Importance of Electronic Correlations for the Structural Stability and Lattice Dynamics of Solids

Dieter Vollhardt

Supported by DFG TRR 80 FOR 1346

International Workshop of the SFB 762 on Functionality of Oxide Interfaces March 11, 2014; Monastery Irsee
Importance of Electronic Correlations for the Structural Stability and Lattice Dynamics of Solids

Outline:

- *ab initio* approach to correlated electron materials: LDA+DMFT
- Application to correlation-driven structural transformations in Fe:
 - α-γ (bcc-fcc) phase transition
 - Lattice dynamics and phonon dispersions
Correlations

\[\langle AB \rangle \neq \langle A \rangle \langle B \rangle \]

e.g., densities in the interaction:

\[\langle n(\mathbf{r})n(\mathbf{r}') \rangle \neq \langle n(\mathbf{r}) \rangle \langle n(\mathbf{r}') \rangle = n^2 \]

Correlations:
Effects beyond factorization approximations or static mean-field theories (e.g., Hartree-Fock)
Electronic Correlations in Solids
Correlated electron materials have unusual properties

- huge resistivity changes
- gigantic volume anomalies
- colossal magnetoresistance
- high-T_c superconductivity
- metallic behavior at interfaces of insulators

With potential for technological applications:
- sensors, switches, Mottronics
- spintronics
- thermoelectrics
- high-T_c superconductors
- functional materials: oxide heterostructures...

How to study correlated systems theoretically?
How to combine?

<table>
<thead>
<tr>
<th>DFT/LDA</th>
<th>Model Hamiltonians</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ material specific: “ab initio”</td>
<td>− input parameters unknown</td>
</tr>
<tr>
<td>+ fast code packages</td>
<td>− computationally expensive</td>
</tr>
<tr>
<td>− fails for strong correlations</td>
<td>+ systematic many-body approach</td>
</tr>
</tbody>
</table>

Held (2004)

How to combine?

- time-averaged electron density
- lattice potential
Investigation of correlated electron systems with Dynamical Mean-Field Theory (DMFT)

Metzner, DV (1989)
Georges, Kotliar (1992)

Kotliar, DV (2004)
Computational scheme for correlated electron materials:

Material specific electronic structure
(Density functional theory: LDA, GGA, ...) or GW

+

Local electronic correlations
(Many-body theory: DMFT)

\[X = \text{LDA, GGA; GW, ...} \]

\[\rightarrow X + \text{DMFT} \]

Metzner, DV (1989)
Georges, Kotliar (1992)
Computational scheme for correlated electron materials:

Material specific electronic structure

(Density functional theory: LDA, GGA, …) or GW

+

Local electronic correlations

(Many-body theory: DMFT)

- LDA+DMFT

Metzner, DV (1989)
Georges, Kotliar (1992)

Anisimov et al. (1997)
Lichtenstein, Katsnelson (1998)
Held et al. (2003)
Kotliar et al. (2006)
LDA+DMFT (simplest version)

1) Calculate LDA band structure: \(\varepsilon_{lml'm'(k)} \) \(\xrightarrow{\text{basis}} \) \(\hat{H}_{LDA} \)

2) Supplement LDA by local Coulomb interaction (only for correlated bands)

\[
\hat{H} = \sum_{k l m l' m' \sigma} \varepsilon_{lml'm'(k)} \hat{c}_{klm\sigma}^\dagger \hat{c}_{kl'm'\sigma} - \sum_{i=i_d, m\sigma} \sum_{l=l_d} \Delta \varepsilon_d \hat{n}_{ilm\sigma} \\
\hat{H}_{LDA} + \sum_{i=i_d, m\sigma, m'\sigma'} \sum' \frac{U_{mm'}}{2} \hat{n}_{ilm\sigma} \hat{n}_{ilm'\sigma'} - \sum_{i=i_d, m\sigma, m'\sigma'} \sum' J_{mm'} \hat{c}_{ilm\sigma}^\dagger \hat{c}_{ilm'\sigma'} \hat{c}_{ilm'\sigma} \hat{c}_{ilm\sigma}^\dagger
\]

local Coulomb interaction
\[\text{Hund’s rule coupling}\]
3) Solve within DMFT
→ effective multi-orbital Anderson impurity model with self-consistency condition

(i) Effective single impurity problem

\[G = -\frac{1}{\mathcal{Z}} \int \mathcal{D}[\psi \psi^*] \psi \psi^* e^{\psi^* [G^{-1} + \Sigma]} \psi - U \psi^* \psi \psi^* \psi + J \psi^* \psi \psi^* \psi \]

(ii) \(k \)-integrated Dyson equ.

\[G^\sigma_{mm'}(\omega) = \frac{1}{V_B} \int d^3 k \left[(\omega - \Sigma^\sigma(\omega)) \delta_{m,m'} - \left(H_{\text{LDA}}(k) \right)_{m,m'} \right]^{-1} \]

Employ an impurity solver, e.g., QMC
Goal: Dynamical mean-field approach with predictive power for strongly correlated materials
Application of LDA+DMFT

- Most abundant element by mass on Earth
- Ferromagnetism: Longest known quantum many-body phenomenon
- Still most widely used metal in modern day industry ("iron age")
Narrow d,f-orbitals/bands → electronic correlations important
DMFT: Ferromagnetism in the one-band Hubbard model

Generalized fcc lattice ($Z \to \infty$)

Ferromagnetic order of itinerant local moments

LDA+DMFT

Ulmke (1998)

Lichtenstein, Katsnelson, Kotliar (2001)
Application of LDA+DMFT

Until recently: Investigation of electronic correlation effects for given lattice structure

→ Influence of electrons on lattice structure ignored

- How do electrons + ions influence each other?
- Which lattice structure is stabilized?
Application of LDA+DMFT to correlation-driven structural transformations

(i) \(\alpha-\gamma\) transition in paramagnetic Fe

Collaborators: Ivan Leonov (Augsburg)
Vladimir Anisimov (Ekaterinburg)
Alexander Poteryaev (Ekaterinburg)

Leonov, Poteryaev, Anisimov, DV; PRL 106, 106405 (2011)
• Abundance of allotropes: α, γ, δ, ε, ... phases
• α-phase: high Curie temperature ($T_C \sim 1043$ K)
Cohesion favors close packed structure (fcc, hcp) for P, T→0

- bcc at higher T (lattice vibrations)
- Polymorphic metals usually melt from bcc phase due to soft T₁-phonon

In general:

- bcc structure at P, T→0: exceptional

Zener (1952)
DFT(GGA): finds paramagnetic bcc structure to be unstable

Goal: Understand bcc-fcc structural phase transition in paramagnetic Fe
bcc-fcc structural transition in paramagnetic Fe

Total energies calculated along *bcc-fcc* Bain transformation path:

- continuous transformation path from *bcc-phase* to *fcc-phase*
- volume per atom fixed at exp. value of α-Fe

bcc (c/a=1)

- $Z = 8$
- $c/a = 1$

fcc (c/a = $\sqrt{2}$)

- $Z = 12$
- $c/a = \sqrt{2}$
Goal: Determine structural stability of paramagnetic \textit{bcc} phase

Construct Wannier functions for partially filled Fe \textit{sd} orbitals

\textbf{GGA:}
Only paramagnetic \textit{fcc} structure is stable

First-principles multi-band Hamiltonian

\[\hat{H} = \hat{H}_{\text{GGA}} + \frac{1}{2} \sum_{imm',\sigma\sigma'} U_{mm'}^{\sigma\sigma'} \hat{n}_{im\sigma} \hat{n}_{im'\sigma'} - \hat{H}_{\text{DC}} \]

Coulomb interaction between Fe 3d electrons: \(U=1.8 \text{ eV}, J=0.9 \text{ eV} \)
bcc-fcc structural transition in paramagnetic Fe

Goal: Determine structural stability of paramagnetic *bcc* phase

Construct Wannier functions for partially filled Fe *sd* orbitals

GGA:
Only paramagnetic *fcc* structure is stable

GGA+DMFT:
- *bcc-fcc* structural transition at $T_{struct} \approx 1.2 \, T_C > T_C$
- LDA+DMFT and GGA+DMFT: qualitatively similar results

What determines the temperature and *c/a* dependence of the total energy?
bcc-fcc structural transition in paramagnetic Fe

Contributions to the GGA+DMFT total energy:

\[E_{tot} = E_{kin} + E_{int} \]

Kinetic energy

\[E_{kin} = E_{GGA} + \langle \hat{H}_{GGA} \rangle - \sum_{m,k} \varepsilon_{m,k}^{GGA} \]

Interaction energy

\[E_{int} = \langle \hat{H}_U \rangle - E_{DC} \]

- **Total energy in GGA**
- **Thermal average of GGA Wannier Hamiltonian**
- **Fe sd valence-state eigenvalues**
- **Average Coulomb repulsion between electrons in Fe sd Wannier orbitals**

vs.
bcc-fcc structural transition in paramagnetic Fe

Contributions to the GGA+DMFT total energy:

\[E_{\text{tot}} = E_{\text{kin}} + E_{\text{int}} \]

Kinetic energy

\[E_{\text{kin}} = E_{GGA} + \langle \hat{H}_{GGA} \rangle - \sum_{m,k} \varepsilon_{m,k}^{GGA} \]

thermal contribution

Interaction energy

\[E_{\text{int}} = \langle \hat{H}_U \rangle - E_{DC} \]

- kinetic energy favors fcc structure
- correlation energy indifferent

\(\Rightarrow \) as in GGA \(\rightarrow \) fcc structure stable
bcc-fcc structural transition in paramagnetic Fe

Contributions to the GGA+DMFT total energy:

\[E_{tot} = E_{kin} + E_{int} \]

Kinetic energy

\[E_{kin} = E_{GGA} + \langle \hat{H}_{GGA} \rangle - \sum_{m,k} \varepsilon_{m,k}^{GGA} \]

vs.

Interaction energy

\[E_{int} = \langle \hat{H}_U \rangle - E_{DC} \]

- kinetic energy favors *fcc* structure
- correlation energy increases

\[\rightarrow fcc \text{ structure still stable} \]
bcc-fcc structural transition in paramagnetic Fe

Contributions to the GGA+DMFT total energy:

\[E_{tot} = E_{kin} + E_{int} \]

Kinetic energy

\[E_{kin} = E_{GGA} + \langle \hat{H}_{GGA} \rangle - \sum_{m,k} \varepsilon_{m,k}^{GGA} \]

Interaction energy

\[E_{int} = \langle \hat{H}_{U} \rangle - E_{DC} \]

• kinetic energy favors *fcc* structure
• correlation energy increases

→ *bcc* structure becomes stable
bcc-fcc structural transition in paramagnetic Fe

Contributions to the GGA+DMFT total energy:

\[E_{tot} = E_{kin} + E_{int} \]

Kinetic energy

\[E_{kin} = E_{GGA} + \langle \hat{H}_{GGA} \rangle - \sum_{m,k} \varepsilon_{m,k}^{GGA} \]

Interaction energy

\[E_{int} = \langle \hat{H}_{U} \rangle - E_{DC} \]

- kinetic energy favors *fcc* structure
- correlation energy increases

\[\rightarrow \text{bcc structure remains stable} \]
Electronic correlations responsible for $T_{\text{struct}} > T_C$
bcc-fcc structural transition in paramagnetic Fe

Interaction energy

\[
\hat{n}_{i\uparrow} \hat{n}_{i\downarrow} = \frac{1}{4} \left[\left(\hat{n}_{i\uparrow} + \hat{n}_{i\downarrow} \right)^2 - \left(\hat{n}_{i\uparrow} - \hat{n}_{i\downarrow} \right)^2 \right]
\]
bcc-fcc structural transition in paramagnetic Fe

Interaction energy

Equal Fe t_{2g} and e_g occupations:

$$
\hat{H}_U = \frac{1}{2} \overline{U} \hat{N}^2 - \frac{1}{4} I \hat{m}_z
$$

- \overline{U}: magnetic correlation energy
- I: interaction energy
- \hat{N}: total number of particles
- \hat{m}_z: local magnetic moment

Total # particles:

$$
\hat{N} = \sum_{i,m,\sigma} \hat{n}_{im\sigma}
$$

Local magnetic moment:

$$
\hat{m}_z = \sum_{i,m} \left(\hat{n}_{im\uparrow} - \hat{n}_{im\downarrow} \right)
$$

Conclusion:

Magnetic correlation energy stabilizes bcc phase at $T \to 0$

- high T: independent of c/a
- low T: max. in bcc phase; min. in fcc phase

Graphical data

- $\overline{U} \approx 0.75 \text{ eV}$,
- $I = \frac{1}{5}(U + 4J) \approx 1.08 \text{ eV}$
bcc-fcc structural transition in paramagnetic Fe

Equilibrium volume V

GGA+DMFT

<table>
<thead>
<tr>
<th>Pressure, GPa</th>
<th>Equilibrium volume (au³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8</td>
<td>162</td>
</tr>
<tr>
<td>1</td>
<td>161</td>
</tr>
<tr>
<td>1.2</td>
<td>160</td>
</tr>
<tr>
<td>1.4</td>
<td>159</td>
</tr>
<tr>
<td>1.6</td>
<td>158</td>
</tr>
<tr>
<td>1.8</td>
<td>157</td>
</tr>
</tbody>
</table>

- **bcc Fe**
- **fcc Fe**

$\Delta V \sim -2\%$

Agrees well with exp. data:

$V_{exp} \sim 165 / 158$ au³

Non-magnetic GGA:

- $V \sim 141/138$ au³ in *bcc/fcc* phase
 - too small \rightarrow density too high

GGA+DMFT:

- $V \sim 161.5/158.5$ au³ in *bcc/fcc* phase
 - increased by electronic repulsion
bcc-fcc structural transition in paramagnetic Fe

Equilibrium volume and **bulk modulus**

GGA+DMFT

bcc Fe

fcc Fe

Non-magnetic GGA:
- Bulk modulus ~ 2.66/ 2.82 Mbar in bcc/fcc phase too large

GGA+DMFT:
- Bulk modulus ~ 1.48/ 1.61 Mbar reduced by electronic repulsion

Agrees well with exp. data: \(B_{exp} \sim 1.62 - 1.76\) Mbar

Conclusion:

Structural transformation caused by electronic correlations
Application of LDA+DMFT to correlation-driven structural transformations

(ii) Lattice dynamics and phonon spectra of Fe

Leonov, Poteryaev, Anisimov, DV; PRB 85, 020401(R) (2012)
Lattice dynamics of paramagnetic \textit{bcc} iron

Non-magnetic GGA phonon dispersion

1. Brillouin zone

Leonov, Poteryaev, Anisimov, DV (2012)

Exp.: Neuhaus, Petry, Krimmel (1997)
Lattice dynamics of paramagnetic \textit{bcc} iron

- phonon frequencies calculated with frozen-phonon method
 Stokes, Hatch, Campbell (2007)
- harmonic approximation

\begin{itemize}
 \item Calculated:
 \begin{itemize}
 \item equilibrium lattice constant \(a \sim 2.883 \text{ Å} \quad (a_{\text{exp}} \sim 2.897 \text{ Å}) \)
 \item Debye temperature \(\Theta \sim 458 \text{ K} \)
 \end{itemize}
\end{itemize}

Exp.: Neuhaus, Petry, Krimmel (1997)

Leonov, Poteryaev, Anisimov, DV (2012)
Phonon frequencies computed for different temperatures

GGA+DMFT phonon dispersion

Closer look 1: Phonon dispersion of \textit{bcc} iron near T_C

- Phonons depend only weakly on the magnetic state
- Anomalous behavior of the transverse T_1 acoustic mode near the N-point
 \[\rightarrow \text{phonon softening at the } \textit{bcc-fcc} \text{ phase transition?} \]
Closer look 2: Phonon dispersion of \textit{bcc} iron at higher T

Phonon frequencies computed for different temperatures

\textbf{GGA+DMFT phonon dispersion}

- Above \textit{bcc-fcc} phase transition ($\sim 1.2 \, T_C$):
 - Instability of \textit{bcc} phase due to soft T_1-mode near N-point

- Even higher temperatures: Additional instabilities due to anomaly near P-point

\[N \, [110] \text{ displacement at } 1.4 \, T_C: \]

\[\text{Anharmonic effects stronger} \]
Lattice dynamics of paramagnetic \textit{fcc} iron

Non-magnetic GGA phonon dispersion

1. Brillouin zone

Leonov, Poteryaev, Anisimov, DV (2012)

Exp.: Zarestky, Stassis (1987)

Elastic constants much too large
Lattice dynamics of paramagnetic \textit{fcc} iron

GGA+DMFT phonon dispersion at 1.4 T_C

Calculated:
- equilibrium lattice constant $a \sim 3.605 \, \text{Å}$ \hspace{1cm} ($a_{\text{exp}} \sim 3.662 \, \text{Å}$)
- Debye temperature $\Theta \sim 349 \, \text{K}$

Leonov, Poteryaev, Anisimov, DV (2012)
T_1 mode becomes strongly anharmonic \rightarrow high lattice entropy
\rightarrow lowers free energy $F = E - TS$:

Quasi-harmonic equation of state of soft phonon branch Drummond, Ackland (2002)
\rightarrow phonon free energy $\Delta F \equiv F_{bcc} - F_{fcc} +$ electronic energy $\Delta E = E_{bcc} - E_{fcc}$

1.4 \(T_C \): - 0.007 + 0.03 eV/atom \(\rightarrow \) \(fcc \) (\(\gamma \)) phase stable
1.8 \(T_C \): - 0.055 + 0.04 eV/atom \(\rightarrow \) \(bcc \) (\(\delta \)) phase stable

\rightarrow \(bcc \) (\(\delta \)) phase of iron stabilized by electronic correlations + lattice entropy
Summary

Correlations between electrons in Fe (KCuF$_3$, V$_2$O$_3$, …)

(i) determine electronic properties (magnetism, spectra, …)

and

(ii) strongly influence

- phonon dispersion
- lattice structure

\[\rightarrow \text{structural phase diagram} \]

Outlook: Linear-response theory/calculation of forces

\[\rightarrow \text{Calculate equilibrium lattice structure even} \]
\[\begin{itemize}
 \item for complex correlated materials
 \item in the vicinity of a Mott metal-insulator transition
\end{itemize} \]

Leonov, Anisimov, DV; arXiv:1311.4493