + �0�
i

bi
†bi. �149�

The limit U→0 of this Hamiltonian gives the Holstein
model, a highly nontrivial model as discussed in the fol-
lowing.

Within DMFT, the model Eq. �149� maps onto the
Anderson-Holstein �impurity� model, to which the NRG
method was first applied by Hewson and Meyer �2002�
�see Sec. IV.E�. The self-consistency equations are the
same for both the Hubbard-Holstein and the pure Hub-
bard model; the only difference lies in the calculation of
the self-energy for the effective impurity model, which
now contains an additional contribution from the cou-
pling to the phonons. This contribution can also be cal-
culated as a ratio of two correlation functions.

From a technical point of view, there is no difference
in the NRG treatment of the Hubbard-Holstein model
with either a finite or a zero value of U. Historically, the
first applications of the NRG method were for the U
=0 case �the Holstein model, see Meyer et al. �2002� and
Meyer and Hewson �2003�� and have revealed a number
of interesting results. An important point is that the

NRG method �combined with DMFT� is nonperturba-
tive in both g and U; furthermore, it allows one to study
the case of a macroscopic electron density �in contrast to
the few-electron case�. It should be mentioned that there
are various other techniques which have been applied to
the model Eq. �149� and many useful insights have been
gained by such applications, well before the first NRG
calculations for this model. As an example, see the
quantum Monte Carlo calculations for the Holstein and
Hubbard-Holstein models in Freericks and Jarrell
�1995a� and Freericks et al. �1993�.

For the half-filled case, Meyer et al. �2002� showed
some unexpected properties for the transition from a
metal to a bipolaronic insulator at a critical coupling gc.
In contrast to the Mott transition in the Hubbard model,
no hysteresis and no preformed gap is observed here �at
least for small values of �0� which indicates that the
physics of the transition to the bipolaronic insulator
might be completely different �whether it is connected
to locally critical behavior is an interesting subject for
future research�.

For large values of �0, the physics of the transition is
getting closer to that of the Hubbard model �Meyer and
Hewson, 2003�. This is because in the �0→
 limit the
Holstein model can be mapped onto the attractive Hub-
bard model, which has the same behavior as the repul-
sive Hubbard model when charge and spin degrees of
freedom are interchanged.

The phase diagram of the Hubbard-Holstein model at
half filling, T=0, and neglecting any long-range-ordered
phases has been discussed by Jeon et al. �2004�; Koller,
Meyer, and Hewson �2004�; and Koller, Meyer, et al.
�2004�. The main features are summarized in Fig. 28,
which shows the position of the phase boundaries be-
tween metallic, Mott insulating, and bipolaronic insulat-
ing phases. The nature of these various transitions, to-
gether with the behavior of dynamic quantities, has been
discussed by Koller, Meyer, and Hewson �2004�. We
point out that the behavior of the phonon spectral func-
tion shows a considerable phonon softening upon ap-
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FIG. 28. Phase diagram of the half-filled Hubbard-Holstein
model for T=0. The thick solid lines denote the phase bound-
aries while the dashed line corresponds to Ueff=U−2g2 /�0=0.
Dashed and dot-dashed lines are polaronic lines. Adapted
from Koller, Meyer, and Hewson �2004�.
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proaching the transition to the bipolaronic insulator.
Such a softening is absent in the approach to the Mott
insulator, for the simple reason that, close to the Mott
transition, where charge fluctuations are strongly sup-
pressed, phonons are decoupled from electrons. One of
the interesting topics for future research concerns mod-
els that do show such a phonon softening even close to
the Mott transition; this can possibly be accomplished by
considering additional orbital degrees of freedom.

The Hubbard-Holstein model has been studied for the
quarter-filled case and large values of U �Koller, Hew-
son, and Edwards, 2005�. In this situation, a strongly
renormalized band of polaronic quasiparticle excitations
occurs within the lower Hubbard band of the electronic
spectral function.

All investigations of lattice models with electron-
phonon coupling described in this section have been re-
stricted to T=0 and to phases without long-range order.
Generalizations to finite temperatures and ordered
phases �such as superconducting and charge ordered
phases� appear to be possible within the DMFT-NRG
approach and will certainly give interesting results and
new insights. Other possible generalizations are differ-
ent types of lattice model, such as the periodic Anderson
model and multiorbital models, and models with a dif-
ferent type of coupling between electrons and phonons.

VI. SUMMARY

We first summarize the main scope of this review.
�i� To give a general introduction to the basic concepts

of the numerical renormalization group approach �Sec.
II� and to the general strategy for the calculation of
physical quantities within this method �Sec. III�.

�ii� To cover the whole range of applications over the
last 25 years, following the seminal work of Wilson
�1975a� on the Kondo problem and the work of Krishna-
murthy et al. �1980a� on the Anderson impurity model
�Secs. IV and V�.

The range of applicability of the NRG method wid-
ened considerably, in particular over the last ten years.
This can be easily seen in the list of references in which
more than 50% of the entries are from the years starting
with 2000. In physical terms, the NRG method is now
being used to study different phenomena of condensed
matter physics: Typical correlation phenomena such as
the Mott transition and heavy fermion behavior, the
physics of a two-state system in a dissipative environ-
ment, and Kondo correlations in artificial atoms such as
quantum dots, to name but a few. Of course, we expect
that there are many problems to which the NRG
method will be applied in the future, and we hope that
this review will be helpful as a starting point for such
investigations.

Some of the concepts discussed in Secs. II and III are
fairly recent developments. For example the generaliza-
tion of the NRG to quantum impurities coupled to a
bosonic environment �see also Sec. IV.E� and the calcu-
lation of time-dependent quantities �transient dynamics,
see Sec. III.B.3�. As only a few applications of these new

concepts have been considered so far, one line of future
research of the NRG method is their generalization to a
broader class of impurity models.

We have discussed some open issues and ideas for fur-
ther investigations in the various subsections of Secs. IV
and V. We mention a few suggestions for further gener-
alizations and applications of the NRG method:

• application of the bosonic NRG method to generali-
zations of the spin-boson model such as coupled
spins in a dissipative environment;

• magnetic, orbital, and charge ordering in lattice mod-
els within DMFT; and

• application of multiple-shell techniques �Sec. III.B�
to further improvement of the dynamics, particularly
at the lowest temperatures.

What are the main open issues of the NRG approach?
As discussed in Sec. IV.D, multisite and multiorbital
models pose severe technical problems for the NRG
method because the Hilbert space increases dramatically
with the number of orbitals. This limits, in particular, the
accuracy in the calculation of dynamical quantities
which in turn restricts the applicability of the NRG
method to multiband models within DMFT �see Sec.
V.A� or its extensions. Concerning dynamical quantities,
another shortcoming of the present implementations of
the NRG method is the poor resolution at high frequen-
cies, for example, features such as the band edges of
upper and lower Hubbard bands in the Hubbard model
or the sharply peaked and highly asymmetrical spin-
resolved Kondo resonance at high magnetic fields, as
shown in Fig. 7. A gradual improvement of the accuracy
can, of course, be achieved by simply increasing the
computational effort, but for a real breakthrough �con-
cerning multiband models and the high-energy reso-
lution� we probably need completely new ideas and con-
cepts.

From a conceptual point of view it will be interesting
to view the NRG method in a broader context. One step
in this direction has been made by Verstraete et al.
�2005�. These authors interpreted the NRG iteration in
terms of matrix product states, and established a connec-
tion to the widely used density matrix renormalization
group method.

Concerning the future prospects of the numerical
renormalization group, we conclude with a remark from
Wilson’s original paper �Wilson, 1975a, p. 777�, about the
prospects of the renormalization group in general:

However, most of the unsolved problems in physics
and theoretical chemistry are of the kind the renor-
malization group is intended to solve �other kinds
of problems do not remain unsolved for long�. It is
likely that there will be a vast extension of the
renormalization group over the next decade as the
methods become more clever and powerful; there
are very few areas in either elementary particle
physics, solid state physics, or theoretical chemistry
that are permanently immune to this infection.

445Bulla, Costi, and Pruschke: Numerical renormalization group method for …

Rev. Mod. Phys., Vol. 80, No. 2, April–June 2008



ACKNOWLEDGMENTS

It is a pleasure to acknowledge many useful discus-
sions on the topic of this review with present and former
colleagues, including F. B. Anders, J. Bon~a, L. Borda,
S. Florens, J. Freericks, R. Helmes, A. C. Hewson, W.
Hofstetter, K. Ingersent, S. Kehrein, J. Kroha, D. Logan,
N. Manini, A. Rosch, N.-H. Tong, C. M. Varma, M.
Vojta, D. Vollhardt, J. von Delft, A. Weichselbaum, P.
Wölfle, G. Zaránd, A. Zawadowski, and V. Zlatić. This
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