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Several notions of entropy are discussed: classical entropies (Boltzmann, Gibbs, Shan- 

non, quantum-mechanical entropy, skew entropy, among other notions as well as classical and 

quantum-mechanical dynamical entropies. 

One should not mean that “entropy” is a uniquely determined quantity. In fact, there 
exist various concepts that - quite often - refer to different logical levels (and have 
different merits) called “entropy”. 

The first notion is due to Clausius (1850) in connection with the Second Law of Ther- 
modynamics (which, at about the same time and apparently independently, had been dis- 
covered by Thomson (subsequently Lord Kelvin); both formulations are equivalent). The 

expression “entropy” itself is an artificial word, it stems from ~po$ (changes). (Clausius, 
1865). 

Yet at that time, Clausius too and a little bit later on, Maxwell, founded the Kinetic 
Theory (of gases, 1860). A first climax was reached, when Boltzmann (1872) enunciated 

his celebrated transport equation. 
Here we meet another concept of entropy, the Boltzmann entropy. It is formulated 

in terms of the one-particle distribution function (first correlation function) F(z, ~1; t) 
(x, u E R3) which is defined on the one-particle space (p-space, kinetic = mesoscopic 
level). Roughly speaking, F( X, w, t)d3zd3v is the number of particles at time t in the (6- 
dimensional) volume d32d3u, centred around 2 (position) and u (velocity). The Boltzmann 
entropy, denoted by the same letter S as the thermodynamic entropy, is 

S := -k s FlnFd33:d3u. 

(This is not quite the original version of Boltzmann. I; is Boltzmann’s constant, an ex- 
pression due to Planck, 1902). 

Whereas the thermodynamic entropy refers to equilibrium states, the Boltzmann en- 
tropy is also defined in the non-equilibrium situation. In his 1872 article, Boltzmann was 
able to give a precise meaning to the phenomenon of irreversibility, too, when he proved 
the H-theorem: the functional 

H= SFlnFd”zd3v =-g 
( .) 

[1191 
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is never increasing. 
In 1877, Boltzmann discovered the relation between entropy and probability (or the 

number of states, or complexions, resp.), which is best known in Planck’s formulation 
5’ = k log IV. This is more or less the basis for most future considerations about entropy. 

Einstein (1907) coined the word “Boltzmann’s Principle” for Boltzmann’s basic find- 
ings. 

J. W. Gibbs, in 1902 (but there exists earlier work) introduced the notion of Gibbs 
entropy (of course not called that by him, but the “average index of the probability-in- 
phase”). Maybe some explanation is needed at this stage: the Gibbs entropy refers to 
all phase space (r-space, microscopic level) of a system with finitely many degrees of 
freedom. It is defined - along the lines of Boltzmann - by 

S(p) = -Ic Jplnpd3x1.. . d3vN 

(N = number of particles - not configurations, p = probability on phase space; of course, 
in contradistinction to the distribution function, which is normalized to N, normalized 
to 1). 

The arguments that led Gibbs to his expression are pretty much as Boltzmann’s, 
nevertheless, there are considerable differences. In a Hamiltonian system (with a compact 
phase space - which is actually not the most general requirement), the Gibbs entropy 
always remains constant in time (since, by Liouville’s theorem, the Lebesgue measure on 
the energy shell is invariant under the Hamiltonian flow). 

How, after all, can then irreversibility come in ? One proposal was made by the 
Ehrenfests (1911): “coarse-graining”. Divide the phase space into “cells” (or “grains”) of 
equal size (after all, later on it turned, out that the right size should be h3N - h = Planck’s 
constant). The probability distribution p should evolve according to the Poisson equation, 
but not really, because it is assumed that in every (infinitesimal) step it is averaged over 
every single cell. This is another version of “molecular chaos”, which had already been 
used by Boltzmann in his derivation of his equation - better known as “StoBzahlansatz”. 
In any case, for finite systems a perpetual assumption on disorder is needed to obtain an 
irreversible behaviour. (This assumption cannot be proven, it contradicts the fundamental 
equations of motion. Just in infinite systems only, there are - partly - rigorous results 
known. Cf., among others, Lanford, 1975, 1976). 

The Shannon entropy (first called measure of information - v. Neumann made the 
suggestion to call it “entropy”) - was proposed by Shannon (see Shannon and Weaver, 
1949). It refers to sequences of probabilities for the outcome of an experiment, or mess- 

age, resp. (~1,~2,. . .) (pi > 0, Oi = 1). 1 n a message, the average lack of information is 
(Shannon’s formula) 

-c Pi lo&Pi . 

(This formula was discovered independently by Wiener. As a matter of fact, it may be 
traced back as far as to Boltzmann, except for the numerical factor relating logarithms.) 
We shall postpone the discussion how Shannon was led to his formula because the argu- 
ments do not differ too much from V. Neumann’s for the quantum-mechanical entropy. 
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From a formal point of view, the Boltzmann and the Gibbs entropy (“classical continu- 
ous case”, CC) and the Shannon entropy (“classical discrete case”, CD) fit in the same 
frame, the Baron-Juuch entropy (“generalized Boltzmann-Gibbs-Shannon entropy”). Its 
definition is: let (52, C, IL) be a measure space, I/ be a probability measure, being absolutely 
continuous w.r.t. b (hence, at least in the separable case, the Radon-Nikodym derivative 
du/dp exists). Then the Baron-Jauch entropy is 

S := - 
s 

2 In $ dp 

(provided that the integral exists which need not always be the case). Note, however, that 
in various respects these entropies may have quite different properties, depending on the 
kind of the measure CL. We will come to this point within short. 

Quantum-mechanical entropy was introduced by v. Neumann (1927). It refers to a 
(generally) mixed state of a quantum-mechanical system, i.e. a density matrix p (a positive, 
a fortiori of course Hermitian operator with trace = 1). 

S(p) := -LTrplnp 

(one understands 0 . In0 - 0). In the following we shall always put Boltzmann’s constant 
equal to 1. 

The interpretation or at least one possible of the v. Neumann entropy is as follows: 
Every density matrix can be diagonalized: 

where (pi is the normalized eigenvector corresponding to the eigenvalues pi(lpi)(cpi( 
= projection onto cpi). Note that pi > 0, Cpi = 1 and S(p) = - Cpi In pi (0 In 0 = 0). 
pi is just the probability of finding the system under consideration in the pure state cpi. 
If one performs N measurements, one will obtain as a result that (for large N) the sys- 
tem is found pi . N times in the state (pr,p2 N times in the stage ‘pz etc. There are 
N!/(p1N)!(p2N)!. . possibilities for this. For N -+ IX (by virtue of Stirling’s formula), 
l/N times the logarithm of these possibilities converges to S. 

Cum grano salis, this argument applies to the Boltzmann, Gibbs and Shannon entropy 
(in the latter case up to a numerical factor) as well. However, the Boltzmann and Gibbs 
entropies depend on the cell size, changing it amounts to changing the value of the entropy 
by a numerical factor, i.e. in the classical (continuous) case only entropy diflerences can 
be “measured” - whatever is understood by this. (Instead of d3xd”v or d3q.. d3uN, 
resp., one should rather integrate over 

or 

d3xd3v 

A 

d3x1 . . . d3vN 

AN ’ 
resp., where A is on dimension (action)3; its value cannot be deduced by means of classical 
arguments.) 
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The connection between the thermodynamic entropy and the quantum-mechanical 
(or Boltzmann-, or Gibbs-) entropy is conveyed by the Maximum Entropy Principle: given 
some macroscopic constraints, the equilibrium state is the one compatible with these 
constraints, that has the biggest (Y. Neumann etc.) entropy. 

Which properties of the four notions of entropy we have met up to now are different 
and which ones do they share? 

In the quantum-mechanical case as well as in the CD case, entropy is always well- 
defined, its range is (in the infinite case) the extended interval [0, cc]. (Actually, there 
are, in a certain sense, “more” density matrices, or discrete probability distributions, 
resp., with infinite entropy than such with finite entropy - the former ones are a set of 
second category in // . (/ 1-, or 1’-sense, resp., the latter ones are of first category only. But 
in physics this does hardly matter.) In the CC case, the range of entropy is [-m, 001, but, 
in contrast to the aforementioned entropies, not only the sets with entropy = +m or --oo 
are of second category, but even the set of all probability distributions with undefined 
value of entropy is of second category (so-to-say: what is (+,m) - (-cu)?). 

Quite easy to perceive are invariance properties: the classical entropies are invariant 
under measure-preserving transformations, the quantum-mechanical entropy is invariant 
under unitary transformations. 

An important property that is common to all entropies is concavity. If a probability 
distribution, or a density matrix, resp., is a convex combination of two other ones (i.e., 
speaking in physical terms, an incoherent mixture), mathematically described as 

p = bl + (1 - X)P2 (0 I x i: 11, 

then 

S(P) 2 WPI) + (1 - X)S(p2). 

Whereas there is not the least problem to show this in the classical case (simply because 
the function --,T In x is concave), in quantum mechanics one has to work a bit harder, the 
reason being that p1 and p2 need not commute (Delbriick and Moliere, 1937). 

What is common too is additivity. By this is meant, in the classical case, that, if the 
(generalized) “phase space” is a Cartesian product of two other ones, fl = fli x L$ (to be 
more careful, one is concerned with a measure space (L?, x &, Et x 22, ,~i x /LZ)), and the 
probability distribution p factorizes, p(,w) = pt(wi)pz(~~z)! (UJ E Q, WI E L?,, 202 E f22), 

then S(p) = S(pi) + S(p2). In quantum mechanics one considers a tensor product of two 
Hilbert spaces, ‘E = Hi @X2, and a density matrix p = pi %p~ (pi,2 being density matrices 
in Xi, or ‘Hz, resp.) to obtain - in a very easy way - the same assertion. 

If the probability distribution p in fit x L?z, or the density matrix (denoted, in a little 
bit sloppy way, by the same letter) p is not a product, then the entropy is subadditive only, 
S(p) 5 S(pr) + S(pl). Thereby, in the classical case, it is meant that p1 := J /)(zLI~, ~2) dw2 
etc.: in the quantum case that pi is the partial trace of p w.r.t. ‘Hz, pi := TrH2p etc. 

It is remarkable that (in the CD case) permutation-invariance, or in the quantum 
case unitary invariance, and additivity and subadditivity characterize the Shannon, or the 
v. Neumann entropy, almost uniquely: every functional fulfilling these requirements is a 
linear combination of the Shannon, or the v. Neumann entropy and the (CD), or quantum- 



THE MANY FACETS OF ENTROPY 123 

mechanical Hartley entropy 57,~ (Hartley, 1928). It is defined as follows: in the CD case, SO 
is the logarithm of the number of pZ’s that are ditferent from zero, in the quantum case, SO 
is the logarithm of the number of eigenvalues # 0. (The afore-mentioned characterization 
theorem is - except for the more or less immediate quantum-mechanical generalization 
- due to Aczel, Forte, and Ng, 1974.) 

The Hartley entropy (in the infinite case) is a very sensitive quantity. Although it is 
true that neither the Shannon nor the v. Neumann entropy are continuous (w.r.t the 1’, 
or trace norm, resp.) but lower semi-continuous only the continuity properties of the 
Hartley entropy are by far much worse. However, one could think of some at least formal 
resemblence to the topological entropy, to be discussed later. 

A very interesting problem is that of monoronicily. In quantum mechanics, entropy is 
not monotonic, i.e. enlargening of a system can very easily lead to smaller entropies. (One 
may speculate to which extent this phenomenon has to do with Helmholtz’s “Warmetod”, 
heat death, 1854.) Whereas this is hardly observed in “normal” matter - for reasons 
that are very difficult to explain - one knows of other situations where this is actually 
the case. 

In this context it is worthwhile to make some remarks on the relution between quantum- 

mechanical and CC entropy. The basic laws of physics are quantum-mechanical; how can 
one arrive at a classical probability distribution starting from a density matrix? Several 
proposals have been made (Wigner, Blockhintzev). One possibility is to use coherent 
states (Wehrl, 1979) i.e. states with minimal uncertainty (thus one is as close as possible 
to the classical situation). Let, in one dimension for the sake of simplicity, cp(p,q) be a 
coherent state centred at the (classical) values p and q, then one can construct a classical 
probability distribution f(p, q) out of the density matrix p by 

f(p: 4) := (cp(P. n). Pcp(Pl4)) 

This distribution has some nice properties: it is positive, < 1: continuous and, if one fits 
two spaces together, it is monotonic. (Note that of course the set of these distributions 
is not all of LT.) By the way, the thus obtained classical entropy is > than the quantum- 
mechanical entropy (and > l), which may be interpreted in the following manner: by 
passing to the classical limit, information is lost. 

Both the v. Neumann (or the Shannon) entropy and the Hartley entropy belong to 
a family of entropies, which we shall describe for the quantum case only, since the CD 
case is entirely obvious - the (quantum-mechanical) Renyi-entropies, also often called 
a-entropies. Their definition is 

S”(P) = & 1nTrp” 

for 0 < & < 00, (Y # 1; the limiting cases So, St E S or S,, resp., (a + 0, N \ 1, CY + X) 
are the Hartley, or the v. Neumann entropy, or - less In /pll, resp. (Note that S,(p) may 
be = +co for 0 < N 5 1, otherwise it is finite). Simple properties: S,(p) is - for fixed 
p - decreasing and convex in o. (It can happen that S(p) is finite, but S,(p) “jumps” 
suddenly, i.e. S, = 0~: for all cy < 1). Just a remark: the case cy = 2 was favoured by 
Fano (1957) and Prigogine, among others, apparently because SZ can - comparatively - 
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be computed in a simpler way, since there is no need to diagonalize the density matrix 
(or doing something equally difficult). 

a-entropies are of course unitarily invariant, additive (as it is easy to see), but except 
for a = 0 and cr = 1 not subadditive. 

There are some other concepts that are somehow related to the a-entropies, for in- 
stance - In f-‘(Trpf(g)), f being an increasing (convex or concave) function, 

Aczel-Daroczy entropies (1963) : 

f-‘Wpf(- In PII 

Daroczy entropies: 

&(Trp” - 1). 

Only few practical applications are known. 
The quasi-entropies Sf(p) := Trf(p) (f b ein concave, f’(0) = +CXJ) share with the v. g 

Neumann entropy the property of being concave in p as well as continuity (plus metric, i.e. 
category) and algebraic properties. One can even show examples of non-linear evolution 
equations, where all Sf are increasing in time.) 

Up to now all kinds of (quantum-mechanical versions of) entropies were unitarily 
invariant, the next quantity in not. It may be traced back as far as to Pauli (1928) in his 
work on the ergodic hypothesis, later on, Ingarden (beginning from 1962) was studying it 
(cf. also Wehrl, 1977): A-entropy (this expression is not universally accepted, sometimes 
it is also called the Ingarden-Urbanik entropy). It reminds a little bit of coarse-graining. 
Let P be a partition of unity, i.e. a family of (finite-dimensional) pair wise orthogonal 
projections (Pi) with C Pi = 1. The A-entropy of a density matrix p (w.r.t. P) is the v. 
Neumann entropy of p’ := C XiPi, where Xi := TrpP,/Tr Pi. It is plain that S(p’) > S(p). 
In considerations about irreversibility this concept is - at least partly - useful. 

The more “skew” p and P lie, the bigger will be the difference between S(p) and 

S(P'). 
Concerning “skew”: In 1963 Wigner and Yanase introduced a notion of entropy, called 

skew entropy, measuring the amount of non-commutativity of a density matrix p w.r.t. a 
fixed (bounded) observable K: 

S(p, K) : = ;Tr [pi, ICI2 

They were able to show that this quantity - though obviously not unitarily invariant - 
is concave in p, i.e. that one of the most important properties of entropy holds. Dyson, 
later on (1067) proposed the generalization 

S,(P, K) := iW[pP, f%-p, KI) 

(0 < p < 1; the degenerate case p -+ 0 reads as iTr([p, K][lnp, K])). It is true that all 
expressions are concave in p, too, however, the proof was given later on only (Lieb, 1973). 
We will discuss within short why this fact became so important in the further deliberations 
on quantum-mechanical entropy. Before doing this, let us introduce another notion: 
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Relative entropy. It “compares” two density matrices, g and p : S(cr 1 p) := Trp(ln p - 
- In a) (Umegaki, 1062; Lindblad, 1974). The classical predecessors are (in the CC case) 
the “Kullback entropy” and (in the CD case) Renyi’s “information gain”. 

Main properties: S(a 1 p) 2 0 (= 0 iff 0 = p) and, what is most important, it is jointly 
convex in 0 and p. This is by far not easy to prove, first Lieb (1973) succeeded. (At 
present, some seven different proofs are already known.) 

The main ingredient in this proof, called Lieb concavity, can be formulated in various 
(equivalent) ways, two of them shall be mentioned: 

(i) The mapping (A,B) --) TrKAPK*Bq (K Hilbert-Schmidt, A and B > 0, 0 I p, 
q < 1, p + q 5 1) is jointly concave in A and B, 

(ii) (Ando’s formulation): The mapping A -+ AP 8 A4 (A 2 0, p, q as before) is 
concave. 

This yields the concavity of 

TrB(ln A - In B) = gTrA’B’-’ It=0 

and thus the convexity of the relative entropy (at first in finite dimensions, but the tran- 
sition to infinite dimensions merely demands standard techniques). The concavity of 
S,(p, K) in p is an immediate consequence, too. 

This is also the key to the proof of strong subadditivity (Lieb and Ruskai, 1973). In the 
classical case this is not at all a stronger property than subadditivity (it is just a simple 
consequence only), in quantum mechanics, however, this was an open problem for a very 
long time. It refers to three Hilbert spaces. Let X = 7-11 @ 3-12 @X3, p be a density matrix 
in H and ,012 := TrX3p, p2 := Trx, @ ti2p etc. be the partial traces, then 

S(p) + s(p2) 5 s(h’l2) + s(b’23). 

What is this good for? For instance, one can prove the existence of a mean entropy 
and the monotonicity of the entropy for translationally invariant quantum systems. 

(Remark: One cannot proceed further to more than three Hilbert spaces, at least not 
in an obvious, “canonical” way.) 

Quite different from all the previous notions of entropy are the dynamical entropies. 
These are functions of the dynamics rather than of a state. The best known, in the 
classical case, is the Kolmogorov-Sinai entropy (Kolmogorov, 1953, 1959; Sinai, 1961, 
1965). Consider a partition P = (ai) of the “phase space” fl (i.e. 0, n fij = 8 for 
i # j, Uf& = L’). The entropy of this partition is S(P) := -C,!~(Ri)lnp(fli). Given 

two partitions Pl and ‘P2, (Pi = (fl,“‘), P2 = (or’)), for the refinement Pi V ‘Pz, i.e. the 

family (a,“’ n fly',, S(P,, 'Pz) := -Ei,jp(fl!" n 6':"'). In mu. n fli?‘). Given a measure- 
preserving transformation (automorphism) T : fl--) fl, one can - in an obvious manner 
- define the partitions TP, T2P, etc. and the entropy S(P, TP, . , T”-‘P). Due to 
subadditivity, 

S(P,T) := Jlw iS(P,TP,. . , T”-‘P) 
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exists (and in fact, because of strong subadditivity, equals lim[S(P, TP, . . . , TV) -- 
S(P, TP.. , T”-‘P)]). 

The Kolmogorov-Sinai entropy s(T) is := supps(P,T). It is (even a conjugacy-) 
invariant. (Two transformations TI and TZ are called “conjugate”, if there exists a measure- 
algebra isomorphism, say, cp, such that ‘9 o TZ-i = T,-’ o cp.) 

Among other possible interpretations, one can think of the Kolmogorov-Sinai entropy 
as the measure of the speed of mixing of a dynamical system. (It would take too much 
time to discuss all the remarkable properties of this entropy at this place.) 

Similar (and conjugacy invariants too) are the sequence entropies (also called A-entro- 
pies, Kouchnirenko, 1967): Let A = (al, ~2, . . .) be an increasing sequence of integers. 

SA(P, T) := limsup kS(T"lP, . . . , T”‘lP), 
n 

SA(T) := sup s/t(P, T) . 
P 

Coming back to the Kolmogorov-Sinai entropy, it is, “in general, far from being complete” 
(Walters, 1975). For instance, examples are known where two transformations are not 
conjugate but have the same entropy. 

In infinite systems, one is almost everytime faced with the situation that the Kolmo- 
gorov-Sinai entropy is infinite (we are here thinking of the automorphism group qua 
time-translations). This can - at least to a certain extent - be remedied by introducing 
the space-time-entropy (Hudetz, 1988), which, vaguely speaking, is obtained by “adding” 
the spatial translation group to the time evolution, thus yielding a finite value for the 
entropy. 

A different notion, not based on measure theory, is the topological entropy, which 
refers to compact topological (or metric) spaces. It is a topological conjugacy invariant. 
By this is meant: let X and Y be compact spaces and T : X -+ X, or S : Y --f Y be 
homeomorphisms. T is topologically equivalent to S if there exists a homeomorphism 

cp: X ---f Y, such that pT = Sp. (Remember the measure-theoretical definition of 
conjugacy). 

Now the construction goes - described very cursory - as follows: Let (I: be an open 
cover of X. The join, cy V/3, of two open covers consists of all intersections AnB (A E a, 
B E /I). A refinement ,!3 of an open cover, denoted by a < p, means that any set of p is 
a subset of a set in a. 

The entropy of (Y, H(a), is defined as log N(Q) (conventionally the logarithm is to base 
2), where N(a) is the number of sets in a finite subcover of cr with smallest cardinality. 
Two properties: 

(i) a < B + H(a) 5 H(P), 
(ii) (“subadditivity”) H(@ V P) < H(a) + H(P). 

Let T : X --+ X be continuous (not necessarily an automorphism). H(T-‘a) 5 H(a). 
One can proceed in more or less the same manner as we have already used to establish 
the existence of 

lim I,(, V T-la! V . . . V T-(“-‘)a) := h(T, a), 
n-00 n, 
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the entropy of T relative to CY. (Just use subadditivity; that one has to use the negative 
powers of T is only for technical reasons.) 

Finally, the topological entropy of T is h(T) := supa h(T, a). 
A very challenging problem was, for many years, to find the quantum analogue of the 

Kolmogorov-Sinai entropy. Several attempts failed, a few partial results had been obtained 
only, none of them was completely satisfactory. 

The problem is that one cannot mimick the classical construction; this procedure fails 
at the very first step. If one starts with two (quantum-mechanical) partitions of unity, 
P, and Pz, then what should PI V P2 mean? In general (because of non-commutativity), 
this will be tremendously large (even in very simple, seemingly trivial cases); thus the 
construction cannot be carried through. 

The first major progress was achieved by Connes and Stormer (1973, when they studied 
the conjugacy problem for the (unique) hyperfinite III-factor. (Two automorphisms Tl 
and Tz of a v. Neumann algebra are called conjugate, if there exists a*-automorphism 0, 
such that T2 = 0-i o TI o 0.) The final solution is due to Connes, Narnhofer, and Thirring 

(1987). 
Their method is quite intricate and can, on this occasion, be sketched only. Since the 

“obvious way” merely leads to trivialities, one has to pursue another route. There are - 
so-to-say - two main ingredients entering in the proof. First, one considers the relative 
entropy, or the conditional entropy, resp., rather than the “normal” one. The advantage 
of this detour is that - in contrast to the v. Neumann entropy - the relative entropy has 
some monotonicity properties that can be exploited (though in a very sophisticated way). 
Secondly, one has to arrive - all in all - at a commutative situation (“Abelian model”). 
Just a few hints: 

To begin with, let us consider the Connes-St@wzer entropy for the hyperfinite III-factor. 

It is a functional H(At , . . . , A,) of several finite-dimensional v. Neumann algebras (this set 

is denoted by 3), symmetric in its arguments, which has nice monotonicity and subadditiv- 
ity properties. These allow, once more, to perform an analogue of the Kolmogorov-Sinai 
construction: for an automorphism T, the limit 

lim iH(d,Td,. . ,Tnpld) =: h(d,T) 
n-03 n 

exists; the Connes-Stormer entropy is 

h(T) =: sup h(d, T) . 
AEF 

Unfortunately, the explicit expression for H is rather complicated and by no means (at 
least not at a first glance) suggestive. (Just a cryptic remark: the “conditional expectation” 
plays a prominent role.) 

The Connes-Namhofer-Thim’ng entropy refers to C*-algebras. Let A be a C*-algebra, 
w be a state and Yk be completely positive maps AI, + A, where the Al; are finite- 
dimensional algebras. In order to define the entropy of yi, . *. “yn (w.r.t. w), H,(yi, . 

. . , -ya) (in the Connes-Stormer-prescription there is of course no subscript w), one needs 
the concept of an Abelian model. It consists of a mapping P : A + B, B Abelian, and 
a state p such that p o P = w. Due to this concept, it is possible (in a surely complicated 
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manner, more complicated than in the Connes-Stormer case) to define this entropy. Then 
subadditivity guarantees, for an automorphism T and an invariant state w (i.e. w = w o T) 
the existence of 

h,(y, T) := Jirnm H,(y,T o -y,...,T+' o y). 

Let P be the family of all completely positive maps of finite-dimensional C*-algebras into 
A. Then the Connes-Narnhofer-Thirring entropy is h,(T) := supTEP IL,(~, T). 

Final remark: although the derivation of the quantum-mechanical Kolmogorov-Sinai 
entropy is difficult enough, one could even be still more ambitious, for instance to try to 
find an analogue of the Kolmogorov-Sinai entropy for automorphisms of lattices. Up to 
now (at least to my knowledge) most attempts failed, yielding trivial results only. (One 
should bear in mind that the structure of a lattice can be very complicated, by far more 
intricate than as it is the case in the quantum-mechanical situation.) 
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