
International Journal of Theoretical Physics, Vol. 2, No. 4 (1969), pp. 325-343 

On the Nature of Theories of Irreversible Processes 

TA-YOU WU 

Statistical Physics Laboratory, Department of Physics, 
State University of New York, at Buffalo, New York 

Received: 30 April 1969 

Abstract 

The purpose of the present article is to give an elementary discussion of the nature of 
the theories used to describe the observed irreversible processes in gases to the equilibrium 
state, with special regard to the explicit mathematical time-reversal invariance or 
non-invariance of the theories. 

1. Introduction 

1.1. Macroscopic Irreversibility and Empirical Laws 

We are concerned with the non-equilibrium behavior of a gas. In order 
to be definite, let us state the nature of  our observations. Consider a gas 
in an enclosure, which at a certain instant is in a non-equilibrium state. 
Observation shows that within a short time the gas approaches a steady 
state in which the molecular velocities are distributed according to 
Maxwell's law and the spatial distribution is uniform (in the case of  no 
external field). Experience also shows that the approach to equilibrium, 
except for small fluctuations, is monotonic, the fluctuations being the 
smaller the greater is the average density of the gas. Other familiar irre- 
versible processes are the mixing of gases by diffusion, the production of 
heat in viscous flows and the conduction of heat. 

The above description of these processes as irreversible is a macroscopic 
view and is expressed in terms of concepts, or macroscopic variables, such 
as the density, temperature, pressure, etc. The mathematical expressions 
of the irreversibility are the familiar Fourier equations of heat conduction, 
the equation of diffusion, and the Navier-Stokes equation for viscous flow. 
All these equations are not invariant upon time reversal, i.e., are irreversible 
in time. This irreversibility is not the consequence of the basic dynamical 
laws governing the motion of the molecules; it is introduced into the 
equations on an empirical basis. We shall call these theories 'phenomeno- 
logical' theories, to distinguish them from others which we attempt to 
construct on the basis of  more fundamental theories. 
21 325 
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1.2. Thermodynamics 

At the macroscopic level, classical thermodynamics deals with the prop- 
erties of matter in the equilibrium state. The laws of thermodynamics are 
based on empirical experience in dealing with macroscopic phenomena. 
Even the axiomatic form of Caratheodory for the Second Law still depends 
on the validity of an empirical fact. The methods of thermodynamics are 
general in the sense that they do not depend on any specific or detailed 
knowledge of the system at the atomic level. For this reason, the thermo- 
dynamic method is powerful and its range of application wide. But it is 
for the same reason that it has its limitations. Thus thermodynamics can 
give no information on such a simple question as the equation of state of 
a given gas. 

In thermodynamics, the concept ofmacroscopically irreversible processes 
plays a very basic role. The Second Law definitely determines the direction 
of the natural processes in a system not in thermodynamic equilibrium, 
namely, the direction of increasing entropy. This irreversibility is not 
explained by the Second Law; rather, it is a part of the empirical experience 
that has gone into the formulation of the Second Law itself (in the induction 
and generalization process). 

Modern non-equilibrium (or irreversible) thermodynamics has been 
developed to treat certain problems, in particular, processes in systems 
having small deviations from the equilibrium state. The conditions for the 
stability of an equilibrium state according to the Second Law determine 
the irreversible returns to the equilibrium state. A most important develop- 
ment is Onsager's (1931) theory of irreversible thermodynamics, which is 
beyond the scope of the present article. It is, however, so important in the 
subject of irreversible processes that a brief reference will be made below. 

Consider a system in which there are temperature and density gradients. 
The heat flux J and the mass flux N can be expressed by equations of the 
form 

J = all VT+ alzVn 

N =  a21VT+ a22Vn 

where al~, a2z are, up to proportional factors, the coefficients of heat 
conduction and diffusion, az~ VT gives the thermal diffusion and al 2 Vn the 
heat flow due to diffusion. These equations are the generalizations of the 
heat conduction and diffusion equations and are themselves parts of an 
irreversible theory. They can be regarded as phenomenological equations, 
or they can be derived from such a theory as Boltzmann's transport equation 
(Section 3.1), which itself is an irreversible theory. 

In this particular case, Onsager's theory gives the following reciprocity 
relation (when all quantities are expressed in units of appropriate dimen- 
sions) 

a12 = a21 
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Such reciprocity relations, however, are not empirical in origin but can be 
proved from general principles such as the fundamental reversibility of 
microscopic processes. 

Thus, important as the reciprocity relations are, they do not bear on the 
question of the basis of irreversible theories or on the origin of the observed 
macroscopic irreversibility, which is the subject of the present article. 

1.3. Statistical-Kinetic Theories 

In the kinetic theory of gases, one starts with a system of molecules. One 
is, however, not interested in a detailed knowledge of the individual 
molecules, but only in some macroscopic properties of the gas. These 
macroscopic properties must then be related to some average properties 
of the molecules. It is in dealing with extremely large numbers (Avogadro's 
number = 6 x 1023) that the probability concepts and statistical methods 
enter into the theory. 

For  systems in equilibrium, theories have been developed in which some 
basic postulates form the foundation. These theories have been called 
statistical mechanics. For systems not in equilibrium, equilibrium thermo- 
dynamics and equilibrium statistical mechanics are not sufficient. The aim 
is to formulate theories for describing the observed irreversible processes 
in the macroscopic view. 

There have been many different theories of irreversible processes. They 
can be grouped into two categories. In one, the theories are based on some 
assumptions of a probability nature. To this category belong the Boltzmann 
transport theory, the Fokker-Planck theory and the so-called Master 
Equation (theory). In these theories, the basic equation is time-reversal 
non-invariant, or as one may say, has a time arrow. In the other category 
are the theory of Boltzmann and Gibbs, and the many recent theories of 
Bogoliubov, Born, Green, Kirkwood and others. All these theories start 
from the Liouville equation, which is the consequence of classical dynamical 
laws and is time-reversal invariant. 

In the following sections we shall discuss the nature of these theories. 

1.4. Quantum Theory 

In quantum mechanics there is an analogue to each of the basic classical 
features. The classical equations of motion and the Schr/Sdinger equation 
are both time-reversal invariant. To the Liouville equation (Section 2.2) 
for the density in phase space, there is an exact quantum analogue for the 
density matrix, and both are time-reversal invariant. To the classical Master 
Equation (Section 3.3) for the probability, there is an exact quantum 
analogue, called the Pauli equation, for the diagonal elements of the density 
matrix. Both equations are irreversible in time, the classical one on account 
of the Smoluchowski hypothesis for Markovian processes, the quantum 
one because of the random phase hypothesis. 

It is generally believed that the observed macroscopic irreversibility is 
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of classical statistical origin and is not a quantum effect. For  this reason, 
we shall confine our discussions in the present article to the classical theories. 

2. Statistical-Kinetic Theory of  Boltzmann and Gibbs~ 

2.1. Poincard Theorem (1890) 

In the statistical-kinetic theory, a gas is a system of molecules whose 
motions are governed by the dynamical laws. Let ~ ( q , p )  be the Hamiltonian 
of the system, where q,p stands for ql . . . . .  qN, Pl . . . .  , PN. The equations 
of motion are 

0J(~ 0 ~  
Ok -- Opk' --Pk -- Oq k , k = 1, 2 , . . . ,  N (2.1.1) 

In the 6N-dimensional F phase space of q,p, the dynamical state of the 
system is represented by a point P(q,p). If  the state at a certain instant 
to is given, say Po(q~176 then the whole history of the system is represented 
by the trajectory through P0. As equations (2.1.1) are first-order differential 
equations in time, there is one, and only one, trajectory through any point 
which is uniquely determined by the equations (2.1.1). Therefore, a trajec- 
tory never crosses itself, nor another, at any time. Hence, in the course 
of time, the phase point P goes all over the accessible portion of the F-space, 
for example, the hypersurface corresponding to the relation: total energy 
= constant (or, an energy shell of thickness AE). 

From Poincar6's theorem, the trajectory of the phase point of a gas 
contained in a finite volume will pass, in the course of time, arbitrarily close 
to the point P0 itself, without going through it. The time of this quasi-cycle 
depends on how close one wants it to approach Po, and is extremely long 
for large N. The length of this quasi-cycle has been estimated by Boltzmann.t 
Thus for a gas containing 1018 molecules in 1 cc with mean velocity 5 x 104 
cm/sec, the time required for all the molecules to come within a range of 
10 .7 cm and 102 cm/sec in each of the coordinate and velocity components 
respective to the initial P0 is greater than 101~ years (Chandrasekhar, 
1943). This theorem is of basic importance in our understanding of the 
'irreversibility' of the approach of a gas toward equilibrium. 

2.2. Liouville Equation 
Let p(q,p,t)dqdp, where dqdp stands for dql . . . . .  fqu, dpl . . . . .  dps, be 

the probability of the phase point P(q,p) being the volume element dqdp, 
so that 

f . . .  f pdqdp= 1 for all t (2.2.1) 

t L. Boltzmann's work appeared in the Journal Sitzungsberiehte der Akademie der 
Wissenschaften in Wien, during the years 1860 to 1890. A good deal of the discussions 
can be found in his Vorlesungen iiber Gastheorie. Leipzig (1896-98); and its English 
translation in Lectures on Gas Theory. University of California Press, Berkeley (1964). 
See also, Gibbs, J. W. (1902). Elementary Principles in Statistieal Meehanies. This work 
is included in his Collected Works, Vol. II. Yale University Press (1948). 
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the integral being taken over the accessible volume. This convention will 
always be used in the following discussion. It follows from the equations 
(2.1.1) that any volume in t h e / "  space remains unchanged in time if we 
follow the points in that volume along their trajectories, although the shape 
of the volume will change. From this and the conservation of probability 
in that volume, the Liouville equation follows (Liouville, 1838): 

at ~ Op, Op, ~ (2.2.2) 

An important property of the Liouville equation is that it is time-reversal 
invariant, i.e., upon time reversal 

t -+ - t  = r, q ---> q, 

equation (2.2.2) becomes 

at3_ 

p ~ -p, p(q,p, t) --> fi(q,-p, r) (2.2.3) 

which has the same form as (2.2.2). 
From (2.2.2), it follows that for any function F(p) of p, 

d 
dt f "" f F(p)dqdp=O (2.2.4) 

If  we define the function H(t) 

H(t) = f ... f plnpdqdp (2.2.5) 

then from (2.2.4), it follows that 

dH(t) 
dt - 0 (2.2.6) 

If  we look at H in (2.2.5) as a functional of p(q,p), the requirement that 
H be stationary subject to (2.2.1) as an auxiliary condition leads to 

p = constant (2.2.7) 

From the second variation and p > 0, we find: 

H(t [p) is minimum if p is a constant, independent of q, p (2.2.8) 

In this connection, let us prove the following theorem. Let a function 
P = P(q,p, t), P > O, satisfy the condition 

f " " f  P(q,p,t)dqdp= 1 (2.2.9) 

Also let p(q,p, t) be any function satisfying 

p>~o, f...fpdqdp=l 
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Define the functional/~ of P(q,p, t) by 

/~(t [P) = f ' " f  p(q,p, t)lnPdqdp (2.2.10) 

It can readily be shown, for example by the variational method, that 

'/~(t ]P) has a maximum value when P equals p' (2.2.11) 

Hence we obtain 

f "" f plnpdqdp >~ f "" f plnPdqdp (2.2.12) 

the equality sign holding when P = p. Note that this theorem (2.2.11), or 
(2.2.12), is purely a mathematical result. 

2.3. Theory of Boltzmannt 
To obtain the essential statistical features of the problem, we shall 

consider a system of non-interacting and therefore independent particles. 
In this case it is sufficient to consider the 6-dimensional/z phase space of 
one particle. Imagine the/z space as being divided into a large number of 
cells each of volume co. co must be small on the macroscopic scale but must 
not be too small, so that each cell still contains a number of particles. Let 
nl, n2, .:. be the number of molecules in cells 1, 2 . . . . .  The number of 
permutations of N molecules in the above distribution is 

N~ 
- Z n l  = N  Gnl,n2 . . . .  /21!/,/2 ] . . . '  

The weight of each distribution is (w/V) N, where V is the volume of the 
accessible /z space. The distribution that can be realized in the largest 
number of ways is found by maximizing G subject to the conditions 

n~ = N and ~ nt ei = E, where e~ is the energy of a molecule when its 
phase lies in the cell oJt, and E is the total (constant) energy of the gas. 
The calculations are familiar, and we shall only state the qualitative result 
here. It is found that G has a very strong and sharp maximum, it being 
the sharper the larger N is. This result means that of all the possible 
permutations and distributions of the N molecules, an overwhelmingly 
large number corresponds to the few distributions near the maximum of 
G. The distribution giving the maximum G is the most probable state. 
Boltzmann identified this most probable state with the equilibrium state. 

The probability of the distribution n~, n2,/73 . . . .  is now 

W.,..~ . . . .  = G.1, .5 . . . .  ( ~ o l  V) N 
and 

Z W.,,.~ . . . .  = 1  

the summation being taken over all partitions n~, n2, ... of N. 

t See footnote on p. 328. 
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Let us translate the above result to the F space. In the F space, to p is 
the volume ~ of a cell and V N is the volume of the F space. The sharp 
maximum for Gnl,,: . . . .  now means that an overwhelmingly large portion 
of the F space corresponds to the most probable state which is identified 
with the equilibrium state. 

Consider now a gas which at an instant to is in a non-equilibrium state 
represented by a point P0. According to the discussions in Section 2.1, the 
phase point will move endlessly in the F space. Since an overwhelmingly 
large proportion of the F space corresponds to the equilibrium state, the 
phase point will pass from P0 in a time of the order of the relaxation time 
into this large portion of the F space, and the system will approach rapidly, 
and will mostly be found in, the equilibrium state. 

The question as to the non-observation of the recurrence of the initial 
state Po is answered by noting the extremely long quasi-period of the 
Poincar6 quasi-cycle. In the F space, there are of course many points Q 
which correspond to highly non-equilibrium states. However, starting from 
any point P0, it also takes a very long time in general to come very close 
to one of them. Compared to the points corresponding to the equilibrium 
state, these non-equilibrium points have measure zero. Rigorously speaking, 
there is no irreversibility. But the reverse of the approach to equilibrium 
is so improbable that for practical purposes it can be excluded. 

As the phase point P moves endlessly all over the F-space, it is plausible 
to assume that on average it spends an equal amount of time in volume 
elements of equal size at different points in the F-space, i.e., the probability 
of the phase point P being found anywhere will be the same. This means 
that p approaches a constant value over the F-space. As an overwhelmingly 
large proportion of the F-space corresponds to the equilibrium state, this 
suggests that the equilibrium state corresponds to a uniform p. 

In Section 2.2, the H(t) function defined in equation (2.2.5) is minimum 
for a constant value of p. Thus one would have a theory for an irreversible 
approach to equilibrium in a gas if one could show that H(t) keeps on 
decreasing until it reaches its minimum at which p is uniform, i.e., if 

dH 
~ -  < 0 (2.3.1) 

This hypothesis is known as the H theorem of Boltzmann 0872, 1875). 
We have seen in equation (2.2.6), however, that as a consequence of the 

Liouville equation, dH/dt = 0. Thus the H theorem cannot be established 
on the basis of the laws of dynamics alone. There had been the criticism 
of Loschmidt (1877) that if H(t) decreases with time for one state of motion, 
then it will have to increase with time for another state in which all the 
molecular velocities are just opposite to those of the first state. There had 
also been the criticism of Zermelo (1896) that since the state in the course 
of time returns arbitrarily close to any initial state according to Poincar6's 
theorem, H could not be monotonically decreasing at all times. 

To sum up, we may state the following. In the probability sense, it is 
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possible to understand the macroscopically irreversible approach of a gas, 
from any initial state, to the equilibrium state. The H theorem, however, 
cannot be established on dynamical laws alone and attempts to maintain 
it must be made on probability grounds, with additional assumptions 
outside of dynamical laws. 

2.4. Theory of Gibbs--Microcanonieal Ensemble (Tolman, 1935)t 

Gibbs introduced the concept of ensembles. An ensemble is a very large 
number of systems which all have the same macroscopic variables as, but 
different dynamical states (q,p) to, the system under consideration. The 
ensemble is represented by a distribution function p(q,p, t) in the/ ' -space 
which is now normalized to N instead of unity in equation (2.2.1). All the 
results of Section 2.2 hold. 

Consider those points that lie within a volume element A = dq dp, namely, 
pA. Each point will move in accordance with the equations of motion 
(2.1.1) as described in Section 2.1, and the points pA will move as an 
incompressible fluid, keeping volume A but changing shape. In the course 
of time these points will deform into a thin filament over the accessible 
part of the/ '-space. Similarly, for other systems lying outside A. The result 
is that, from any initial distribution p(q,p), the ensemble will in the course 
of time spread out 'uniformly' over the/ '-space. 

In Boltzmann's theory, it is assumed that the equilibrium properties of 
a gas are given by a long time average (i.e., long compared with all the 
relaxation times of the system). In Gibbs's theory, the fundamental hypo- 
thesis is made that the time average over one system is equal to the average 
taken over the ensemble. As the phase points of an ensemble extend, in 
time, over the/ ' -space 'uniformly', the ensemble average (average over the 
/'-space) gives the equilibrium value. 

These qualitative discussions make plausible, in the probability sense, 
the 'irreversible' approach of a system from any non-equilibrium state (for 
example, all systems initially lying within a volume A) to the equilibrium 
state represented by a 'uniform' distribution in the /'-space. The words 
'uniform' and 'uniformly' are to be taken in the coarse-grained sense 
defined below. 

The concept of coarse-graining is introduced on the following considera- 
tions. In the macroscopic observations made on a gas, one does not know 
the positions and the momenta of the molecules except to within ranges 
Aq and Ap. The coarse-grained density ~ is defined as the average value 
of the 'fine-grained' p over a volume A = AqAp of size corresponding to 
the limits of accuracy of experimental observation, i.e., 

1 
~(q,p)=~ f ... f dqdpp (2.4.1) 

A 

t See also, foo tnote  on  p. 343. 
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is a function of phase (q,p), but is constant over the volume A. With 
this definition, we obtained for the coarse-grained ensemble average of a 
function F(p) 

F= f ... f ~F(~)dqdp= f ... f ~ f ... f p(q',p')dq' dp'F(~(q,p))dqdp 
/tqp 

= f . . . f   F )dqap (2.4.2) 
Let us now come back to the ideas of Gibbs on the spreading of the 

phase points in A over the F-space. The foregoing qualitative discussions 
make it plausible that p(q,p) will approach a uniform coarse-grained }. Now, 
we may define a coarse-grained H function H(t) by (2.4.2) 

I:I(t)= f ... f ~ln~dqdp 

= f ""f  pln~dqdp (2.4.2a) 

Using the theorem in equation (2.2.12), we immediately obtain 

f "" f plnodqdp>  f ... f pln aqdp (2.4.3) 
or ,  

H(t) >~ IZI(t) (2.4.3a) 

i.e., the fine-grained H is always greater than the coarse-grained/~. It is 
to be noted that the relation (2.4.3) or (2.4.3a) is a consequence of the 
definition (2.4.1) and the mathematical inequality (2.2.12), and has nothing 
to do with the time variation of the ensemble or the system in question. 

We have seen in equation (2.2.6) that the fine-grained H remains constant 
in time. The coarse-grained/~ as defined by (2.4.1) is not governed by the 
Liouville equation, and one may ask whether /~ decreases monotonically 
in time, i.e., whether 

dR 
d~- < 0 (2.4.4) 

If the coarse-grained/q satisfies the H theorem (2.4.4), then (2.4.4) is the 
mathematical expression of the qualitative ideas of Gibbs on the approach 
of a gas from any arbitrary state to equilibrium. 

To express Gibbs's ideas in terms of the coarse-grained density, let us 
prepare an ensemble such that at an instant tl (Tolman, 1935; ter Haar, 
1954, 1955), 

pl = constant = ~1 inside a volume A 

= 0 elsewhere (2.4.5) 

At a later time tz, the phase points will have spread so that in general 

P2 r P2 (2.4.6) 
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Then 

n ( t 2 )  - f ... f  21n 2dqdp- f ... f ~lln~ldqd p 

by r and (2.4.5), 

= f "" f p2ln  dqdp- f ".. f pllnp, dqdp 
by (2.2.6), 

and by (2.4.3) 

= f " .  f p~ln~dqdp-  f ... f p~lnp2dqdp 

< 0 (2.4.7) 

Thus/~ does decrease from the initial condition (2.4.5) at t = tl to a smaller 
value at any later time t 2 > t 1 . 

The above proof depends entirely on the special initial condition pl = ~l 
in (2.4.5). Without it, it would not have been possible to proceed beyond 
the first line in (2.4.7). What has been, and can be, proved is that the initial 
non-equilibrium state (2.4.5) with Pl = ~a in A does evolve with a decrease 
in/-Tr, and this is the qualitative discussions of Gibbs's ideas given before. 
There is, however, no proof that/~(t3) - /~( t2)  < 0 for a later time t3 > t2, 
i.e., there is no proof t ha t /~  decreases monotonically, in contrast to the 
arguments of Tolman that ~ continues to decrease (Tolman, 1935). It is 
true that /7 ,  unlike H, is not bound by any law to remain constant, but 
the H theorem for the coarse-grained/q cannot be proved without some 
additional assumption concerning the time behavior of the coarse-grained 
density ~. Through the years, the H theorem has been the subject of 
discussions, by Boltzmann, Loschmidt, Zermelo and the Ehrenfests, and 
it became clear that the theorem must be interpreted on a probability basis. 
It will be shown in Section 3.3 that an assumption on the time relation of 
the state probabilities does introduce a time arrow and lead to an H 
theorem. 

To summarize, we may conclude as follows. On the basis of the Liouville 
equation, although no mathematically irreversible law (such as the 
H-theorem) can be derived, it is still possible to 'understand' the irreversible 
approach of a gas to equilibrium in the probability sense. The basic reason 
is because of the large number of permutations of molecules that all 
correspond to the equilibrium (the most probable) state and the long 
quasi-cycle, by virtue of the large number of molecules in a macroscopic 
amount of gas. 

3. Theories with Explicit Time-Reversal Non-Invariance 

We shall next consider a few theories of the other category mentioned 
in Section 1.3, namely, those that are by construction, by making assump- 
tions of some sort, explicitly time-reversal non-invariant. Such theories do 
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not claim to be the consequences of the fundamental dynamical laws and 
are therefore not to be criticized on that basis. The criteria will be their 
plausibility, simplicity and ultimately their success in applications to actual 
problems. 

3.1. Boltzmann's Theory 
The earliest theory of transport processes is that of Boltzmann. Instead 

of dealing with the N molecules of a gas in the/'-space, it is assumed that 
a theory for describing the gas can be formulated in terms of the one- 
particle distribution function f (r, v, t) in the/z phase space of one particle. 
The justification for this has become clear only comparatively recently 
through the work of Bogoliubov, from the observation that in a gas there 
exist two rather widely different physical time scales corresponding to the 
short range of intermolecular interactions and the long mean-free path at 
ordinary gas densities. It is not the purpose of the present article to analyze 
this aspect of Boltzmann's theory or Bogoliubov's theory. Our interest is 
in the time-reversal property. 

The Boltzmann equation is so familiar that we shall simply write it down 
(Boltzmann, 1876). The distribution funct ionfis  normalized according to 

f f ( r ,  t) dv = n(r, t) = number of molecules unit volume V, per 

The equation for f ( r ,  v, t) is 

Of Of K Of [Of~ 
a~ @ U'Or ~- / ~ ' ~  = ~ ) ~ -  collision 

= f f do -I -  II(HI' (3.1.1) 

where K is the external force, the subscript 1 denotes another molecule with 
which the one under consideration in f(r,v, t) collides, dco = sin OdOd(~, 
0 the scattering angle, a the collision cross section, and 

f '  =f(r,  v', t), f l  '= fl'(r, vl', t), etc. 

the prime denoting quantities after a two-body collision. The first term in 
the integral gives the rate of increase of f (r ,v , t )  due to the restitution 
collisions, and the second term gives the rate of decrease due to direct 
collisions. The specific form of the right-hand side constitutes the basic 
assumption (Ansatz, in German, is the more appropriate expression) of 
Boltzmann's theory. This Ansatz is not a consequence of the dynamical 
laws but is based on plausibility considerations. As a consequence of this 
Ansatz, the Boltzmann equation has the following properties: 

(i) Equation (3.1.1) is not invariant upon the reversal of the direction 
of time. On reversing t as in equations (2.2.3), and writing 

f = f ( r , - v , - t )  =f (r , -v ,  r) 
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etc., one obtains the equation for f i n  ~- which differs from that for f i n  t 
by the presence of a minus sign between the two sides of the equation. In 
fact this equation for f in 7 does not have plausible physical meaning. 
Equation (3.1.1), so to speak, has a definite time arrow built in. 

(ii) This definite direction of time built in in (3.1.1) is the one along which 
the H function 

m r ) =  ffflnfdrdv (3.1.2) 
decreases monotonically with time, for with (3.1.1), one readily finds 

dH 
ln f )  ~f drdv -<,0 (3.1.3) dt - f f (1  + 

Thus the Boltzmann equation (3.1.1) satisfies the H theorem. 
Now on a comparison and identification between the results from 

classical thermodynamics and those from the Boltzman statistics of Section 
2.3, Boltzmann obtained the following relation between the probability W 
of Section 2.3 and entropy 

S = k l n  W 

k being the Boltzmann constant. 
It is also easy to obtain the following relation between the H function 

defined in (3.1.2) and the probability W, 

N H  = - l n  W 

(H here being for one molecule). 
Thus, up to an additive constant, 

S = - N k H  

The H theorem (3.1.3) thus is equivalent to the Second Law of Thermo- 
dynamics, i.e., the law of increasing entropy for the irreversible approach 
of a gas to equilibrium. 

We must repeat that the H theorem (3.1.3) has been established by the 
explicit use of the Boltzman equation (3.1.1) which is not a dynamical law 
but which has been constructed to be irreversible by the Ansatz for 
(0f/0t)eollision in (3.1.1). In this case, the criticisms of Loschmidt and of 
Zermelo do not apply. 

3.2. Fokker--PlanckEquation (Fokker, 1914; Planck, 1917; Chandrasekhar, 
1943) 

Another theory with time irreversibility is that of Fokker (1914) and 
Planck (1917). It is based on a less specific assumption than the collision- 
number Ansatz of Boltzmann in (3.1.1). A molecule is considered to have 
random collisions with other molecules. Let Q(v - Av, A v) be the transition 
probability that in a time interval At (>0), a molecule changes its velocity 
from v - Av to v, and 

f Q ( v - A v ,  Av)dAv = 1 (3.2.1) 
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Q(v, dv) depends on the present state, i.e., the velocity v, of the particle, 
and not on the past history. It is not an explicit function of time, but depends 
on the length of the interval A t, and A t must not be too short in order 
that the molecule may have suffered a sufficiently large number of random 
collisions with other molecules. The postulate is now made that the 
distribution function at time t + At is related to that at time t through the 
Smoluchowski law 

t + At) = f dAvf(v - Av, t) Q(v - Av, Av) (3.2.2) f (v ,  

It is important to note that this is not a consequence of dynamical laws, 
but is an assumption connecting the probabilities at two different times 
irrespective of the past history before the time t. 

On calculating the rate of change off(v)  and introducing the averages 

(Av) = f Av Q(v, Av)dAv 

(AvxAvy) = f AvxAv~, Q(v, Av) dAv, etc. 

one obtains, on writing O/Ov = Vv, 

'(~Iv) 
(~)r = - V " ( T f ) + � 8 9  + ' ' "  (3.2.3) 

On equating this to the left-hand side of (3.1.1), one obtains the Fokker- 
Planck equation. One immediate application of this equation is to the 
Brownian motion, leading to the result obtained earlier by Einstein by other 
methods. We shall not go into further discussions of this equation, except 
to emphasize that it is not invariant upon time reversal, and that this 
non-invariance comes from the assumed relation (3.2.2). That this relation 
introduces a time arrow will be more clearly brought out in the following 
section. 

3.3. The Master Equation (Wu, 1966) 

Here we shall formulate a time-reversal non-invariant theory in a formal 
manner, leaving out detailed physical interpretation, in order to bring out 
the far-reaching consequences of a relation of the type (3.2.2). 

Let wl, i = 1, 2 . . . . .  be the probability that a system be in state i at time 
t. Let the probabilities at a later time t + At be wk', k = 1, 2, .... We have 

w, = 1, ~ w~'= 1 (3.3.1) 

Assume that the system in state k at time t has the transition probability 
A~k, in the interval At, of going into state i at time t + At. The transition 
probabilities depend on the length of the interval At, but are independent 
of the past history of the system. They are to satisfy the requirements, by 
virtue of their being probabilities, 

0 ~< Aik ~< 1 (3.3.2) 
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and 
E A,k = 1 (3.3.3) 
i 

Let us make the hypothesis that relates the probabilities w~'(t + At) and 
wk(t): 

w,'(t + At) = ~, A,k wk(t) (3.3.4) 
k 

It is to be noted that, except for the use of discrete states here, this relation 
is of the same nature as (3.2.2). 

From (3.3.4), together with (3.3.3), one obtains 

W,'(t + At)-- wi(t)= ~ A,kWk--(~ Ak~)Wi 

o r  

Aw,(t) _ ~ [A,k _ Akiw. ] 
At ~ wk ~It '] (3.3.5) 

which is the so-called Master Equation. If we introduce the transition 
probabilities per unit time 

aik = Atk//It 

we may write (3.3.5) in the differential form 

dwi 
- ~ (aik Wk -- aki wi) (3.3.6) 

dt k 

The theory above has the following properties: 
(i) Once the assumption (3.3.4) is made expressing w~' at t + At in terms 

of the Wk at time t, it is not possible to go backward in time to find the wk(t) 
in terms of the w/(t + ~It) and still to have the same probability meaning 
given in (3.3.4). Let us assume that the inverse matrix A -1 exists so that 
equation (3.3.4) can be solved 

wk(t) = ~ A~ l w,'(t + At) (3.3.7) 
i 

From A -1A = unit matrix, we have 

Aki 1A~ = Sky (3.3.8) 
i 

Take k Cj.  Since all A~j are ~>0, it follows from (3.3.8) that not all A;i 1 
are greater than zero. Again, take k = j .  Since all A~k < 1, it follows from 
(3.3.8) and (3.3.3) that the Ah I cannot all be <1. 

From this it also follows that the Master Equation (3.3.6) has no 
probability meaning if one simply reverses the sign of t. 

(ii) Let us define, similarly to (2.4.2a), an H function by 

H(t) = E w,(t)In w,(t) (3.3.9) 
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Using (3.3.5), we have 

dH 1 
- ,Ji ~" (Aik wk -- Aki w~) (1 + In w~) 

dt 
i , l t  

--~t~(Aikwk--Akiw~)lnwi on using (3.3.3) 
i , / r  

_ 1 ~ ( w / - w ~ ) I n w i  onusing(3.3.3) and(3.3.4) 
At 

i 

By use of the same method as that used in proving the mathematical 
inequality (2.2.12) (which differs from the present problem in involving 
integration instead of summation), it can be seen that the right-hand side 
of the last line in the equations above is negative. Hence 

d ~ < 0  (3.3.10) 

This shows that the theory has a definite direction of time.t 

t The proof of the relation (3.3.10) can be carried out without appealing to (2.2.12) but 
by using an extra normalization for the A~k, namely, 

A~k = 1 (3.3.3a) 
k 

The meaning of this condition is not as obvious as (3.3.3). But both (3.3.3) and (3.3.3a) 
are suggested in a quantum mechanical version of the theory where the relations (3.3.3) 
and (3.3.3a) are properties of the unitary transformation in time (Wu, 1966). 

We calculate, from (3.3.4) and (3.3.9), 

H ( t  + At) - H( t )  = ~ A i k w k l n w / - -  ~ w~lnw~ 
i , k  i 

Now we have the following inequality due to Gibbs. For any positive x, we have 
x 

f l nydy  = - x + xlnx 1 0 

1 

Set x = wdw/, multiply the above inequality relation by vet' and we get 

wklnwk -- Wk + W/ >1 w k l n w j  

Since all A~k/> 0, we obtain 

H ( t  + At)  - H( t )  <~ ~ A~k(wklnwk -- Wk + W~') -- ~ w~lnw~ 
i , k  i 

On using (3.3.3) and (3.3.3a), it is seen that the right-hand side is zero, and we obtain 

H ( t  + At)  - H( t )  <~ 0 

It might have appeared at first thought that had one used the inverse relation (3.3.7), 
all the above steps could have been repeated, with A~ 1 replacing A~k, and one would 
have arrived at 

H(t )  - H ( t  + At)  < 0 
and this would have meant 

H ( t  + At)  - H( t )  = 0 

This result, however, it not true, because the A~ 1 are not all >0 as we have shown before, 
and one cannot arrive at the inequality H( t )  - H ( t  + At)  < O. 
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(iii) The Master Equation, subject to the basic assumption (3.3.4), is 
quite general. By replacing the discrete states by continuous states, the H 
function defined in (3.3.9) can be compared with the H function in (2.2.5). 
It may be recalled that on the basis of the dynamical laws, the H function 
in (2.2.5) remains unchanged in time, whereas on the basis of the probability 
assumption (3.3.4), the H function in (3.3.9) decreases monotonically with 
time. 

(iv) The linearity of the Master Equation is only apparent, because the 
transition probabdities alk can depend on the probabilities wk. In fact the 
Boltzmann equation (3.1.1) can be thrown into the form (3.3.6) in which 
the transition probabilities a~k are proportional to the wi =f ( r ,  vi, t) in 
(3.1.1). One may regard the Boltzmann equation as a special case of the 
Master Equation. They are both time-reversal non-invariant. 

3.4. Theories Based on the Liouville Equation 
As seen in Section 2, the Liouville equation is time-reversal invariant 

and it is not possible to obtain an irreversible equation from it without 
additional assumptions. But it is also seen that the theories of Boltzmann 
and Gibbs make the approach of a gas to equilibrium extremely probably 
irreversible. In recent years many attempts have been made to formulate 
a theory of gases (and plasmas) by starting from the Liouville equation. 
The common initial step in many of these theories is to transform the 
Liouville equation into a system of coupled equations by defining s-particle 
distribution functions 

F s ( X l ,  x 2 ,  . . . ,  X s ,  t) 

(in which xi stands for qi, P~, s = 1, 2 . . . . .  N) by 

Fs= V ~ f "'" f FNdx~+l . . . .  , dxN, Fu proportional to p in (2.2.1) 

V is the volume of the gas. Let r denote the intermolecular interaction 
between particles i and j. The Hamiltonian of an s-particle subsystem of 
the gas is 

H~= . [~m p. + U(q,) +i<i<j  ~ r 

Let us introduce the Poison bracket expression 

[OA OB OA 

Then simply by integration of the Liouville equation (2.2.2), one obtains 
the system of coupled differential-integral equations 

OF~--{H,,Fs} - N - s  dxs+, Cz.,+,,F,+, , s = l ,  2 . . . .  (3.4.1) 
Ot V i 
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which is known as the B-B-G-K-Y hierarchy (Bogoliubov, 1946; Born 
& Green, 1946, 1947; Kirkwood, 1946, 1947; Yvon, 1935). This system 
of equations is completely equivalent to the Liouville equation and is 
time-reversal invariant. 

Different theories differ at this point in their different expansions of the 
Fs and the different methods of introducing a time-irreversibility into the 
theory. It is beyond the scope of the present article to describe the various 
theories. We wish only to emphasize the time-irreversibility aspect of these 
theories. 

In the theory of Bogoliubov, a time direction is introduced by the 'initial 
condition' which defines that direction as the past in which the s-particle 
distribution function F, is uncorrelated, i.e., 

lim F, = F~(1)F,(2),.. . ,  Fm(s), 
t -~--oo 

s = 2, 3 , . . . ,  N (3.4.2) 

The positive direction of time, or the future, is the one along which the 
particles become correlated on account of their interactions. When the 
conditions (3.4.2) is used in integrating (3.4.1), the result is no longer time- 
reversal invariant. It might be mentioned in passing that by expanding the 
Fs in powers of the gas density and terminating the equation for F, from 
(3.4.1) at the first order in density, Bogoliubov obtained an equation which, 
in some approximations, reduces to Boltzmann's equation (3.1.1). This is 
a most satisfactory feature of Bogoliubov's theory, since it furnishes a 
foundation for the Boltzman equation. A similar theory of obtaining 
Boltzmann's equation from the Liouville equation has been independently 
given by Kirkwood. 

In the theories of other authors, either an initial condition on the many- 
particle function Fs is used, or a Laplace transform in time is made 

m 

f ( k ,  v, co) = f f ( k ,  v, t) exp (-o)t) dt (3.4.3) 
0 

where the real part of o) is positive. Such a transform automatically excludes 
negative values of t from the theory, and only positive values of t are 
permissible. 

4. Concluding Remarks 

From the preceding sections, we can summarize the discussions as follows. 
(1) There are the observed irreversible processes in gases. If  we are 

interested only in formulating laws to describe them in the macroscopic 
view, then we have already satisfactory laws. 

(2) But if we are interested in formulating theories from the atomic level, 
i.e., in understanding the macroscopic irreversibility on the basis of 

22 
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dynamical laws governing the motions of the molec~es, then there are two 
major problems. One is the impracticability, and irrelevance, of dealing with 
the large number of molecules in any macroscopic amount of gas. Prob- 
ability concepts and statistical methods are introduced to deal with this 
aspect. The other problem is to get out, from the fundamentally revers- 
ible dynamical laws, theories that will describe the observed irreversible 
processes. 

(3) The marriage between probability concepts and dynamics leads to 
the Liouville equation which however is dominated by dynamics and is 
time-reversible invariant. Without the addition of other assumptions out- 
side of dynamical laws, one cannot obtain from the Liouville equation a 
theory which is time-irreversible explicitly. In particular, one cannot estab- 
lish such an irreversibility as the H theorem on purely dynamical ground. 

(4) On the other hand, on the basis of the Liouville equation, it is possible 
to understand the extremely high probability of 'irreversible' approach of 
a gas toward equilibrium. This is achieved in the theory of Boltzmann for 
one single system and that of Gibbs for an ensemble. Thus the Liouville 
equation, although mathematically reversible in the time, does contain the 
essence of'physical' or 'macroscopic' irreversibility in the probability sense. 
This property of the Liouville equation has its origin in the largeness of 
the number of particles in the system under consideration. 

(5) Because of this last-named property of the LiouviUe equation, it 
follows that any theory based on it and rendered time-reversal non- 
invariant by any plausible assumption or artifice will also describe the 
irreversible approach to equilibrium. This is illustrated by the theories of 
Bogoliubov and others who introduce certain initial conditions that in 
essence define a time arrow. In such theories, the objections of Loschmidt 
and of Zermelo will not arise. 

(6) Now we may ask ourselves the question as to what we really want 
regarding a theory for irreversible processes. If we allow ourselves to be 
less puritanical as far as strict adherence to dynamical laws is concerned, 
then our object is to formulate a theory with the purpose of describing the 
irreversible processes. We may retain dynamics as far as possible but are 
ready to introduce additional ideas which are not deducible from dynamics. 

It is on this philosophy that many theories have been proposed. Boltz- 
mann's equation, the Fokker-Planck equation and the Master Equation 
are briefly referred to in Sections 2 and 3. 

(7) There are authors who are not happy with this attitude. Some try 
to trace this irreversibility (in the macroscopic scale) to something more 
basic. It seems that at the moment not much can be reported about such 
ideas. 
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