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Fluctuations in open systems
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Small nonequilibrium systems behave quite unexpectedly when in contact with a thermal reservoir. However,
all of them—from molecular machines to molecular magnets—are described by a single fluctuation theorem.
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Fluctuation theorems (FTs) establish fundamental
identities about energy exchanges between a nonequi-
librium system and its environment. Interest in such re-
lations has been boosted by the possibility of applying
perturbations to mesoscopic systems undergoing irre-
versible processes. While most recent research focused
on classical systems, in a paper in Physical Review Letters,
Michele Campisi, Peter Talkner, and Peter Hänggi, at the
University of Augsburg in Germany, have now [1] ex-
tended FTs to open quantum systems, paving the way for
further progress in scenarios ranging from Bose-Einstein
condensates to metallic nanowires.

When in contact with a thermal bath, a system in ther-
modynamic equilibrium can be pushed off equilibrium
by time-dependent external forces. For slow enough
perturbations this process is quasistatic or reversible,
i.e., the system evolves through a succession of equilib-
rium states and the total amount of work done by exter-
nal forces equals the equilibrium free-energy difference
between the initial and final states.

In 1997, Chris Jarzynski, then at the Los Alamos Na-
tional laboratory, found a remarkable result for nonequi-
librium scenarios [2]. According to the second law of
thermodynamics, the total work is more than the re-
versible work: the difference between actual work and
reversible work is equal to the net heat produced by dis-
sipative forces and transferred from a system to the bath.
Let W be the mechanical work due to external agents
and let ∆G denote the reversible work or free-energy dif-
ference. Jarzynski found that, for arbitrary irreversible
processes,
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where <. . . > is an average over an infinite number of
trajectories (i.e., realizations of the irreversible process),
kB is the Boltzmann constant, and T is the temperature

of the environment. The reversible process is a partic-
ular case of this relation where W = ∆G. With the
Jarzynski equality we can obtain free-energy differences
from measurements of the irreversible work, a possibil-
ity overlooked by most thermodynamics textbooks!

Hummer and Szabo subsequently emphasized the
possibility of using the Jarzynski equality to extract the
molecular potential of the mean force from nonequilib-
rium pulling experiments in biomolecules [3]. The first
experimental test of the Jarzynski equality came about a
year later from Bustamante and colleagues at UC Berke-
ley, who measured work exerted on a small RNA hair-
pin by repeatedly unzipping the molecule with optical
tweezers [4]. Gavin Crooks, also at UC Berkeley, went
further and found a relation between work distribution
measured along a given (forward) protocol and its time-
reversed counterpart, thus generalizing the Jarzynski
equality [5],
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where PF(W) stands for the probability distribution
of work along the forward process, PR(−W) is the dis-
tribution along the reverse process (the minus sign ac-
counts for the change in sign of the displacement mea-
sured along the reverse process), and ∆G equals the
free-energy difference between the initial and final states
along the forward process. In 2005 the Crooks rela-
tion was experimentally tested in mechanical unzip-
ping/rezipping experiments with short RNA hairpins
[6]. These and other results have recently stimulated a
wealth of theoretical, experimental, and numerical re-
search. To date several experimental tests of Crooks
and related FTs have been carried out in beads captured
in optical traps [7], mechanical and electrical oscillators
[8], athermal systems [9], or in the recovery of full free-
energy branches in DNA hairpins [10] (Fig. 1).
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FIG. 1: Free-energy recovery in a classical system in a 20
base-pairs-long DNA hairpin mechanically unfolded by op-
tical tweezers [15]. (Upper panel) Experimental setup. The
hairpin is inserted between two handles and the trap pulls it
at a constant speed. (Lower panel) Work distributions can be
measured by repeated stretching (continuous lines)/releasing
(dashed lines) cycles at three different speeds: slow (blue),
green (medium), and red (fast). According to Eq. (2), the
stretching (forward process) and the releasing (reverse pro-
cess) work distributions cross at a value of the work W, which
is independent of the pulling speed and equal to the total free-
energy difference ∆G. (The range of crossing is indicated by
vertical dashed lines.) This property should be observed in
quantum systems as well. (Illustration: Alan Stonebraker)

Fluctuation theorems are expected to be relevant for
small systems where energy fluctuations are of the or-
der of a few kT[11] and for the Crooks FT, in particular,
where (W − ∆G)/kBT is not too large and work fluctua-
tions are measurable. In living systems nonequilibrium
“machines” operate with a formidable efficiency in ther-
mal environments despite intereference from Brownian
motion of water molecules. By describing the spectrum
of energy fluctuations of small objects along nonequilib-
rium processes, FTs offer insight into constraints biolog-
ical machines must overcome to operate in a thermal en-
vironment. Such knowledge might be useful to design
nanomachines that could operate in noisy environments
with an efficiency comparable to that found in nature.

All these results belong to the domain of classical sys-
tems. Extending FTs to quantum systems would allow
us to explore energy fluctuations in the arguably more
interesting quantum domain. In 2000, Hal Tasaki [12]
derived a Crooks-like relation for closed quantum sys-
tems (i.e., systems where the total energy is conserved).

Subsequent attempts to extend the quantum FT to open
systems were restricted to the weak-coupling (between
the system and an external bath) case. Meanwhile,
Jarzynski also showed how the equality he had previ-
ously derived for closed systems retained its validity for
arbitrarily open classical systems [13]. In their recent pa-
per, Campisi et al.[1] have closed the gap by extending
the Tasaki-Crooks relation to arbitrarily open quantum
systems. Using a natural decomposition of the joint par-
tition function of the system in a bath, the authors re-
cover Eq. (2) in terms of the quantum free energy of the
system.

Is it possible to experimentally test the quantum FT?
Testing a quantum FT is tantamount to measuring the
mechanical work and the free-energy difference of the
system between the initial and final states. Campisi et
al.[1] define the free energy of a system as the difference
between the total free energy of the system plus the bath
and the bath-only free energy. Similarly to what is done
in differential scanning calorimetry, one could devise a
method in which the sample includes the system plus
the bath, while the reference is the bath alone. A differ-
ential scan of both the sample and the reference should
provide a measure of the free energy of the system alone.
An a priori determination of the free-energy difference
is not essential to test Eq. (2). To test the validity of
the quantum version of Eq. (2) we should measure the
quantum mechanical work distribution over many real-
izations of the quantum irreversible process.

And herein lies the greatest difficulty. How do we
measure the work W along a single trajectory? In con-
trast to classical systems, the measurement process of
the work along a single trajectory interferes with the
quantum dynamics itself. Crooks recently offered a clue
about how this issue might be resolved [14]. Because
the energy difference along a trajectory ∆E is the sum
of work W and heat Q, we could infer the work by first
measuring ∆E and then Q without interfering with the
trajectory.

Is this possible? Measuring the energy difference
between the initial and final states along a trajectory
should not interfere with the dynamics. As the system
starts out in equilibrium (i.e., in a mixture of pure states),
the collapse of the wave function induced by the initial
observation will preserve the initial Boltzmann-Gibbs
measure. Moreover, we could measure the heat trans-
ferred to the bath. For a large enough bath, this should
not interefere with the system dynamics. However, the
whole issue remains unclear as we face a subtle problem
of quantum measurement in interacting systems.

One can think of many possible scenarios to test
quantum FTs: a Bose-Einstein condensate; a molecular
magnet with macroscopic quantum tunneling; Joseph-
son junctions; a metallic nanowire; shot-noise measure-
ments in electronic devices. Unfortunately we don’t
know which kind of experiment would yield the most
reliable results. The advantage of quantum FTs as com-
pared to classical FTs is that quantum systems need
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not be small or microscopic for quantum fluctuations
to be measurable. The condensed matter experimental-
ist would likely start with quantum systems where cur-
rent instrumentation allows for accurate measurement
of quantum noise and thermodynamic free-energy dif-
ferences. The next step would likely be the experimental
measurement of work distributions in irreversible quan-
tum systems . To paraphrase Lord Kelvin: Until you can
measure something and express it in numbers, you have only
the beginning of understanding. This seems to be more
true than ever for quantum FTs.
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