From Quantum Mechanics to Materials Design
The Basics of Density Functional Theory

Volker Eyert

Center for Electronic Correlations and Magnetism
Institute of Physics, University of Augsburg

December 03, 2010
Outline

1. Formalism
 - Definitions and Theorems
 - Approximations

2. Applications
Outline

1. Formalism
 - Definitions and Theorems
 - Approximations

2. Applications
Calculated Electronic Properties

Moruzzi, Janak, Williams (IBM, 1978)

Cohesive Energies \(\Rightarrow \) Stability
Wigner-Seitz-Rad. \(\Rightarrow \) Volume
Compressibility \(\Rightarrow \) Hardness
Energy band structures from screened HF exchange

Si, AlP, AlAs, GaP, and GaAs

Experimental and theoretical bandgap properties

Shimazaki, Asai, JCP 132, 224105 (2010)
Outline

1. Formalism
 - Definitions and Theorems
 - Approximations

2. Applications
Hamiltonian (within Born-Oppenheimer approximation)

\[H = H_{el,\text{kin}} + H_{el-el} + H_{\text{ext}} \]

\[= \sum_i \left[-\frac{\hbar^2}{2m} \nabla_i^2 \right] + \frac{1}{2} \frac{e^2}{4\pi\varepsilon_0} \sum_{i,j} \frac{1}{|r_i - r_j|} + \sum_i v_{ext}(r_i) \]

where

\[\sum_i v_{ext}(r_i) = \frac{1}{2} \frac{e^2}{4\pi\varepsilon_0} \sum_{\mu\nu} \frac{Z_\mu Z_\nu}{|R_\mu - R_\nu|} - \frac{e^2}{4\pi\varepsilon_0} \sum_\mu \sum_i \frac{Z_\mu}{|R_\mu - r_i|} \]

\(\mu \): ions with charge \(Z_\mu \), \(i \): electrons
Electron Density Operator

\[\hat{\rho}(\mathbf{r}) = \sum_{i=1}^{N} \delta(\mathbf{r} - \mathbf{r}_i) = \sum_{\alpha\beta} \chi_\alpha^*(\mathbf{r}) \chi_\beta(\mathbf{r}) a_\alpha^* a_\beta \]

\(\chi_\alpha\): single particle state
Electron Density Operator

\[\hat{\rho}(\mathbf{r}) = \sum_{i=1}^{N} \delta(\mathbf{r} - \mathbf{r}_i) = \sum_{\alpha \beta} \chi_\alpha^*(\mathbf{r}) \chi_\beta(\mathbf{r}) a_\alpha^+ a_\beta \]

\[\chi_\alpha: \text{ single particle state} \]

Electron Density

\[\rho(\mathbf{r}) = \langle \Psi | \hat{\rho}(\mathbf{r}) | \Psi \rangle = \sum_{\alpha} |\chi_\alpha(\mathbf{r})|^2 n_\alpha \]

\[|\Psi\rangle: \text{ many-body wave function, } n_\alpha: \text{ occupation number} \]

Normalization:

\[N = \int d^3\mathbf{r} \rho(\mathbf{r}) \]
Functionals

Universal Functional (independent of ionic positions!)

\[F = \langle \psi | H_{el, \text{kin}} + H_{el - el} | \psi \rangle \]

Functional due to External Potential:

\[
\langle \psi | H_{\text{ext}} | \psi \rangle = \langle \psi | \sum_i v_{\text{ext}}(r) \delta(r - r_i) | \psi \rangle = \int d^3r \, v_{\text{ext}}(r) \rho(r)
\]
Authors

Pierre C. Hohenberg

Walter Kohn

Lu Jeu Sham

From Quantum Mechanics to Materials Design
Hohenberg and Kohn, 1964: Theorems

1st Theorem
The external potential $v_{\text{ext}}(r)$ is determined, apart from a trivial constant, by the electronic ground state density $\rho(r)$.

2nd Theorem
The total energy functional $E[\rho]$ has a minimum equal to the ground state energy at the ground state density.
Hohenberg and Kohn, 1964: Theorems

1st Theorem
The external potential \(v_{\text{ext}}(r) \) is determined, apart from a trivial constant, by the electronic ground state density \(\rho(r) \).

2nd Theorem
The total energy functional \(E[\rho] \) has a minimum equal to the ground state energy at the ground state density.

Nota bene
Both theorems are formulated for the ground state!
- Zero temperature!
- No excitations!
Hohenberg and Kohn, 1964: Theorems

Maps

Ground state $|\psi_0\rangle$ (from minimizing $\langle \psi_0 | H | \psi_0 \rangle$):

$$v_{\text{ext}}(r) \xrightarrow{(1)} |\psi_0\rangle \xrightarrow{(2)} \rho_0(r)$$
Hohenberg and Kohn, 1964: Theorems

Maps

Ground state $|\psi_0\rangle$ (from minimizing $\langle \psi_0 | H | \psi_0 \rangle$):

$$v_{\text{ext}}(r) \stackrel{(1)}{\longrightarrow} |\psi_0\rangle \stackrel{(2)}{\longrightarrow} \rho_0(r)$$

1st Theorem

$$v_{\text{ext}}(r) \stackrel{(1)}{\longleftarrow} |\psi_0\rangle \stackrel{(2)}{\longleftarrow} \rho_0(r)$$
Levy, Lieb, 1979-1983: Constrained Search

Percus-Levy partition
Formalism

Applications

Definitions and Theorems

Approximations

Levy, Lieb, 1979-1983: Constrained Search

Variational principle

\[
E_0 = \inf \langle \psi | H | \psi \rangle \bigg|_{\psi} \\
= \inf \langle \psi | H_{el,kin} + H_{el-el} + H_{ext} | \psi \rangle \bigg|_{\psi} \\
= \inf_{\rho(r)} \left[\inf_{\psi \in S(\rho)} \langle \psi | H_{el,kin} + H_{el-el} | \psi \rangle + \int d^3r \ v_{ext}(r) \rho(r) \right] \\
= \inf_{\rho(r)} \left[F_{LL}[\rho] + \int d^3r \ v_{ext}(r) \rho(r) \right] = \inf_{\rho(r)} E[\rho]
\]

\(S(\rho) \): set of all wave functions leading to density \(\rho \)

\(F_{LL}[\rho] \): Levy-Lieb functional, universal (independent of \(H_{ext} \))
Levy-Lieb functional

\[F_{LL}[\rho] = \inf_{|\psi\rangle \in S(\rho)} \langle \psi | H_{el,\text{kin}} + H_{el-el} | \psi \rangle \]

\[= T[\rho] + W_{xc}[\rho] + \frac{1}{2} \frac{e^2}{4\pi\epsilon_0} \int d^3r \int d^3r' \frac{\rho(r)\rho(r')}{|r - r'|} \]

\[= G[\rho] + \frac{1}{2} \frac{e^2}{4\pi\epsilon_0} \int d^3r \int d^3r' \frac{\rho(r)\rho(r')}{|r - r'|} \]

Functionals

- Kinetic energy funct.: \(T[\rho] \) not known!
- Exchange-correlation energy funct.: \(W_{xc}[\rho] \) not known!
- Hartree energy funct.: \(\frac{1}{2} \frac{e^2}{4\pi\epsilon_0} \int d^3r \int d^3r' \frac{\rho(r)\rho(r')}{|r - r'|} \) known!
Thomas, Fermi, 1927: Early Theory

Approximations

- Ignore exchange-correlation energy functional:

 \[W_{xc}[\rho] = 0 \]

- Approximate kinetic energy functional:

 \[T[\rho] = C_F \int d^3r \rho(r)^{\frac{5}{3}}, \quad C_F = \frac{3}{5} \frac{\hbar^2}{2m} \left(3\pi^2\right)^{\frac{2}{3}} \]

Failures

1. Atomic shell structure missing
 \[\rightarrow \text{periodic table can not be described} \]
2. No-binding theorem (Teller, 1962)
Kohn and Sham, 1965: Single-Particle Equations

Ansatz

1. use different splitting of the functional $G[\rho]$

 $$T[\rho] + W_{xc}[\rho] = G[\rho] = T_0[\rho] + E_{xc}[\rho]$$

2. reintroduce single-particle wave functions

Imagine: non-interacting electrons with same density

- **Density:** $\rho(r) = \sum_{\alpha}^{occ} |\chi_{\alpha}(r)|^2$ known!
- **Kinetic energy funct.:**
 $$T_0[\rho] = \sum_{\alpha}^{occ} \int d^3r \chi^*_{\alpha}(r) \left[-\frac{\hbar^2}{2m} \nabla^2 \right] \chi_{\alpha}(r)$$ known!
- **Exchange-correlation energy funct.:** $E_{xc}[\rho]$ not known!
Euler-Lagrange Equations (Kohn-Sham Equations)

\[
\frac{\delta E[\rho]}{\delta \chi^*_\alpha(r)} - \varepsilon_\alpha \chi_\alpha(r) = \left[-\frac{\hbar^2}{2m} \nabla^2 + v_{\text{eff}}(r) - \varepsilon_\alpha \right] \chi_\alpha(r) = 0
\]

- Effective potential: \(v_{\text{eff}}(r) := v_{\text{ext}}(r) + v_H(r) + v_{\text{xc}}(r) \)
- Exchange-correlation potential: not known!

\[
v_{\text{xc}}(r) := \delta E_{\text{xc}}[\rho] \frac{\delta}{\delta \rho}
\]

- „Single-particle energies“:
 \(\varepsilon_\alpha \) (Lagrange-parameters, orthonormalization)
Kohn and Sham, 1965: Local Density Approximation

Be Specific!

- Approximate exchange-correlation energy functional

\[E_{xc}[\rho] = \int \rho(r) \varepsilon_{xc}(\rho(r)) d^3r \]

- Exchange-correlation energy density \(\varepsilon_{xc}(\rho(r)) \)
 - depends on **local** density only!
 - is calculated from **homogeneous, interacting** electron gas

- Exchange-correlation potential

\[v_{xc}(\rho(r)) = \left[\frac{\partial}{\partial \rho} \{ \rho \varepsilon_{xc}(\rho) \} \right]_{\rho=\rho(r)} \]
Kohn and Sham, 1965: Local Density Approximation

Homogeneous, Interacting Electron Gas

- **Split**

 \[\varepsilon_{xc}(\rho) = \varepsilon_x(\rho) + \varepsilon_c(\rho) \]

- **Exchange energy density** \(\varepsilon_x(\rho) \)
 (exact for homogeneous electron gas)

 \[\varepsilon_x(\rho) = \frac{-3}{4\pi} \frac{e^2}{4\pi\varepsilon_0} \left(3\pi^2\rho\right)^{\frac{1}{3}} \]

 \[\nu_x(\rho) = \frac{-1}{\pi} \frac{e^2}{4\pi\varepsilon_0} \left(3\pi^2\rho\right)^{\frac{1}{3}} \]

- **Correlation energy density** \(\varepsilon_c(\rho) \)

 Calculate and parametrize
 - RPA (Hedin, Lundqvist; von Barth, Hedin)
 - QMC (Ceperley, Alder; Vosko, Wilk, Nusair; Perdew, Wang)
Kohn and Sham, 1965: Local Density Approximation

Limitations and Beyond

- LDA exact for homogeneous electron gas (within QMC)
- Spatial variation of \(\rho \) ignored
 - \(\nabla \rho(\mathbf{r}), \ldots \)
 - Generalized Gradient Approximation (GGA)
- Cancellation of self-interaction in \(v_{\text{Hartree}}(\rho(\mathbf{r})) \) and \(v_x(\rho(\mathbf{r})) \)
 - violated for \(\rho = \rho(\mathbf{r}) \)
 - Self-Interaction Correction (SIC)
 - Exact Exchange (EXX),
 Optimized Effective Potential (OEP)
 - Screened Exchange (SX)
Outline

1. Formalism
 - Definitions and Theorems
 - Approximations

2. Applications

From Quantum Mechanics to Materials Design
Iron Pyrite: FeS$_2$

Pyrite

- $Pa\bar{3}$ (T^6_h)
- $a = 5.4160$ Å
- “NaCl structure”
 - sublattices occupied by
 - iron atoms
 - sulfur pairs
 - sulfur pairs $\parallel \langle 111 \rangle$ axes
- $x_S = 0.38484$
- rotated FeS$_6$ octahedra
FeS$_2$: Equilibrium Volume and Bulk Modulus

$V_0 = 1056.15 \ a_B^3$
$E_0 = -16532.904060 \ \text{Ryd}$
$B_0 = 170.94 \ \text{GPa}$
FeS$_2$: From Atoms to the Solid
FeS$_2$: Structure Optimization

The graph shows the energy (E) in Rydberg as a function of x_S. The energy values range from -16532.910 to -16532.850 Rydberg, with corresponding values of x_S from 0.374 to 0.394.
Phase Stability in Silicon

diamond structure most stable
pressure induced phase transition to β-tin structure
LTO(Γ)-Phonon in Silicon

- phonon frequency: $f_{calc} = 15.34 \text{ THz}$ ($f_{exp} = 15.53 \text{ THz}$)
Formalism
Applications

Dielectric Function of Al₂O₃
Imaginary Part

FLAPW, Hosseini et al., 2005
FPLMTO, Ahuja et al., 2004

FPASW
Dielectric Function of Al₂O₃

Real Part

FLAPW, Hosseini et al., 2005
FPLMTO, Ahuja et al., 2004

From Quantum Mechanics to Materials Design

Volker@Eyert.de
Hydrogen site energetics in LaNi$_5$H$_n$ and LaCo$_5$H$_n$

Enthalpy of hydride formation in LaNi$_5$H$_n$

\[\Delta H_{min} = -40 \text{kJ/molH}_2 \]

for H at $2b6c_16c_2$

agrees with

- neutron data
- calorimetry:
 \[\Delta H_{min} = -(32/37) \text{kJ/molH}_2 \]

Herbst, Hector, APL 85, 3465 (2004)
Hydrogen site energetics in LaNi_5H_n and LaCo_5H_n

Enthalpy of hydride formation in LaCo_5H_n

$$\Delta H_{\text{min}} = -45.6\text{kJ/molH}_2$$

for H at $4e4h$

agrees with

- neutron data
- calorimetry:
 $$\Delta H_{\text{min}} = -45.2\text{kJ/molH}_2$$

Herbst, Hector,
APL 85, 3465 (2004)
Problems of the Past

Si bandgap
- exp: 1.11 eV
- GGA: 0.57 eV

Ge bandgap
- exp: 0.67 eV
- GGA: 0.09 eV
Critical review of the Local Density Approximation

Limitations and Beyond

- **Self-interaction cancellation** in $\nu_{\text{Hartree}} + \nu_x$ violated
- **Repair** using exact Hartree-Fock exchange functional → class of hybrid functionals
 - **PBE0**
 \[
 E_{xc}^{\text{PBE0}} = \frac{1}{4} E_{x}^{\text{HF}} + \frac{3}{4} E_{x}^{\text{PBE}} + E_{c}^{\text{PBE}}
 \]
 - **HSE03, HSE06**
 \[
 E_{xc}^{\text{HSE}} = \frac{1}{4} E_{x}^{\text{HF},sr,\mu} + \frac{3}{4} E_{x}^{\text{PBE},sr,\mu} + E_{x}^{\text{PBE},lr,\mu} + E_{c}^{\text{PBE}}
 \]

Based on decomposition of Coulomb kernel

\[
\frac{1}{r} = S_\mu(r) + L_\mu(r) = \frac{\text{erfc}(\mu r)}{r} + \frac{\text{erf}(\mu r)}{r}
\]
Critical review of the Local Density Approximation

Limitations and Beyond

- **Self-interaction cancellation** in $\nu_{\text{Hartree}} + \nu_x$ violated
- **Repair** using exact Hartree-Fock exchange functional
 \rightarrow class of hybrid functionals

Si bandgap

- exp: 1.11 eV
- GGA: 0.57 eV
- HSE: 1.15 eV
Critical review of the Local Density Approximation

Limitations and Beyond

- **Self-interaction cancellation** in $\nu_{\text{Hartree}} + \nu_x$ violated
- **Repair** using exact Hartree-Fock exchange functional
 \rightarrow class of hybrid functionals

Ge bandgap
- exp: 0.67 eV
- GGA: 0.09 eV
- HSE: 0.66 eV

From Quantum Mechanics to Materials Design
Critical review of the Local Density Approximation

SrTiO$_3$ Bandgap

GGA: ≈ 1.6 eV, exp.: 3.2 eV
Critical review of the Local Density Approximation

SrTiO$_3$ Bandgap
GGA: ≈ 1.6 eV, HSE: ≈ 3.1 eV, exp.: 3.2 eV
LaAlO$_3$

GGA

LaAlO$_3$ Bandgap

GGA: ≈ 3.5 eV, \hspace{1cm} \text{exp.: 5.6 eV}
LaAlO$_3$

LaAlO$_3$ Bandgap

GGA: ≈ 3.5 eV,
HSE: ≈ 5.0 eV,
exp.: 5.6 eV
Critical review of the Local Density Approximation

Calculated vs. experimental bandgaps

The graph compares the calculated and experimental bandgaps for various materials using different functionals: PBE, HSE03, and PBE0. The x-axis represents the experimental bandgap, while the y-axis shows the calculated bandgap. Different materials are represented by distinct symbols, illustrating the agreement and discrepancies between theory and experiment.
Industrial Applications

Computational Materials Engineering

- Automotive
- Energy & Power Generation
- Aerospace
- Steel & Metal Alloys
- Glass & Ceramics
- Electronics
- Display & Lighting
- Chemical & Petrochemical
- Drilling & Mining

Optimization of Materials Properties Design of Materials

From Quantum Mechanics to Materials Design

Volker@Eyert.de
Summary

Density Functional Theory
- exact (!) mapping of full many-body problem to an effective single-particle problem

Local Density Approximation
- approximative treatment of exchange (!) and correlation
- considerable improvement: exact treatment of exchange

Applications
- very good agreement DFT/Exp. in numerous cases
- theory meets industry

Further Reading
Summary

Density Functional Theory
- **exact (!) mapping of full many-body problem to an effective single-particle problem**

Local Density Approximation
- **approximative treatment of exchange (!) and correlation**
- **considerable improvement: exact treatment of exchange**

Applications
- **very good agreement DFT/Exp. in numerous cases**
- **theory meets industry**

Further Reading
Summary

Density Functional Theory
- exact (!) mapping of full many-body problem to an effective single-particle problem

Local Density Approximation
- approximative treatment of exchange (!) and correlation
- considerable improvement: exact treatment of exchange

Applications
- very good agreement DFT/Exp. in numerous cases
- theory meets industry

Further Reading
Summary

Density Functional Theory
- exact (!) mapping of full many-body problem to an effective single-particle problem

Local Density Approximation
- approximative treatment of exchange (!) and correlation
- considerable improvement: exact treatment of exchange

Applications
- very good agreement DFT/Exp. in numerous cases
- theory meets industry

Further Reading
Augsburg/München

Thank You for Your Attention!