Electronic properties of organic semiconductor blends: Ambipolar mixtures of phthalocyanine and fullerene

Andreas Opitz, a Markus Bronner, and Wolfgang Brütting
Institute of Physics, University of Augsburg, 86135 Augsburg, Germany

Marcel Himmerlich, Juergen A. Schaefer, and Stefan Krischok
Institute of Physics and Institute of Micro- and Nanotechnologies, Technical University Ilmenau, 98684 Ilmenau, Germany

(Received 7 March 2007; accepted 1 May 2007; published online 24 May 2007)

Mixtures of electron and hole transporting organic materials are widely used for ambipolar organic field-effect transistors and photovoltaic cells. One particular material system used in both device types is a blend of n-conducting fullerene and p-conducting copper-phthalocyanine. The electronic properties of these blends were analyzed by x-ray and ultraviolet photoelectron spectroscopy in dependence on the mixing ratio. The energies of the highest occupied molecular orbitals, the core levels, and the vacuum level are found to vary linearly with the mixing ratio. This energy shift is related to a common work function in the molecular blends. © 2007 American Institute of Physics.

DOI: 10.1063/1.2742640

Multilayered organic systems are used in light emitting diodes and in photovoltaic cells for spatially separated electron and hole transports. However, an increase of efficiency in organic photovoltaic cells (OPVCs) is achieved by using mixed layers of the electron and hole conducting materials. This concept of mixed layers is also used in organic field-effect transistors (OFETs) and leads to devices with ambipolar transport characteristics. For the description of device properties, knowledge about the electronic structure of the materials is important, but up to date only neat materials were analyzed in detail. To understand the ambipolar transport characteristics, these studies need to be extended to mixed systems.

The scope of this study is the analysis of the electronic structure of copper-phthalocyanine (CuPc) and buckminsterfullerene (C₆₀) blends which have recently been employed as donor-acceptor systems for both OFETs and OPVCs. Both materials are coevaporated using two effusion cells with different evaporation rates to achieve the required mixing ratios. All organic films have a nominal film thickness of about 100 nm.

The work function of gold covered by this hydrocarbon layer is determined by photoelectron spectroscopy to be 4.2 eV, whereas the underlying gold substrate exhibits a work function of 5.4 eV after removal of the adsorbed species by Ar⁺ ion bombardment.

Figure 1 shows the important results of the XPS and UPS measurements. The CuPc 1s spectrum contains the C=C bond (E_B=284.2 eV, indicated by small ticks) and the chemically shifted C-N (E_B=285.6 eV) bond, as well as their π-π* satellites. For C₆₀ only one pronounced feature is visible at E_B=284.7 eV. Both spectra are in agreement with published results on pristine materials. The composition of the blends and the CuPc and C₆₀ related 1s peak positions are determined by fitting the spectra of the mixed films with Gauss-Lorentz functions using the shape of the neat C₆₀ and CuPc core levels. As shown in Fig. 1(a), the energetic positions of the 1s features are slightly shifting upon addition of C₆₀. The N 1s spectra (not shown) were also analyzed for the peak position and found to behave in a similar manner.

The electronic structure of the occupied states near the Fermi level (measured using He I radiation) is shown in Fig. 1(b). The maxima of the highest occupied molecular orbital (HOMO) levels of the neat materials are indicated by small ticks. Whereas the CuPc HOMO level is clearly separated for all mixed films, the HOMO level of C₆₀ is only visible in films with concentrations of 77% and 100%. For smaller amounts of C₆₀ in the films the HOMO level is present only as a shoulder in the occupied molecular orbitals of the CuPc. Again, the spectra can be described as a linear superposition of neat material spectra if a shift of the energetic position is included.

The work function of the blend films was determined from the secondary electron cutoff in the He I spectra with applied bias [see Fig. 1(c)]. As for the core and the HOMO levels an energy shift of the secondary electron cutoff with applied bias is shown. For the HOMO level edge near the Fermi level, as well as of the C 1s and...
N 1s core levels ($E_{1s}^{C_60}$ and E_{1s}^{CuPc}) depending on the mixing ratio. The ionization energies of the neat films are 6.2 eV for C$_{60}$ and 5.0 eV for CuPc in agreement with the literature and the difference of the work function amounts to about 0.5 eV.

It is remarkable that the secondary electron cutoffs used to determine the work function of all mixtures were sharp and did not show a double step that would reflect two different local surface potentials, although the films have a nano- crystalline morphology as determined by atomic force microscopy. Thus, the blends show a common vacuum level which shifts linearly with the concentration between the work functions of the neat materials given by $\Phi_{CuPc}=3.8$ eV and $\Phi_{C_60}=4.3$ eV. The linear change of the work function in our studies suggests that CuPc/C$_{60}$ mixtures are electronically noninteracting unless they are optically excited. In contrast, a nonlinear change of the work function was found for doping organic semiconductors with strong acceptors or donors where a charge transfer occurs already in the dark.

Taken all results together, there is no evidence for a ground state charge transfer in blends of CuPc and C$_{60}$. The core level spectra can be described solely with the scaled features of the neat materials. Also the occupied molecular orbitals do not show additional structures unknown from the neat materials. Especially the HOMO level of CuPc is always well separated and does not tend to mix with other orbitals. Although the HOMO level of C$_{60}$ lies in the range of other occupied levels of the CuPc, the spectra of the mixed films can be described as a linear superposition of the spectra of the neat materials. The constant ··· is the vacuum energy of the conductive hydrocarbon layer on gold. The (- - -) lines are the calculated LUMO levels.

FIG. 1. (Color online) XPS and UPS measurements of neat and different mixed films of C$_{60}$ and CuPc: (a) C 1s spectra (excitation: monochromated Al Kα), (b) HOMO levels (excitation: He II), and (c) secondary electron cutoff (excitation: He I and $V_{bias}=-2$ V). The numbers on the right side of the diagrams give the C$_{60}$ concentration as determined from the measurements shown in part (a).

FIG. 2. (Color online) Positions of the energy levels (vacuum level, high energy edge of the HOMO level, and C 1s and N 1s core levels) depending on the C$_{60}$/CuPc mixing ratio. The ■ and the ● symbols represent the measured values for C$_{60}$ and CuPc related levels, respectively, and the ▲ symbols the measured work functions. The (——) lines are linear fits of the corresponding measured values. The constant ··· is the vacuum energy of the conductive hydrocarbon layer on gold. The (- - -) lines are the calculated LUMO levels.
affinity of the blend system. From these levels one expects a reduction of the HOMO-LUMO gap $\Delta_{\text{HL}} = E_{\text{HOMO}} - E_{\text{LUMO}}$ by about 0.5 eV in going from a heterolayer structure ($\Delta_{\text{HL}}^{\text{b层出}}$) to a bulk-heterojunction device ($\Delta_{\text{HL}}^{\text{blend}}$). Thereby, as indicated in Fig. 2, the HOMO-LUMO gap of a bilayer system (~ 1.6 eV) is given by the respective levels of the neat materials in agreement with Ref. 9, whereas the value for the mixtures is found to be smaller (~ 1.1 eV) and independent of the composition of the blends. Qualitatively, a reduction of the open circuit voltage in bulk-heterojunction devices has been observed in the CuPc/C$_{60}$ system at high illumination intensities, as well as for other material combinations using small molecules or polymers.

Additionally, as the barrier for charge carrier injection is determined by the difference of the Fermi level of the metallic electrode and the LUMO or HOMO level of the electron and hole transporting organic materials, respectively, these results are also important for other organic devices, such as OFETs. Neglecting interface effects (interface dipole and band bending) the injection barrier for both electrons and holes should be reduced in ambipolar blend systems; however, as the diffusion limited injection current is proportional to the charge carrier mobility, the barrier lowering might be overcompensated by a decreased mobility in blend systems.

Further investigations will be necessary to quantify both concurrent effects.

In conclusion, the HOMO levels, the core levels and the vacuum level of the CuPc/C$_{60}$ blends shift almost linearly with the mixing ratio. Thereby a common vacuum level exists in these blends, which varies between the vacuum levels of the neat materials. The HOMO and the core levels show the molecular features and follow the change of the vacuum level. The observed energy level shifts are expected to have implications both for OFETs and OPVCs.

This work was supported by the Deutsche Forschungsgemeinschaft through Sonderforschungsbereich 484 and Schwerpunktprogramm 1121.