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We use nonequilibrium dynamical mean-field theory in combination with a recently developed Quantum
Monte Carlo impurity solver to study the real-time dynamics of a Hubbard model which is driven out of
equilibrium by a sudden increase in the on-site repulsion U. We discuss the implementation of the self-
consistency procedure and some important technical improvements of the QMC method. The exact numerical
solution is compared to iterated perturbation theory, which is found to produce accurate results only for weak
interaction or short times. Furthermore, we calculate the spectral functions and the optical conductivity from a
Fourier transform on the finite Keldysh contour, for which the numerically accessible time scales allow to
resolve the formation of Hubbard bands and a gap in the strongly interacting regime. The spectral function, and
all one-particle quantities that can be calculated from it, thermalize rapidly at the transition between qualita-
tively different weak- and strong-coupling relaxation regimes.
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I. INTRODUCTION

The recent realization of a Mott-insulating state of repul-
sively interacting fermions in trapped ultracold atoms'-
opens the door to controlled studies of the nonequilibrium
properties of fermionic lattice models. At the same time, the
relaxation dynamics of strongly correlated electron systems
is starting to be explored experimentally through femtosec-
ond spectroscopy.>® Dynamical mean-field theory’ (DMFT)
is a promising tool to approach these challenging issues from
the theoretical side. The DMFT formalism is based on the
mapping of a lattice model to a quantum impurity model.
This approximation relies on a purely spatial argument which
becomes exact in the limit of infinite dimensions.® On the
one hand, this fact makes DMFT a nonperturbative method
which can capture, e.g., the local Mott physics of the Hub-
bard model. On the other hand, it implies that DMFT can be
formulated equally well in imaginary and real time, and
hence the method can be applied to both equilibrium and
nonequilibrium situations.’

A number of authors have employed the nonequilibrium
DMFT framework to study dynamical properties of the
Falicov-Kimball model, which is a variant of the Hubbard
model in which only one spin species can hop between lat-
tice sites. Despite this simplification, the Falicov-Kimball
model exhibits a relatively rich phase diagram with metallic,
Mott-insulating, and charge-ordered phases.'? Its most attrac-
tive feature in the present context is that the associated quan-
tum impurity model in DMFT can be solved analytically or
numerically by simple means,!' which provides reliable ac-
cess to the long-time dynamics. Both the transient dynamics
after the sudden switching-on of a static electric field'>'4
and, using a combined Floquet and DMFT formalism, the
nonequilibrium steady state in the presence of an alternating
or constant field">-!7 were calculated. The evolution of the
momentum distribution and double occupation after an inter-
action quench, i.e., a sudden change in the interaction param-
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eter, was studied in Ref. 18, where it was also shown that for
the Falicov-Kimball model these quantities do not thermal-
ize. This is a consequence of the immobility of one spin
species and the resulting quadratic form of the Hamiltonian
for the mobile other spin species.

A more realistic model for the description of correlated
electron systems and interacting fermions in optical lattices
is the Hubbard model,

1
2), (M

which describes fermions of spin one half which hop on a
lattice with hopping amplitude V;; and interact on each site
with a repulsion energy U. An interaction quench has so far
been experimentally realized in the bosonic version of the
Hubbard model.'® To describe the corresponding situation in
the fermionic model, we allow for a time-dependent interac-
tion U(¢) in Eq. (1).

Even after the mapping to a single-site model, the solution
of the Hubbard model within nonequilibrium DMFT requires
the calculation of the time evolution of an interacting many-
body system. In a previous publication’® we employed a re-
cently developed diagrammatic impurity solver?' to compute
the time evolution after an interaction quench over a wide
parameter regime. The numerical simulations confirmed an
analytical flow equation analysis for quenches to small U,??
which showed that in the limit U — 0 the system is trapped in
a nonthermal metastable intermediate state, a phenomenon
known as prethermalization.”> We identified a similar trap-
ping phenomenon for quenches to very large interactions.
Most interestingly, these two prethermalization regimes are
separated by a well-defined “critical” interaction Uygy,, where
instead of a trapping in either of the nonthermal states a fast
thermalization is observed. In Ref. 20, these qualitatively
different regimes were demonstrated on the basis of an
analysis of the momentum distribution and the double occu-

1
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pancy. The existence of two separate relaxation regimes is
similar to what was found for Heisenberg spin chains?* and
the one-dimensional Bose-Hubbard model.>

Relaxation to a thermal state is often difficult to establish
numerically because the time evolution must be studied on
long time scales. In general thermalization is expected for
interacting systems (in the weak sense that the expectation
value of a large class of observables approaches the thermal
expectation value in the long-time limit). In exactly solvable
systems, however, thermalization is often prevented by
integrability,'®26-28 while its mechanism for nonintegrable
systems is currently under debate.”3* One advantage of us-
ing DMFT in this context is that the method is formulated
directly in the thermodynamic limit, whereas the investiga-
tion of thermalization in finite size systems becomes more
subtle due to finite recurrence times and discrepancies be-
tween microcanonical, canonical, and grand-canonical de-
scriptions of the thermal state.

The purpose of the present work is twofold: First, we
want to explain in some detail the machinery behind our
Quantum Monte Carlo (QMC) calculation of the Hubbard
model in nonequilibrium DMFT. We will briefly review the
DMFT formalism (Sec. II) and the diagrammatic Monte
Carlo method (Sec. III), discuss some important tricks which
improve the efficiency of the Monte Carlo sampling, and
then present in detail the solution of the DMFT self-
consistency equations based on the exact equation of motion
approach (Sec. IV). The QMC solution of DMFT is finally
used to discuss the validity of the nonequilibrium generali-
zation of the iterated perturbation theory (Sec. V). The sec-
ond purpose of this paper is to further analyze the main find-
ing of Ref. 20, namely, a fast thermalization after a quench
from U=0 to Uygy,, with additional data for the momentum
distribution, the spectral function, and the optical conductiv-
ity (Sec. VI). In particular, we find that at Uy, the retarded
nonequilibrium Green’s function relaxes to the appropriate
equilibrium Green’s function within the numerical accuracy,
establishing thermalization of all one-particle quantities that
can be calculated from it.

II. NONEQUILIBRIUM DMFT

A. Contour-ordered Green’s functions

In the following section, we set up the framework for the
investigation of a rather general class of nonequilibrium situ-
ations. We assume that the system of interest is initially pre-
pared in thermal equilibrium. For times >0, it is then acted
on by some perturbation, but there is no coupling to external
heat or particle reservoirs. Technically, this setup implies that
the time evolution is unitary and captured by a time-
dependent Hamiltonian, but all results must be averaged over
initial states according to the grand-canonical density matrix
po=e PO Tr{eBHO) at temperature T=1/B. The conven-
tional approach to this kind of nonequilibrium situation
within many-body theory is based on the use of contour-
ordered Keldysh Green’s functions,

G (1) == i{Tel (1)E! (1)), (2)

where the time arguments ¢ and ¢’ lie on the L-shaped con-
tour C that runs from O to some time f,,, (i.e., the largest
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FIG. 1. (Color online) The L-shaped contour C for the descrip-
tion of transient nonequilibrium states with initial state density ma-
trix e PO Arrows show a possible Monte Carlo configuration
corresponding to perturbation order n=7 and n,=3, n_=2, ng=2
(cf. Sec. III).

time of interest) on the real time axis, back to 0, and finally
to —i3 along the imaginary-time axis (Fig. 1). Here and in
the following, operators with hat are in Heisenberg notation
with respect to the time-dependent Hamiltonian [on the
imaginary branch, H=H(0), and &é(=ir)=e™©ce~™0)], and
(-)=Tr{py-] is the expectation value taken in the initial equi-
librium state. The contour-ordering 7 exchanges the order
of two operators A(¢,) and B(t,) in a product A(¢;)B(z,) if and
only if t, appears later on the contour than #;, with an addi-
tional minus sign if the exchange involves an odd number of
Fermi operators. The order of time arguments along C is
indicated by the arrow in Fig. 1, which points from “earlier”
to “later” times. Contour-ordered Green’s functions were first
introduced by Keldysh®® in order to generalize Wick’s theo-
rem and diagrammatic perturbation theory to nonequilibrium
physics. The extension of the original Keldysh formalism to
the L-shaped contour C, which has numerous applications in
nonequilibrium many-body theory,>” becomes important
whenever correlations between the initial state at r=0 and
time >0 cannot be neglected.’®

The contour-ordered Green’s function (2) is related to a
number of real and imaginary-time Green’s functions, which
we list in the following paragraph for later reference. When
both time arguments are on the imaginary branch, Eq. (2)
reduces to the Matsubara Green’s function of the initial equi-
librium state,

G (1,7) = G (= im— iT). (3)

Because the Hamiltonian is constant on the vertical branch of
C and commutes with the initial state density matrix,

M N . . . .. . .
G, (7,7) is translationally invariant in imaginary time,
such that we can introduce the usual Matsubara frequency
representation,

GM(7,7') = 22 eIy ) (4a)
ﬁ .

Mio,) =- if dre'n"GM(7,0). (4b)
0

On the other hand, when both time arguments are real, one
obtains the lesser, retarded, and advanced Green’s functions,
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G o (1.1") = G oo (t,,17) = iC (1) E (1) (5)

Gia/(t’tl) = ®(t - t,)[Gaa’(t—’t-:—) - Gaa'(t""ti)]
== i@ —1){el, (1,0, (6)

G2 (1,1") = Ot = )G (ts1) = Gy (1_,1])]
=0 —0{el, (1)), (7)

where {,} denotes the anticommutator. The subscript of each
real time-argument indicates whether it is on the upper (+) or
lower (=) real-time branch of C. The lesser Green’s function
is related to the occupation of states «, to which its imagi-
nary part reduces for =t" and a=ca’. On the other hand, the
retarded and advanced Green’s function are related to the
spectral function, which will be discussed in more detail in
Sec. VI. In addition to the real and imaginary-time Green’s
functions, the Green’s functions

G;ar(ta T) = Gaa'(ti,_iT)’ (Sa)

G;a,(T, 1) = Gop(—itts). (8b)

with mixed time arguments encode the correlations between
the initial state and times #>0.

It follows from the cyclic property of the trace and the
definition of the contour-ordering that the Green’s function
(2) satisfies an antiperiodic boundary condition on C in both
time arguments,

Gaa’(0+9t,) == Gaa’(_ iﬂ,l,), (93)

Gaa’(t’0+) == Gaa’(t5_ lﬁ) . (9b)

This boundary condition holds for all contour functions in
this text, including those which have no simple definition in
terms of Heisenberg operators. Furthermore, the Green’s
function (2) satisfies the hermitian symmetry

GR (1) =G (1), (10a)
G (1) == Gy (t1)", (10b)
G, ,(t,D=G, (B-7n", (10c)

which will be used frequently in the following.

B. Dynamical mean-field theory

In equilibrium DMFT local correlation functions are ob-
tained from a single-site impurity model subject to a self-
consistency condition.” The mapping of the lattice problem
(1) onto the single-site problem is formally achieved by in-
tegrating out all lattice sites apart from one. A straightfor-
ward reformulation of this mapping for Green’s functions on
the Keldysh contour®!> makes DMFT applicable to nonequi-

librium problems. The single-site action is then given by
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S= SO + j dthl()c(t) s (1 la)
C

So= 2

=1, JC

drdt’ ¢ () A 42,1 )c (1), (11b)

where [odt=[{mxdt, — [mdt_—ifBdr is the integral along C,
hioe(t) = U0y = 3) (= 3) (12)

is the local interaction of the Hamiltonian, and S, describes
the hybridization of the site with a fermionic environment;
the hybridization function A,(¢,7") must be determined self-
consistently by the DMFT procedure [cf. Eq. (25) below]. In
the following, we consider only homogeneous paramagnetic
phases, such that A, does not depend on the lattice site or
spin o.
The local Green’s function for action (11) is given by

Gy(t,t") == ico(t)ci(t)s, (13)

where operators without a hat are in the interaction picture
with respect to u(ny+n,), and the notation

Tr{e PH* )T, exp(= iS)- -]
Tre PH T, exp(- iS)]

(v )s= (14)
is used. In general, the computation of G,(z,t) is a compli-
cated nonequilibrium many-body problem. For this reason,
nonequilibrium DMFT has so far been applied mostly to the
Falicov-Kimball model, where the single-site problem can be
reduced to a quadratic one and thus becomes exactly solv-
able either numerically!>'* or analytically.'® In the present
paper, just as in Ref. 20, we investigate the Hubbard model
and solve the single-site problem using the weak-coupling
continuous-time Monte Carlo algorithm,?' which will be de-
scribed below (Sec. III).

The local self-energy is then defined by the Dyson equa-
tion

[(Goh—30) # G l(1,') = 8elt,1'), (15)

where the noninteracting (U=0) single-site Green’s function
and its inverse are given by

Goo(1,1') = = ey (D1, (16a)

Gol(t,t') = 8plt,t')(id,+ w) = A(1,1'),  (16b)

respectively. Here, we introduced the notation [a*b](z,t")
=[cdta(t,1)b(7,t") for the convolution of two contour func-
tions, and the contour-delta function 8(z,1") is defined such
that

f dif(©) 6.(1,1) = f(1) (17)
c

for any contour function f, i.e., &(¢,t')=* 8(t—t') if t and ¢’
both on the upper or lower real branch of C, and &y(-iT,
—i7')=i8(7—7') for time arguments on the vertical branch.
Both the Dyson equation (15) and the corresponding equa-
tion
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[Goly# Goo)(t.1') = &e(1.1), (18)

for G, are inhomogeneous integrodifferential equations on
the contour C when Eq. (16b) is inserted. They have a unique
solution because G, and G satisfy the boundary condition
(9). The solution of such integral equations on C is discussed
in detail in Sec. IV.

In order to determine the hybridization function A(z,")
one must equate the self-energy X .(7,¢') and the Green’s
function G,(¢,1") of the single-site problem with the local
self-energy X;,(r,1') and the local Green’s function
Gjjs(t,1") of the lattice problem at the given site j, respec-
tively,

Gjjo(t,1') = Golt,t"),  Zjo(t,t') = 6;2,(t,t").  (19)

The latter two are related by the lattice Dyson equation,

(i, + = €) Gy (1,1") = [Z % Gy, )(1,1") = S(1,1"),
(20)

which is stated here for the homogeneous case after Fourier
transform with respect to lattice sites. In Eq. (20),

Gko'(t’t,) =- i<TCCAk0'(t)E£g-(t,)> (21)

is the momentum-resolved lattice Green’s function. (For a
Bravais lattice, k are quasimomenta and €, are band energies,
but more generally, (i|k) and €, are eigenvectors and eigen-
values of the hopping matrix V;;, respectively.) The local
Green’s function is given by the momentum sum

G,(t,1") = 2 (ko) Gyoltt"), (22)
k

which closes the self-consistency.

In the present paper, we consider the case of a time-
dependent interaction but no external fields. The hopping
matrix elements are then independent of time, and the
k-summation in Eq. (22) can be reduced to an integral over a
single energy variable

G,(t,t') = f dep(€)G,(t,1'), (23)

involving the Green’s function G, (t,t") =Gy, (1,t") |€ka=€ and
the local density of states p(€)=3|(j|k)|*S(e—¢,) at an arbi-
trary site j. For the case of a semielliptic density of states,

V4VE - &

, 24
27V? (24)

p(e) =

with quarter bandwidth V, which corresponds to nearest-
neighbor hopping on the Bethe lattice”*? or a particular kind
of long-range hopping on the hypercubic lattice,*! one ob-
tains a closed form expression for the Weiss field,'8

A (t,1") = V3G (1,1). (25)

We will use this self-consistency equation for all results of
this work, so that the solution of the DMFT equations is
achieved by iteration of Egs. (13) and (25).
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III. REAL-TIME MONTE CARLO METHOD

The real-time evolution of the impurity model can be
computed using the weak-coupling diagrammatic Monte
Carlo method. More specifically, we employed the real-time
version of the continuous-time auxiliary field algorithm
(CTAUX) (Ref. 42), which was discussed in detail in Ref.
21. In the following section we present the implementation
of this algorithm on the L-shaped contour (Fig. 1) and then
discuss some technical aspects which improve the efficiency
of the method to the point where relevant time scales even in
the strong-coupling regime become accessible.

We start by expressing the partition function of the initial
state as

Z =Ti[e PHO+IT e7S]
— e—BU/4—ifcdtk(t) Tr[e_’BM("TJr"l)TCe_iS"] (26)

with 8,=8-[cdi[k(1)+U/4] and k(z) #0. This (possibly
time-dependent) shift in the action is introduced so that the
interaction term can be decoupled using auxiliary Ising spin
variables according to*3

= hyoo(t) + k(1) + U/4 = k(1) = Ulnyn| = (n; +n)/2)]

=k(r)2 X, ety
s=—1,1

cosh[y(1)]=1+ U/[2k(2)]. (27)

Expansion of ¢~ in powers of [/,.(f) —k(f)— U/4] and sub-
sequent auxiliary field decomposition leads to an expression
of the partition function as a sum over all possible Ising spin
configurations on the contour C. The weight of the Monte
Carlo configuration ¢={(z,,s,),(t2,55),...(t,,s,)} (see illus-
tration in Fig. 1) is obtained by evaluating the trace of the
remaining noninteracting problem,

w({(t,51), ... (t,.5,)}) = (ik(t,)dt12) ... (ik(z, )d1/2)
X (- ik(t,,++1)dt/2) v (= k(2 4, )d1/2)

Xkt o +)d712) .. (k1 1 1 JAT2) ] det N,

(28)

N,'=elr—iGy ("o —1). (29)

Here n. and ng denotes the number of Ising spins on the
three branches of C, Gy, is the (n,+n_+ng) X (n,+n_+ng)
matrix of bath Green’s functions (16a) evaluated at the time
arguments defined by the Ising spins, and el
=diag(e”"19, ... ¢YW?) A Monte Carlo sampling of all
possible spin configurations can then be implemented based
on the absolute value of these weights.

The contribution of a specific configuration ¢ to the

Green’s function is given by
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n

Gf,.(l,l,) = GO,O’(t’t,) + 12 GO,U’(t’ ti)

i,j=1
X[(e" o= 1)N,]; Go ,(t;1"), (30)

so the Green’s function G is obtained as the Monte Carlo
average of G°.

The sign problem in this method grows exponentially
with the average perturbation order on the real-time portion
of C. To reach long times or strong interactions, it is therefore
important to reduce this perturbation order as much as pos-
sible. In the particle-hole symmetric case, i.e., at half-filling
and for a symmetric density of states, the parameter k(z) of
the algorithm can be chosen such that only even perturbation
orders appear in the expansion. In fact, for

k(t)=-U/4 (31)

we have y(t)=im, e”??=—1 and hence the spin degree of
freedom effectively disappears. The algorithm then becomes
the real-time version of Rubtsov’s weak-coupling method**
for the particle-hole symmetric interaction term /()
=U(nT—%)(nl—%) with weight

Weyenll1s - -+ s 1) = (= iUdt)"+(iUdt)"-(- Ud7)"s

1
x[1 det(iGO,(,— 51). (32)

(For a detailed discussion of the equivalence between the
Rubtsov and CTAUX methods for the Anderson impurity
model, see Ref. 45). The above choice of k() requires the
implementation of Monte Carlo updates which change the
perturbation order from n to n 2. We found, however, that
the odd perturbation orders are continuously suppressed as
k(r) approaches —U/4, so one may as well choose k(r)=
—U/4+ 6 (with small &) in combination with rank one up-
dates.

The efficiency of the Green’s function measurement can
be improved dramatically by the following simple tricks.
First, we rewrite Eq. (30) as

G;.(t,t’) = GO,U’(t’t,) + J dslf dSQGO’a.(t,Sl)
C C

n

Xi 2 5C(S1Ji)[(€r” — DN, j0c(s2:1))

ij=1
X G l52,1"), (33)

where the variables s; and s, run over the contour C. It is
therefore sufficient to accumulate the impurity system
T-matrix
n
. r
X (51,82) = 12 Sc(sy.t)[ (e’ 7 = 1)No-]i,j56(s2’tj) )
ij=1 me

(34)

where (-),,. denotes the Monte Carlo averaging as mentioned
in Ref. 42. While the measurement of X on some fine grid
introduces discretization errors, these can be made negligibly
small at essentially no computational cost. Furthermore,
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comparison of Eq. (33) to the Dyson equation (15) shows
that X is related to the self-energy by

Xo'* GO,(rzzo'*G(r’ (35)

so the measurement of X allows to extract %, as explained in
Sec. IV C.

Further improvements are possible. Assuming that the
perturbation order on the real-time branch is nonzero, it fol-
lows from Eq. (28) that the weight of the Monte Carlo con-
figuration changes sign if the last spin (corresponding to the
largest real-time argument) is shifted from the forward con-
tour to the backward contour or vice versa. Since the abso-
lute value of the weight does not change, these two configu-
rations will be generated with equal probability. As a result,
all terms in Eq. (34) which do not involve the last operator
on the contour will cancel on average. It is therefore more
efficient to accumulate only the contributions to Eq. (34)
from those pairs (i,j) in which either i or j corresponds to
the last operator on the real-time branch. (If all spins sit on
the imaginary-time branch, no such simplification is pos-
sible.) We also note that the error bars on measurements can
be substantially reduced by appropriate symmetrizations of
the real and imaginary parts of X (symmetry lines =7y
2= tnax> $1=52)-

IV. WEAK-COUPLING CTQMC+DMFT

To use the weak-coupling CTQMC as an impurity solver
within DMFT, we iterate the following two steps until con-
vergence: (i) the local Green’s function G,(¢,t") is deter-
mined from CTQMC [Eq. (33)], using the noninteracting
bath Green’s function Gy ,(7,7') as input, and (ii), Gy ,(7,")
is determined from its inverse (16b), using the QMC output
G,(t,1") and the self-consistency Eq. (25). We start the itera-
tion from an initial guess for Gy ,(z,7'), for which we usually
take the noninteracting equilibrium Green’s function,

qu(t,t’)=if dep(e)e’ [f(e) - Oc(t,t)],  (36)

where @p(¢,¢')=1 if ¢ is later on the contour than ¢’ and
otherwise zero.

In this section we describe in detail how Gy, is deter-
mined from A, (Sec. IV A), how the self-energy is calcu-
lated from the impurity correlation function X, after conver-
gence of the DMFT iteration (Sec. IV B), and how one
finally obtains expectation values of various observables of
the lattice system (Sec. IV C). Furthermore, we introduce a
real-frequency representation, which is needed to efficiently
treat the case of zero temperature on the L-shaped contour
(Sec. IV D), and combine this with the weak-coupling impu-
rity solver for the case of a noninteracting initial state.

A. Integral equations on the contour C

Within nonequilibrium DMFT one must frequently solve
equations on C of the type

[id,—h(D)]Y(t,t") = [K = Y](t,t") = &(t.1") (37)

with a known integral kernel K(z,t"). The solution Y(¢,¢') is
unique when the antiperiodic boundary condition (9) is im-
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posed on Y(¢,t"). For example, both Eq. (18) for the nonin-
teracting bath Green’s function Gy ,(¢,7’) and Eq. (20) for
the momentum-resolved Green’s function have this form.

By choosing a suitable discretization of the contour C, Eq.
(37) can in principle be reduced to the inversion of a matrix
whose dimension is given by the number of mesh points
along C.'* In the following we pursue a different approach,
where both Y and K in Eq. (37) are first represented in terms
of their respective real and imaginary-time components (3),
(4a), (4b), (5)—(7), (8a), and (8b), and separate integral equa-
tions (which are similar to the Kadanoff-Baym equations)®
are solved for each component. Although this procedure may
seem rather cumbersome compared to direct contour discreti-
zation, it has several advantages: (i) it is straightforward to
incorporate the hermitian symmetry (10), which is satisfied
by both the local self-energy and the hybridization function
A,. (ii) The resulting equations are Volterra-type integrodif-
ferential equations, for which highly stable and accurate al-
gorithms can be found in the literature,* and which remain
causal even when they are approximated numerically. Fi-
nally, (iii), the real-frequency representation which we intro-
duce in Sec. IV D to handle initial states at zero temperature
is based on this approach.

In the following we assume that ¥ and K satisfy the her-
mitian symmetry (10), such that it is sufficient to determine
the Matsubara, retarded, mixed “—", and lesser components
of Y. Corresponding components of the convolution K*Y in
Eq. (37) are obtained from the Langreth rules,* which fol-
low directly from the definitions (3), (4a), (4b), (5)—(7), (8a),
and (8b) and the definition of the contour integral. By taking
the Matsubara component (3) of Eq. (37) we obtain

B
(=9, — ) YM(7,7') + iJ dTKMN(r,DYMF 7)) =i8(r—7),
0

(38)

where h=h(0) is constant on the imaginary branch. This
equation must be augmented with an antiperiodic boundary
condition YM(0, 7')==YM(B, 7') which follows from Eq. (9).
When we assume that the kernel K™ has the Matsubara fre-
quency representation (4), it follows that the solution
YM(7,7') is of the same form, with

yW(iw,) =[iw, —h - Miw)]™". (39)

As required by causality, YM thus turns out to depend only on

the initial equilibrium state, independent of the subsequent
perturbation of the system.

In a similar fashion, the retarded component (6) of Eq.

(37) is given by
t
[id,— h(0)]YR(1,t") —f KR (1, DYR(T ) = 8t —1').

t,

(40)

Because YR(z,t') vanishes for t<t' by definition [cf. Eq.
(6)], integration over the S-function yields
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YR(1,H)=—1. (41)

One can thus restrict the solution of Eq. (40) to r>1', drop
the S-function on the right-hand side and instead impose Eq.
(41) as an initial condition.

The limits of the integral in Eq. (40) take into account that
retarded functions vanish for r>1'. This fact turns Eq. (40)
into a Volterra equation of second kind,*® i.e., the derivative
at time t is determined by the kernel and the function at
earlier times only. The numerical solution of this type of
equations is analogous to the solution of ordinary differential
equations.*0

For the Green’s functions (8) with mixed time arguments,
Eq. (37) reads

[id,— h()]Y"(t,7) - f t dKR (DY (7,7
0

B
=—i f d7K (1, DYM(7, 7). (42)
0

We assume that Y is continuous on C (which is true if neither
K(t,t") nor h(r) are singular at r/=0), such that Eq. (42) must
be solved with the initial condition Y~(0,7)=YM(0, 7). For
given 7, Eq. (42) is an inhomogeneous Volterra integrodiffer-
ential equation, for which only known functions [cf. Equa-
tion (39)] enter the source term on the right-hand side.

A third and last Volterra integral equation can be derived
for the lesser component (5),

[i&,—h(r)]Yﬂt,t’)—j diKR (1,0 Y=(7,t")
0

B t'
=—if dFKﬁ(t,F)Yﬁ(F,t’)+J diK=(t,))YA(T,1").
0 0

(43)

Due to the symmetry (10) it is sufficient to solve this
equation for t<t’, with the initial condition Y<(0,#')
==Y (B,t"). The latter follows from Eq. (9). The functions
YA and Y~ which enter the source term of Eq. (43) on the
right-hand side can be obtained from the previous solution of
Egs. (40) and (42), and the symmetry (10). The successive
solution of Egs. (38), (40), (42), and (43) completes the de-
termination of the contour function Y.

B. Determination of the self-energy

The impurity self-energy can be obtained from the corre-
lation function X, via Eq. (35). By comparison of the Dyson
equation in integral form, G,=G, ,+G,*2,*G, ,, with Eq.
(33), ie., Go=Gg ,+Go ,*X,% Gy 5, We find the relation

(1 + X(r * GO,(r) * 20 = X(r' (44)

This equation is very similar to Eq. (37), with unknown Y
=3, kernel K=X,*G,,, h=1, and without the differential
term. The solution of Eq. (44) is thus analogous to Eq. (37),
using a decomposition in terms of the components (3), (4a),
(4b), and (5). The final equations read
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M/
SM(iw,) = iw,)

1+ M)’ (45a)

ER(t,t')+f diKR (1, D3Rt = XR(1,t'),  (45D)

S7(t, 1)+ f diKR (1,037, 7)
0

B
=X"(t,7) +i J dTK~(t, DZM(7, 7) (45¢)

0
2<(t,t’)+f diKR (1,02~ (7.t")
0

B
=X, (t,1") + if d7K(t, D> (7.t')
0

t!
- f diK=(t,D2A(T1). (45d)

0
Note that the kernel K=X,,* G, , does not satisfy the hermit-
ian symmetry (10), i.e., X,*G ,# G ,*X,-

We would like to remark that the self-energy can equally
well be determined from the linear equation (35).

However, Eqgs. (45) are essentially Volterra integral equa-
tions of the second kind, while Eq. (35) leads to Volterra
equations of the first kind, i.e., only the integral term is
present on the left-hand side. Because the numerical solution
of Volterra equations of the first kind tends to be unstable*®
we prefer the solution of Eq. (44) over Eq. (35).

C. Expectation values of observables

From the self-energy 3, one can directly compute the ex-
pectation values of observables of the lattice Hamiltonian. In
this section we let (---) denote the initial state expectation
value at temperature 7=1//, and operators with hat are in
Heisenberg representation with respect to the Hubbard
Hamiltonian (1) with time-dependent interaction. The num-
ber of lattice sites will be denoted by L.

The particle number per site for spin o is given by the
local Green’s function G(z,t")

1
ny(1) = ZZ (&),(0é;4(0) == G (1,1), (46)
J

provided that the state is homogeneous. Because n,(f) is con-
served, the condition G;(t,t)zconst provides a first test of
the numerical accuracy.

The occupation of the momentum states

1(€1) = (G (DEko(D) = = iGry (1,1), (47)

is obtained from the momentum-resolved Green’s function
Giolt,1) =—i(TCc”kU(t)c,tg(t’)). For a momentum independent
3., n(e,t) depends on momentum k only via the band-
energy €. The Green’s function Gy(t,¢') is determined from
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the lattice Dyson equation (20), whose solution is analogous
to that of Eq. (37). The kinetic energy per lattice site

1
Eyin(1) = ZE 6l Cro(NE(1), (48a)

ko

is obtained from n(e,) by replacing the k sum with an inte-
gral over the local density of states [Eq. (24)],

Eyin(0) = f dep(€)en(e,t). (48b)

Furthermore, we are interested in the double occupation
per lattice site

)= 73 Gy i (), (49)

and the interaction energy

Ep=UOS <{ﬁ,¢<r) - %] {ﬁu(r) - §]> (50)

=UO{d() = 1[ny(1) +n (D] + 1}. (51)

To calculate this quantity we consider the equation of motion

for the local lattice Green’s function Gj;,, which reads

(G % Giyol(t,1) = Sele,t") + U j(8,1"),  (52)

(G;l)ﬂ(f’f’) = Se(t,")[6;(id, + p) = V], (53)

1
T, (1) =— i<Tcéjg(t)<ﬁjg(t) - 5>a;0(t/)>, (54)

Comparison with the lattice Dyson equation in real space
yields

U(t)rja'(t’t,) = [20' * ijo'](t’t,)’ (55)

because the self-energy is local and site-independent. Hence,
I';=Tj, can be determined from quantities measured in the
single-site problem [cf. Eq. (35)], and Eq. (54) implies

d(t) == iT;(t,1) + 2n,(1) (56)

for a homogeneous state.
Finally, we can compute the total energy from Egs. (48)
and (50),

Eio(1) = Exia(1) + Epei(1). (57)

This quantity must be constant when the Hamiltonian is
time-independent, which provides a second test for the accu-
racy of the numerical solution.

D. Real-frequency representation

In this section we introduce a partial Fourier transform of
the mixed components “—" and “~”, which will allow us to
handle contour equations such as Egs. (37) and (44) in the
limit of zero temperature without dealing explicitly with a
contour of infinite length.
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We start from the Fourier series in the interval 0= 7= g,

B
f(iw,ﬁ):f drY (7,1)en", (58a)
0

Y (r,) = /132 Y (iw,,t)e ", (58b)

n

in terms of fermionic Matsubara frequencies iw,. This repre-
sentation is now used within the solution of Eq. (37). In
contrast to Eq. (42), the corresponding equation for the
mixed “~ component

B
(—=d,—h)Y (7,1) + if dTKM (1, DY (7,1)
0

= f tde(T,ﬂYA(Zt) (59)
0

is not an initial value problem, but rather a boundary value
problem on C: The boundary condition Y (B,1)=-Y"(0,1)
—YA(0,1) follows from Eqs. (9) and (7) and the continuity of
the contour functions along C. Using the transformation (58)
and Eq. (39) for the Matsubara component, Eq. (59) becomes
an explicit integral expression for Y (iw,,?),

Y (iw,,1) = YM(iow,) { YA0,1) + f t diK (iw,, YA, t)i| .
0

(60)

In the following we assume that K (iw,,,#) can be contin-
ued to complex frequencies z, such that K (z,7) is analytic in
the upper and lower complex half plane, respectively, and
has a branch cut along the real-frequency axis. For the
Green’s function (2) this property follows from a Lehmann
representation in terms of an eigenbasis {|n)} of H(0),

(w, + wm)<n|ca|m)(m|cz, (1)|n)

z+E,-E,

G (=i , (61)

which has poles on the real axis only (w,=e PEn).

When Eq. (60) is continued to the real axis, we obtain two
functions Y (w™,7), where w"=w*in for p—0*. In con-
trast to the equilibrium functions yM(w™), the two functions
Y (w™,t) are not simply related by complex conjugation.
Matsubara summations are then transformed into integrals
along the branch cut of Y (z,7) in the usual way. For ex-
ample, the backtransformation (58b) is given by

Yr(T,t)=f%f(w)ewf[)f(w‘,t)—f(w*,t)], (62)

where f(w)=1/(e#“+1) is the Fermi function.

Using the real-frequency representation for the mixed
components, the first source term on the right hand side of
Eq. (43) can be rewritten in terms of the previously deter-
mined functions Y (w™,1)
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FIG. 2. (Color online) Computational scheme for the nonequi-
librium DMFT using the self-consistency (25) and noninteracting
initial states. Steps (i)—(iv) are explained in the text.

B
f d7K(t,DY (T,1)
0

dw
=—f z—m.f(w)

X[K(t,0")Y (0",t') - K (t,0")Y (7,1")].
(63)

Here the Fourier transformation (58a) with opposite sign for
iw, is used in the second time argument for the — Green’s
functions (8a), such that

Y (z,0)==Y"(t,7°)" (64)

follows by symmetry (10c).

The above real-frequency representation can be used
within DMFT whenever the impurity problem is solvable at
zero temperature. This is the case for approximate analytical
methods (Sec. V). It might also be of advantage for arbitrary
initial states in the Falicov-Kimball model,''8 where the
solution of the impurity is based on the solution of equations
of motion which have exactly the structure of Eq. (37). In the
following section we present another application, namely,
nonequilibrium DMFT for the Hubbard model with a nonin-
teracting initial state.

E. CTQMC and DMFT for noninteracting initial states

The computational scheme for the solution of the non-
equilibrium DMFT equations is represented in Fig. 2 for a
semielliptic density of states (24) and a noninteracting initial
state. Green’s functions G, G, and A, satisfy the symme-
try (10), such that they are represented by their Matsubara,
retarded, “~” and lesser component. The Matsubara Green’s
functions are given by the equilibrium (noninteracting)
Green’s function

M. M . _ P(e)
go—(lwn)_gO,U(lwn)—deiwn+M_ 6’ (65)
=V2\Miw,), (66)

where p(e) is given by Eq. (24), and the last equality holds
due to the self-consistency (25). The mixed components G,
G, and A are represented after the partial Fourier trans-
form (58) and analytical continuation by their value along
the branch cut, i.e., for each Green’s function ¥ we keep two
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functions Y (w™,) on a fixed frequency mesh.

The DMFT iteration is started from an initial guess (36).
In step (i) [cf. Figure 2], the Weiss field A(z,¢’) is computed
from the closed self-consistency Eq. (25). This is then used
to determine the noninteracting bath Green’s function G
from its inverse (16b), as explained in the previous section
[step (ii) in Fig. 2]. The function G is the input for the
calculation of the interacting bath Green’s function (13) us-
ing CTQMC [step (iii) in Fig. 2]. Because the initial state is
noninteracting, the Monte Carlo simulation is restricted to
the real-time branch of the contour, and only the real-time
components GX and G are obtained. However, the mixed
component G;(wi ,1) can be reconstructed from these func-
tions and the previous Weiss field A [step (iv)]: for this pur-
pose consider Eq. (15), which has the form of Eq. (37) after
the replacement K=A,+3%,, Y=G,, and h(t)=u. Hence,
G’ (z,1) can be obtained from the integral (60), making the
same replacements. Because X (z,1') is proportional to the
interaction strengths U(z) and U(¢'), we have X (7,1)=0 for
a noninteracting initial state, with U(-i7)=U(0)=0. Hence
G (w™,1) is given by

G (o",1)= gi\f(wﬂ[Gﬁ(O,t) + f dTA;(af,?)G‘;(f,t)] ,
0

(67)

where gl(\f(wt)= F mip(w) [Eq. (65)]. Steps (i) through (iv)
are repeated until convergence, which is usually reached af-
ter not more that 15 iterations.

V. COMPARISON TO ITERATED PERTURBATION
THEORY

In equilibrium DMFT, the so-called iterated perturbation
theory (IPT),”# is frequently used as an approximate but
efficient method to solve the single-site problem. Within IPT,
the self-energy 2, is expanded up to second order in the
interaction U. Although this is a weak-coupling expansion by
construction, it is accidentally correct for the atomic limit of
the half-filled Hubbard model in equilibrium. In many as-
pects, IPT thus provides a reasonable interpolation between
the two exact limits U=0 and V=0. In particular, it qualita-
tively reproduces the DMFT phase diagram and the Mott
transition in the paramagnetic phase, although there are
quantitative differences to numerically exact QMC results. It
is therefore interesting to see whether this approximation
performs similarly well when used to solve the single-site
problem in nonequilibrium DMFT.

In the following we restrict ourselves to the half-filled
Hubbard model with time-dependent interaction U(r). The
Hartree contribution to the self-energy (first-order diagram),
which gives a shift in the chemical potential with respect to
=0, then vanishes, and the second-order contribution to the
self-energy is given by a single diagram [inset in Fig. 3(a)],

S7(0") = = UDU()Go (1.1 Go ot 1) Go (1.1,
(68)

This equation is easily incorporated into the DMFT self-
consistency iteration by replacing step (iii) and (iv) in Fig. 2
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FIG. 3. (Color online) Potential energy E,() [Eq. (50)], kinetic
energy Eyin(f) [Eq. (48)], and total energy Eyy=Epq+Ey;, in the
half-filled Hubbard model after an interaction quench from U=0 to
U=2 (a) and U=5 (b). The initial state temperature is given by T
=0. The results were obtained with nonequilibrium DMFT for a
semielliptic density of states (24), using either CTQMC (symbols),
IPT (dashed lines) or SPT (solid lines) to solve the single-site prob-
lem. The inset in the upper panel shows the second-order diagram
for 3. Lines represent G, , for IPT [Eq. (68)], and G,, for SPT [Eq.
(69)].

with a solution of the Dyson equation (15) for G, where 3,
is given by Eq. (68). Equation (15) is solved numerically, as
described in Sec. IV A.

In Fig. 3, we plot the potential energy E, () [Eq. (50)],
the kinetic energy E;,(¢) [Eq. (48)], and total energy E,,
=Epo+ Eyiy of the half-filled Hubbard model after an interac-
tion quench from the noninteracting initial state at tempera-
ture 7=0. The hopping matrix elements correspond to a
semielliptic density of states [Eq. (24)] with quarter band-
width V=1, and time is measured in units of #/V=1. The
numerically exact CTQMC results show a rapid relaxation of
these quantities, which is discussed in detail below. As re-
quired by energy conservation, E,, is constant within the
numerical accuracy. IPT can reproduce these results rather
accurately for small values of U [Fig. 3(a)]. Already at inter-
mediate coupling, however, the results of CTQMC and IPT
strongly deviate from each other [Fig. 3(b)]. In particular, the
total energy E, is generally not conserved within IPT, such
that the use of IPT as an approximation for the intermediate-
and strong-coupling regime becomes highly questionable. In
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contrast to equilibrium DMFT, IPT does not provide a rea-
sonable interpolation between weak- and strong-coupling re-
gimes.

This violation of energy conservation is cured by a simple
procedure. An expansion of 2 up to finite order in terms of
the noninteracting Green’s function is not a conserving ap-
proximation in the sense of Kadanoff and Baym.*®*° How-
ever, the approximation becomes conserving when Gy, in
Eq. (68) is replaced by the full interacting Green’s function,

St == UM U )G(t,t )Gt ,1)G5t,1').  (69)

The resulting self-consistent perturbation theory (SPT) is a
truncation of the skeleton expansion for the self-energy,
which can be derived from an approximation to the Luttinger
Ward-functional and is therefore conserving. SPT is incorpo-
rated into the DMFT iteration by replacing step (ii)—(iv) in
Fig. 2 with a solution of the Dyson equation (15) for G,
where 2, is given by Eq. (68). Note that in this implemen-
tation G, is the SPT solution of the single-site problem for
given A only after the DMFT iteration is converged.

When SPT is used instead of IPT as an approximate im-
purity solver, we find that E, is indeed constant with time
(solid lines in Fig. 3). However, SPT is not reliable at inter-
mediate interaction strength either. For U=5 [Fig. 3(b)], SPT
predicts a monotonous relaxation of £, and Ey,, while the
numerically exact QMC yields oscillations which are an im-
portant feature of the dynamics in the Hubbard model at
strong coupling. For weak interactions, SPT performs
slightly better, but in this parameter regime it is worse that
the IPT solution [Fig. 3(a)]. The fact that IPT approximates
the exact numerical solution better than SPT is already
known from equilibrium DMFT.

VI. RESULTS

In the remainder of this paper, we present additional nu-
merical results for the interaction quench in the Hubbard
model in nonequilibrium DMFT, building on our previous
work (Ref. 20). The system is assumed to be in the nonin-
teracting ground state before time =0, when the interaction
is abruptly switched to a positive value U. We consider only
homogeneous nonmagnetic states at half-filling (n;=n L:%)'
Hopping matrix elements are chosen such that the density of
states is of semielliptic shape Eq. (24), and the quarter band-
width V=1 is set as energy unit.

The time evolution of various thermodynamic quantities
after this interaction quench was already discussed in Ref.
20. After some preliminary remarks on the effective tempera-
ture after a quench (Sec. VI A), we will briefly restate the
basic conclusions of the latter publication and substantiate
them with additional data (Sec. VI B). We then turn to a
characterization of the relaxing state in terms of dynamical
quantities, i.e., the spectral function (Sec. VI C), and the op-
tical conductivity (Sec. VI D).

A. Excitation after an interaction quench

An important information on the state of the system after
the interaction quench is its excitation energy with respect to
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the ground state. Because the system is assumed to be iso-
lated from the environment, the total energy is conserved
after the quench and its value follows from the expectation
values of the Hamiltonian in the initial state immediately
before the quench. The energy corresponds to an effective
temperature T, i.e., the temperature of the unique thermal
equilibrium state which has the same total energy [Eq. (57)],

Tr He /et
_ o Wb
Elot(t) - Etot(() ) - Tr e_H/Teff . (70)

(An analogously defined effective chemical potential is fixed
to w.;=0 by particle-hole symmetry.) For the quench in the
Hubbard model, we compute 7.4 by a numerical solution of
Eq. (70). Thermal equilibrium expectation values of static
quantities are obtained from equilibrium DMFT, using QMC
as impurity solver. For the quenches discussed below, T is
of the same order as the hopping strength, which is far above
the Mott transition end point in thermal equilibrium.

If the system reaches a thermal equilibrium state a suffi-
ciently long time after the quench, the temperature of this
state is given by T, Below, we thus compare expectation
values of observables after the quench with thermal equilib-
rium expectation values at T=T. . All static quantities in
thermal equilibrium are directly computed within equilib-
rium DMFT. The computation of dynamical quantities such
as the spectral function and the optical conductivity, how-
ever, would require an analytical continuation from Matsub-
ara frequencies to real frequencies, which is not accurate
enough at large frequencies and high temperature to allow
for a quantitative comparison. We therefore use nonequilib-
rium DMFT to obtain real-time Green’s functions and the
real-time optical conductivity in thermal equilibrium directly
in the time domain. For this purpose we choose the same
interaction U in the initial state (i.e., on the imaginary-time
branch of the contour C) and for t>0 (i.e., on the real-time
branch of C), and solve the DMFT equations as described in
Secs. II-IV. In contrast to the quench from the noninteracting
state, this requires the solution of the impurity problem on
the L-shaped contour with 8=1/T,, such that one cannot
use the tricks which are discussed in Sec. IV E. The maxi-
mum times that are accessible in this way are comparable to
the times which are accessible in the interaction quench from
the noninteracting initial state.

B. Relaxation after an interaction quench

The time evolution after an interaction quench in the Hub-
bard model depends on the parameter U in a very sensitive
manner. To illustrate the qualitatively different relaxation be-
havior in the weak, strong, and intermediate-coupling regime
we plot the momentum distribution n(e,7) [Eq. (47)] for
three values of U (Fig. 4). In all three cases, the magnitude of
the discontinuity An(f)=lim,_n[n(=75,t)-n(7,1)] at the
Fermi energy decreases with time. Note that An(f) remains
finite for a finite time after the quench; for the present case of
a local self-energy this is due to the fact that An(r) is directly
related to the retarded Green’s function at €=0.2" Interest-
ingly, it can be shown quite generally that a Fermi system
retains an exact discontinuity in the momentum distribution
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FIG. 4. (Color online) Momentum distribution n(e,?) after an
interaction quench in the Hubbard model from the noninteracting
ground state to interaction U=2 (a), U=3.3 (b), and U=5 (c).

at the location of the Fermi surface for finite times after an
interaction quench.>® Because a discontinuity in the momen-
tum distribution of a Fermi liquid in thermal equilibrium can
exist only at zero temperature, while on the other hand, a
quenched system is always excited with respect to the
ground state, the existence of a finite jump An(r) clearly
indicates that the system is not yet fully thermalized. The
size of the discontinuity is thus well suited to characterize
the relaxation after the quench.

In the weak-coupling regime [Fig. 4(a)], n(e,t) rapidly
evolves toward a distribution [#=2 in Fig. 4(a)], which is not
yet thermalized, but changes only slowly in time. This emer-
gence of long-lived nonthermal states is an example of
prethermalization,”? which is observed in a wide range of
classical and quantum systems.>* As shown by Moeckel and
Kehrein,?? the nonthermal state remains stable for all times
within second-order unitary perturbation theory in U/V, i.e.,
higher-order corrections become effective only on the long
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time scale V3/U*. In the limit of infinite dimensions their
weak-coupling result for the transient behavior toward the
prethermalization plateau has the form

Npen(€,1) = n(€) —4U*F(€,1), (71)

o0 . 2
sin“(E — €)t/2
Flen= | apiiE=912

oo B, (72)

J(E)= f de{f deéf de 8(e] + €, — €, —E)

X p(e))p(er)p(e){n(e)n(e)[1 - n(e)][1 - n(e)]
—[1=n(el[1 -nle)In(e)n(e)}. (73)

For a half-filled band and a symmetric density of states,
p(e)=p(—e€), we obtain

F(e,t)=—sg;& f ds(t - s)Re[R(s)%e™€],  (74)
0

where R(s)=[de®(—¢€)p(€)e™c. This yields An(f) and also
d(t) by using the energy conservation after the quench,

Anpen(1) = 1 - 4U? f l ds(t - s)Re[R(s)*], (75)
0

dper(t) = 41—1 - 2Uft ds Im[R(s)*]. (76)
0

Numerical evaluations of these functions are plotted and
compared to our DMFT results in Fig. 5 for the semielliptic
density of states (24) with V=1. Regarding the transient be-
havior and the prethermalization plateau we find very good
agreement for U= 1. Interestingly the prethermalization pla-
teau of An(r) is almost correctly predicted by the weak-
coupling results even for U= 2. For larger times, the system
relaxes further toward the thermal value.

In the strong-coupling regime [Fig. 4(c)], the relaxation is
dominated by damped collapse and revival oscillations of
approximate periodicity 27/ U. The decay of these oscilla-
tions is not fully accessible within CTQMC due to the dy-
namical sign problem. However, our results show that n(e, )
oscillates around a nonthermal distribution [Fig. 6(c)]. This
behavior is similar to what was found for the double occu-
pation d(1),%° i.e., a decay on the time scale 1/V to oscilla-
tions around a nonthermal value which does not change on
much longer time scales.

The interaction quench to U=3.3V is characterized by a
rapid thermalization of the momentum distribution [Figs.
4(b) and 6(b)], without signatures of either collapse and re-
vival oscillations or a prethermalization plateau in n(e,z).
Numerically we cannot detect a finite width of the crossover
regime between the weak- and strong-coupling behavior,
which indicates that there is a single point U=Uy,,,~3.2V
which marks a dynamical transition in the Hubbard model.?"
A further investigation of this phenomenon and its relation to
the Mott transition in equilibrium will require a systematic
analysis of interaction quenches which start from a wide
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FIG. 5. (Color online) Approach of the prethermalized state at
weak-coupling and subsequent relaxation toward the thermal state.
(a) Discontinuity at the Fermi surface. (b) Double occupation. Solid
lines: weak-coupling results [Egs. (75) and (76)].

range of initial states other than the noninteracting ground
state. This is left to a future publication. In the following we
turn to a different question and investigate to what extent the
rapid thermalization close to U=Uyy,, the oscillations at U
> Uygyy, and the prethermalization at U<Uyy, show up in
various dynamical quantities of the Hubbard model.

C. Spectral function

Important information about a correlated system out of
equilibrium cannot only be obtained from thermodynamic
quantities, but also from the dynamical response of the sys-
tem to certain external perturbations, which can be computed
from various real-time correlation functions. In the following
section, we discuss the time evolution of the local Green’s
function G,(t,t")=G(z,1') in the paramagnetic phase of the
Hubbard model after a quench from the noninteracting
ground state to finite interaction U. For this purpose, we
introduce the partial Fourier transform

G (w,1) = J dse"GR=(t +s,1) (77)

of the retarded and lesser Green’s function, and the spectral
function A(w,?)=—(1/m)Im GR(w+i0,7). The spectrum
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FIG. 6. (Color online) Comparison of the momentum distribu-
tion n(e,r) for fixed time 7 after the quench (symbols) to the mo-
mentum distribution in thermal equilibrium at the effective tem-
perature T [cf. Eq. (70)] (solid lines). Interaction parameters are
U=2 (a), U=3.3 (b), and U=5 (c).

turns out to be a useful representation of the nonequilibrium
Green’s function, although it lacks a direct relation to the
“distribution function” G<(w,t) and thus does not have the
same significance as in the equilibrium case. [In equilibrium,
one has G=(w)=2miA(w)f(w).]

Before discussing the results, we have to mention a tech-
nicality, which arises from the restriction of the Monte Carlo
simulations to relatively small times #<<f,,. In practice, the
integration range in Eq. (77) must be cut off at s, =t
—t, leading to artificial oscillations at frequency 1/s,,,.. To
reduce this effect in a controlled way we introduce an addi-
tional Gaussian factor exp(-s’«) in the integral (77). The
resulting expression amounts to a convolution of the true
Fourier transform (z,,,,=2°) with the kernel

1 Smax
k(w; K,8max) = —J ds expliows — s°K). (78)
2

“Smax

A suitable choice of the parameter « can in some cases sup-
press the oscillations without washing out important spectral
features, and a comparison with a known equilibrium spec-
trum is always possible without loss of information after
convolution of the latter with the same kernel.

In Fig. 7, we plot GR(t+s,t) and A(w,t) for a quench to
interaction U=3. The spectrum A(w,?) differs from the ini-
tial semielliptic density of states for all times =0, because
the choice of the Fourier transform in Eq. (77) implies that
the initial equilibrium Green’s function does not enter the
definition of A(w,?) for t>>0. Note that this would be differ-
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FIG. 7. (Color online) (a) Local Green’s function GR(¢+s,7) for
an interaction quench in the Hubbard model to U=3.3 (slightly
above Uyyy). The function is purely imaginary due to particle-hole
symmetry. The solid black line is the Green’s function in the ther-
mal equilibrium state (U=3.3, T.;=1/B=0.84). The dotted line
(U=0) is the retarded Green’s function in the noninteracting initial
state. (b) Spectral function A(w,t)=—(1/7)Im G®(w,?) for the same
parameters as in the upper panel. The dotted line and the line la-
beled T.;=0.84 are the semielliptic density of states (24) of the
initial state and the thermal equilibrium spectrum at temperature
T.=0.84, respectively. Spectra are obtained from Fourier transfor-
mation of real-time quantities, and the Fourier integral (78) is cut
off at s;,,,=3.5 with an additional Gaussian factor (see text). The
corresponding kernel [Eq. (78), k=0.1] is shown as thin solid line.

ent for the common definition of the Fourier transform at
constant average time (r+¢')/2.5" Within numerical accuracy,
both GR(¢+s,17) and A(w,f) become time-(f)-independent for
t>1/V. This time scale is comparable to the relaxation time
of the double occupation and the momentum distribution at
U=~3.3 [Fig. 4(b)].

An important interpretation of the finite relaxation time in
A(w,1) can be inferred directly from the definition of the
Green’s function. According to Eq. (6), GR(t+s,1) is related
to the survival amplitude of local single-particle excitations
which are created at time ¢ and destroyed at later time #+s.
The decay of such an excitation depends on both the Hamil-
tonian, which defines the possible scattering mechanisms,
and the quantum state of those particles, which act as scat-
terers. While the Hamiltonian changes abruptly at =0, the
latter evolves with time, leading to the finite relaxation time
of A(w,t). In contrast, A(w,?) would be constant immedi-
ately after a quench in a noninteracting system, because the
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anticommutator in Eq. (6) is a ¢ number for a quadratic
Hamiltonian. We can thus conclude that the finite relaxation
time observed in Fig. 7 is a true many-body effect, in anal-
ogy to the well-known fact that equilibrium spectra depend
on temperature only for interacting systems.

To characterize the final state after the relaxation, its spec-
trum should be compared to the equilibrium spectrum of a
correlated metal at rather high temperature. In fact, A(w,?) is
strongly modified with respect to the semielliptic density of
states, with precursors of the Hubbard bands around w
= = 2. The fact that the spectrum is not pinned at w=0 can be
attributed to the strong excitation of the system with respect
to the ground state. A quantitative analysis of the spectrum
requires the knowledge of the equilibrium spectrum at the
effective temperature T [cf. Eq. (70), T.4=0.84 for U
=3.3]. Equilibrium spectra are usually computed from
imaginary-time correlation functions using (maximum en-
tropy) analytical continuation, which is not accurate enough
at high frequencies to allow for a comparison of two rather
similar spectra. Using nonequilibrium DMFT, however, we
can avoid this complication and compute real-time equilib-
rium Green’s function GeRq(t, t")=gR®(z—1") without analytical
continuation (cf. Sec. VI A). Within numerical accuracy, the
resulting equilibrium function indeed agrees with the re-
tarded Green’s function GR(z,1") after relaxation [Fig. 7(a)],
which proves that the rapid thermalization at U~=~3.3 can
also be seen in the spectral function.

The analysis of the spectrum can now be repeated for
quenches to the weak- and strong-coupling regime. For U
<V, however, the spectrum remains close to the semielliptic
density of states for all times, such that rather high numerical
accuracy would be needed for a systematic investigation of
the small differences. In the strong-coupling regime, on the
other hand, the restriction to small times #<<t,,,, turns out to
be more limiting for an investigation of the retarded Green’s
function than for static quantities, simply because GR(z
+s,t) is known only for r<t,,,,—s and not for r<t,,,,. Nev-
ertheless, one can see that the relaxation of the Green’s func-
tion after a quench to U=5 [Fig. 8(a)] roughly follows the
oscillatory behavior of the momentum distribution [Fig.
4(c)]: Close coincidence with the thermal function is reached
around the time when the jump of the momentum occupation
has its first minimum (7=0.6), after which the deviations to
the thermal Green’s function slightly increase again. Similar
behavior was found for the double occupation, which comes
closest to the thermal value at its first minimum around ¢
=0.6.20 In spite of the large effective temperature (T.;=2V),
the spectral function has a clear minimum at w=0, and well-
pronounced Hubbard bands at w= * U/2 [Fig. 8(b)]. How-
ever, the absolute changes with time are small in the strong-
coupling regime. This behavior is expected because it can be
shown that the spectrum is independent of time ¢ after a
quench to the atomic limit.

D. Optical conductivity

The two-time optical conductivity o(¢,7’) describes the
linear response of the electrical current in a nonequilibrium
state to a time-dependent electrical field SE(r) (which we call
the probe field),
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FIG. 8. (Color online) Same as Fig. 7, but for the interaction
quench to U=5. Spectra (b) are obtained from Fourier transforma-
tion of real-time quantities, and the Fourier integral (77) is cut off at
Smax=2.5 with an additional Gaussian factor (see text). The corre-
sponding kernel [Eq. (78), k=0.4] is shown as thin solid line.

&j()) = t dio(1,1)SE (7). (79)

—o0

(Tensor notation of o(z,t") is suppressed.) In solids, optical
spectroscopy on nonequilibrium states is usually performed
within the pump-probe setup, where the system is driven out
of equilibrium by a strong laser pulse (the pump). In the
following we calculate o(z,t") after the interaction quench to
see how the electrical response becomes stationary while the
system relaxes toward its thermal equilibrium state.

Microscopically, the optical conductivity is related to the
current-current correlation function, which can be computed
from two diagrammatic contributions: (i) The bubble dia-
gram of two Green’s functions Gy and the current vertex
vr=0de/ dk, and (ii) diagrams containing the vertex correc-
tions of the current vertex.’> Within equilibrium DMFT, ver-
tex corrections are local and thus do not contribute to the
conductivity because vy is antisymmetric under inversion of
k, and Gy is symmetric.>® In a nonequilibrium situation these
conditions can be violated, e.g., due to an electrical pump
field, in which case the conductivity depends on the relative
polarization of pump and probe, so that vertex corrections do
contribute.!’>* However, for the interaction quench the in-
version symmetry of the state is preserved, and of(¢,¢’') can
be calculated from the bubble diagram alone.>*
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The microscopic derivation of o(z,¢") within nonequilib-
rium DMFT was discussed in detail in Ref. 54. In the fol-
lowing, we thus only state the results for o(z,7’) after an
interaction quench in the Hubbard model on the hypercubic
lattice in d=9, with hopping amplitudes that yield a semiel-
liptic density of states*' (Eq. (24) with V=1, as above). The
band dispersion ¢ enters the expression via the current ver-
tex v,=de(k)/ dk; this is where the hopping amplitudes enter
in addition to the density of states. Conductivity is measured
in units of oy=2pa’e*V/h%, where a is the lattice constant,
and p is the number of lattice sites per volume.

In Fig. 9, o(r+s,t) is plotted as a function of time-
difference s. This parametrization is most convenient for
analyzing how the electrical response of the system becomes
stationary (i.e., independent of ¢) during the relaxation. The
results are compared to the optical conductivity oy(s) in
thermal equilibrium, which is obtained directly from non-
equilibrium DMFT without analytical continuation (cf. Sec.
VI A). The more familiar frequency-dependent optical con-
ductivity

o

Teg(@) = Ref dseiwsaeq(s) (80)
0

is plotted in Fig. 10.

After quenches to weak-coupling [U=2, Fig. 9(a)],
o(t,t") undergoes a rapid initial relaxation, but it does not
approach the thermal value within the accessible times. This
behavior reflects the prethermalization that is observed in the
momentum occupation. The conductivity at the correspond-
ing effective temperature (7.;=0.37) consists of a Drude
peak at w=0 (Fig. 10), which is only slightly broadened due
to temperature and interaction. Because a narrow Drude peak
implies a slow decay of g4(s) with time difference, we can-
not resolve the true width of the peak from data which are
restricted to small times.

For a quench to U=3.3 [Fig. 9(b)], we observe a rapid
relaxation of the optical response. The optical conductivity
depends only on time difference for t=1/V and coincides
with 07 (s) for the effective temperature T,;=0.67. The latter
falls off rather quickly with time differences s, indicating that
the Drude peak is strongly broadened because of the large
temperature and the relatively strong interaction (Fig. 10).

Finally, for the quench to U=5 [Fig. 9(c)] relaxation to
the thermal state becomes again slower than at U=3.3. We
observe the characteristic collapse and revival oscillations
when o(z+s,1) is plotted at fixed time difference s [inset in
Fig. 9(c)]. Due to the large effective temperature (T.;=2) the
conductivity of the corresponding equilibrium state is rather
a bad metal than an insulator, but nevertheless the Hubbard
band at w=U is clearly separated from the broad feature at
w=0 (Fig. 10).

E. Discussion

Given the two relaxation regimes in the Hubbard model, it
would be interesting to see whether also the long-time relax-
ation behavior is different for U<Uyy, and U> Uyy,. Unfor-
tunately, investigation of the long-time behavior is impeded
within the current approach by the dynamical sign problem.
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FIG. 9. (Color online) Optical conductivity o(z+s,1) [Eq. (79)]
after quenches to U=2 (a), U=3.3 (b), and U=5 (c). The inset
shows o(z,1), and black solid lines correspond to the optical con-
ductivity in thermal equilibrium at 7.;=0.37 (a), T.;y=0.84 (b), and
Teri=2 (c).

We thus cannot determine the thermalization times for U
<Uygyy and U> Uygy,, or demonstrate that the system is ther-
malizing at all. In principle, it could also be possible that
several different time scales govern the long-time relaxation
of the momentum distribution, as found in the model which
is studied in Ref. 23. However, longer time scales may be-
come accessible within DMFT by using different impurity
solvers, such as time-dependent Density-Matrix Renormal-
ization Group (DMRG).

Another interesting question is how much our results de-
pend on the restriction to homogeneous states, i.e., whether
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o(m) [og/V]

FIG. 10. (Color online) Frequency-dependent optical conductiv-
ity in thermal equilibrium at the temperature T.;=0.37 (U=2),
T.;=0.84 (U=3.3), and T.=2 (U=5). The latter two curves are
scaled by a factor 4 and 8, respectively. All curves were obtained by
Fourier transformation (80) of real-time data. In the case of U=2,
the Fourier integral is cut off at s,,,,=5 with an additional Gaussian
factor, as explained for the spectral function. The corresponding
kernel [Eq. (78), k=0.2] is shown as dotted line.

tiny inhomogeneities in the initial state are enhanced during
the time evolution and thus can have a profound influence on
the relaxation behavior. Because the system does not show
any tendency toward breaking of the translational invariance
after thermalization, we do not expect such effects to be
important. (Note that the effective temperature after the
quench is higher than the Néel temperature for the corre-
sponding model parameters.)’” To corroborate this assump-
tion one could employ a DMFT approach in which local
quantities are site-dependent. However, because then neither
translational invariance in space nor translational invariance
in time may be assumed for the solution of the Dyson equa-
tion, such an approach would be numerically far more de-
manding than either nonequilbrium DMFT for homogeneous
states, or inhomogeneous DMFT for equilibrium situations.

VII. CONCLUSION

In this paper we described in detail how weak-coupling
continuous-time quantum Monte Carlo (QMC) can be used
as an impurity solver within nonequilibrium DMFT. The for-
malism, which was used in Ref. 20 to investigate the inter-
action quench in the Hubbard model, was extended to the
case when the initial state is a finite temperature equilibrium
state at nonzero interaction U. Because nonequilibrium ex-
periments in interacting systems often start from correlated
initial states rather than the noninteracting ground state, this
extension is a prerequisite to apply DMFT within a variety of
experimental situations in the field of cold atomic gases and
time-resolved spectroscopy on correlated solids.

We used the numerically exact QMC solution of the
DMFT equations to benchmark the generalization of the it-
erated perturbation theory (IPT) to the Keldysh contour. We
find that IPT is remarkably good at weak interactions. How-
ever, in contrast to the equilibrium case it yields unphysical
results in the intermediate-coupling regime and thus cannot
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provide a reasonable interpolation between the weak- and
strong-coupling regime. The reason is that IPT is not a con-
serving approximation, which can lead to an explicit viola-
tion of the energy conservation as a function of time in some
parameter regimes.

Furthermore, we used the nonequilibrium formalism to
solve a system in thermal equilibrium. In this way, one can
avoid analytical continuation and obtain dynamical quanti-
ties in real time instead of imaginary time. We used this
approach to compute the spectral function and the optical
conductivity of the single-band Hubbard model. Due to the
dynamical sign problem of QMC one is restricted to rela-
tively short times, such that frequency-dependent quantities,
which are obtained from real-time functions by Fourier
transformation, are considerably broadened. The real-time
formalism can thus not directly replace the conventional ana-
Iytical continuation from Matsubara to real frequencies.
However, since the kernel which mediates the broadening of
the spectra is explicitly known, it may be useful either to
judge the accuracy of analytically continued spectra, or im-
prove the analytical continuation in some frequency range.

In the last part of this paper, we presented further results
for the interaction quench in the Hubbard model. In particu-
lar, we investigated the time evolution of the real-time
Green’s functions. It was shown that the distinct relaxation
behavior at weak, strong and intermediate coupling, which
was characterized by the time evolution of the double occu-
pation and the momentum distribution in Ref. 20, is also
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reflected in the nonequilibrium spectral function: in the
weak- and strong-coupling regime, a thermal state cannot be
reached within the accessible times, and within the numerical
error the onset of the weak- and strong-coupling regimes
falls onto a single point Uy, at which the spectrum (as well
all quantities that can be obtained from it) rapidly relaxes to
the thermal equilibrium value.

It would be interesting to see whether the sharp distinc-
tion between two different relaxation regimes is particular to
the noninteracting initial state, or whether it is a more ge-
neric phenomenon. This is left for future work. However, the
fact that the very sensitive U-dependence of the relaxation
behavior is manifest also in the spectral function suggests
that the phenomenon of fast electronic thermalization near
Ugyn may also be observed with pump-probe spectroscopy on
correlated systems. Further details of this transitionlike phe-
nomenon will hopefully soon be clarified by means of the
DMFT+QMC formalism presented in this work.
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