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out in the thermodynamic limit N→!. Nevertheless, for fi-
nite systems—and in particular at small densities—the
nonanalytic behavior is accompanied by strong variations/
oscillations of observable quantities as temperature and pres-
sure, when continuously varying E. Both qualitatively and
quantitatively, this behavior is analogous to what is usually
denoted as a “phase transition.” However, since these micro-
scopic nonanalyticities do not survive in the thermodynamic
limit !at least for our one-dimensional model", they strictly
speaking are not covered by the conventional definition of
singular macroscopic PTs. We shall, therefore, speak of sin-
gular (or nonanalytic) microscopic PTs in the MCE #48$.

Let us also briefly discuss the parameter dependence of
the microcanonical TDFs shown in Fig. 1. As evident from
Eq. !5a", the positions Ek of the singular macroscopic PTs are
just proportional to U0. The amplitude of the associated os-
cillations in T and P does also depend on the particle number
N and box size L: The strength of the oscillations increases
for larger values U0 and L, but becomes smaller for larger
particle numbers N. The number and formal order of the PTs,
however, only depend on the particle number N and are in-
dependent of U0 and L !as long as U0"0 and L"Lmin".
Thus, qualitatively, the results are independent of the particu-
lar choice of the model parameters U0 and L. Moreover,
analogous features can be found in the microcanonical ca-
loric curves of one-dimensional !1D" Lennard-Jones chains
#30$.

It should be mentioned that the exact phase volume !5a"
of our model system resembles in structure the phase volume
obtained by the harmonic superposition method !HSM" ap-
plied to Lennard-Jones clusters !see, e.g., Doye #40$ or Wales
and Doye #25$ and references therein". The HSM approxi-

mates the phase volume #!E" by a sum of ellipsoidal regions
around all local minima of the potential U lower than the
total energy E. This method has been successfully applied to
describe melting phenomena, as, e.g., the low-temperature
properties of three-dimensional Lennard-Jones clusters and
their transition from a solidlike state, where the cluster only
vibrates around the ground state configuration, to a liquidlike
state, where also other locally stable configurations are ener-
getically accessible. The standard HSM approximation, how-
ever, does not properly account for the contribution to the
phase volume stemming from !partly" dissociated !or gas"
states of the cluster, and therefore, is not suitable for describ-
ing evaporation phenomena. In particular, the HSM does not
yield any singular microscopic PTs for 1D Lennard-Jones
chains !where only one locally stable configuration, i.e., the
ground state, exists" therewith contradicting exact analytical
and numerical results #30$. By contrast, the model system
discussed here—if considered as an approximation to
Lennard-Jones chains—does reproduce these microscopic
PTs related to evaporation !but, of course, our model cannot
be applied to melting processes because it is one-
dimensional".

It is worthwhile to discuss the microscopic PTs and the
origin of the associated temperature oscillations, as observed
in our model, from a more general point of view. Mathemati-
cally, microscopic PTs of the above type arise whenever the
phase volume # grows nonsmoothly in the vicinity of some
critical energy value E=Ek. This can best be illustrated by
considering the energetically admissible subset of the con-
figuration space

A!E" = %q ! RN&$#E − U!q"$ = 1' . !9"

The set A!E" consists of all position space points q
= !q1 , . . . ,qN" that can be occupied by the system at the given
energy value E. Clearly, the boundary of A, denoted by !A,
determines the effective range of the integral in Eq. !4a".
Hence whenever A or !A, respectively, change their shape
in an irregular !nonanalytic" manner, a nonanalyticity in the
phase volume # may arise !and, hence, in the TDFs". For
example, such an irregular change in the shape of A occurs
when the energy for the next dissociation step is crossed,
since then some parts of the boundary !A suddenly become
determined by the box potential.

It remains to be discussed how the temperature
oscillations—i.e., the regions with negative heat capacity
!also known as “S-bends” or van der Waals-type loops
#49$"—arise: In the vicinity of the dissociation energy Ek, the
set A and, thus, also # and S grow very rapidly, thereby
giving rise to a drop-off in temperature. Geometrically, this
can be viewed as a sudden increase of the “effective dimen-
sionality” of A. Here, “effective dimensionality” refers to the
number of orthogonal configuration space directions in
which A has an extent comparable to the system size L.
Hence, typically, the temperature oscillations appear more
pronounced for larger values of L. From the physical point of
view, the temperature decrease after the kth dissociation step
just means that for energy values slightly larger than Ek the
dissociated fragments have very little kinetic energy !since
most of the energy has already been used to break the bind-

FIG. 1. !a" Microcanonical temperature T and !b" pressure P as
a function of energy per particle %=E /N for a !reduced" density n
=N / #L− !N−1"dhc$=0.001/r0 and different number of particles N
=5 !dashed line", N=15 !dotted", and N=500 !solid". Note that each
of the curves is !N /2−2 " times differentiable.
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• competing entropy definitions for the micro-canonical ensemble
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‣ an exactly solvable 1D model (finite system singularities)

‣ concluding “conjecture”
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Why TD of finite systems?

‣ experimental motivation

• aggregation, folding transitions in proteins

• melting transitions in small crystals (dusty plasmas, colloids)

• cold atoms

‣ theoretical motivation

• finite-size effects

• ensemble non-equivalence [Gross, Phys Rep 279: 119 (1997)]

• non-equilibrium statistical mechanics (microcanonical 
fluctuation theorems, etc.) [Campisi et al, PRE 80: 031145 (2008)]

• “origin” of macroscopic phase transitions in TDL             
[Kastner, Rev Mod Phys 80: 167 (2008)]
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TD of “small” Hamiltonian systems

‣ “top-bottom” approach

• finite size corrections to infinite system results 

• Lebowitz & Percus,  Phys Rev 24: 1672 (1961)

‣ “bottom-up” approach

• develop formalism that works for any N ... starting with N=1

• Paul Hertz, Ann d Phys 33: 225/537 (1910)
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Ensembles & entropies
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energy conserved, temperature fluctuates 

temperature conserved, energy fluctuates 

Campisi & Bagci, Phys Lett A 362: 11(2007)

infinite heat bath:  canonical ensemble 

finite heat bath:  Tsallis-Renyi ensembles

isolated systems:  micro-canonical ensemble
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4. 8be.r die  

m echnnisoh em G r  undlagen der Y’h ermod yyrzamilc; 

von PauZ H e r t x .  

(Fortsetzung von p. 225.) 

I n h a l  t: 11. Teil. Thermisch-mechanische Vorgange. (Der Satz von 

8 10. AuBere Koordinaten (Zustande- 

5 12. Reversible 

der Entropievermehrung) p. 537. 

gleichung) p. 537. 

Vorgange p, 549. 

§ 11. Adiabatische Vorglnge p. 544. 

3 13. Irreversible Vorgtinge p. 550. 

11. T e i l .  

Thermisch-mecbanische Vorglnge. 

(Der Sat2 von der Entropievermehrung.) 

g 10. BuSere Koordinaten (Zustandsgleichung). 

Es ist ein Vorteil der Lagrangeschen Methode, daB sie 

uns der Aufstellung von Verknupfungsgleichungen uberhebt. 

Die generalisierten Koordinaten werden niimlich so gewahlt, 

da6 m’an nicht nijtig hat, zwischen ihnen Bedingungsgleichungen 

aufzustellen. In den Anwendungen begegnen uns aber hiiufig 

Bedingungszingleichungen. Es konnen z. B. die Molekule eines 
Gases in ein Gefa6 eingeschlossen sein, so dab die Orter der 

Molekiile den QefaSraum nicht iiberschreiten konnen. Nun 
war es fur unsere Betrachtungen wesentlich, daB das System in 

jedern Zustande diejenige Bahn verfolgt,, die seiner Geschwindig- 

keitsrichtung entspricht, daB die Babnkurven also keinen Knick 
besitzen und daher alle vorkommenden E*-Flachen geschlossen 

und iiberall rund sind. Gerade das ist 

bei dem eben gegebenen Beispiele nicht I 
der Fall, da die Molekiile an der Wand Fig. 4a. 

ihre Richtung unstetig andern. Denkt 

man sich z. B. ,,ein eindimensionales Gasrr (Fig. 4a), d. h. 
einen einzigen materiellen Punkt, der eine Strecke nicht ver- 
lassen kann, und bedient sich Cartesischer Koordinaten, so 
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und die Wahrscheinlichkeit fur das Vorkommen einer in 9 
befindlichen Phase betragt 

9 

Wir werden noch einen anderen Ausdruck fur co ge- 

brauchen. Setzt man nach Gibbea) das Qesamtvolumen aller 
Phasen, deren Energie < E* ist = P(&*), also 

(1 7) J S d X I  . . . dxm = 7(&*), 
&<&* 

wofiir wir auch schreiben wollen 

so ist nach (14) 

(18) 

Eine Gesamtheit von Systemen gleicher Energie , deren 
Verteilung uber alle Phasen von dieser Energie durch die 
Formeln (15) und (14), bzw. (15), (17) und (18) gegeben ist, 
heiBt eine mikrokanonische Gesamtheit. Jede Zeitgesamtheit 
ist eine mikrokanonische Gesamtheit. Wir werden uns daher 
nur, wie schon erwahnt, mit den mikrokanonischen Gesamt- 
heiten zu beschaftigen haben. *) 

1st u eine beliebige Funktion der Phase, so wird ein ge- 
gebenes System wegen seiner Wanderung im Phasenraume 
bestandig andere Werte von ’u annehmen. Man kann nach 

1) A.Eins tc in ,  1. c. 

2) J. W. G i b b s ,  Formel 265. 

3) Bei der Ableitung von (15) konnten wir uns nicht auf die Fltlche 
beschranken, sondern muHten den Raum zu Hilfe nehmen. Insofern 
haben wir uns einer Raumgesamtheit bedient. Aber diese Ableitung 
einmal vorgenommen, werden wir dauernd auf der Flache bleiben. Es 
werden hei diesem Verfahren, das der von G i b h s  p. 116 (117) entwickelten 
Methode entspricht , keinerlei Voraussetzungen gemacht uber die Ab- 

hilngigkeit der Systemdichte von der Euergie. Und diese Abhilngigkeit 
wird nicht als fur die Gesamtheit charakteristisch angesehen. So kann 
nicht von einer kanonischen Gesamtheit im eigentlichen Sinne die 
Rede sein. 

244 P. Hertz. 

also nach (34) 

oder 

(36) 

(371 

(38) 

wo 
v 

t = -  
w 

gesetzt ist. Nach (18) kann man (38) auch schreiben 

(39) 
1 d l u  v 
t d E* 

-=-. 

Der auf den Freiheitsgrad eiitfallende Anteil an der kine- 

tischen Ehergie betragt also 

t 1 v  
2 2 w 

-= - - .  

Setzen wir ferner: 

so ist nach (34) und (35) 

(41) w+ 2EP = 0.  

Der Ausdruck Iy wird als Virinl bezeichnet werden konnen; 

denn in dem Fall, daB sarntliche Puiikte des Systems unver- 

bunden sind, und man sich Cartesischer  Koordinaten be- 

dient, stimmt (40) mit der in der Gastheorie so bezeichneten 

GroBe uberein und geht (41) in die von dort her hekannte 

Gleichung iiber.2) Ebenso gilt, wenn q, eine belie!)ige Ko- 
ordinate ist, nach (34) und (38) 

Ein Gemisch zweier Gase kann als ein einziges System 

betrachtet werden. Sind yh und yk die Koordinaten eines 

Molekules des ersten und zweiten Gases, so ist nach (42) 

(43) 

1) J. W. G i b b s ,  Forrnel (377). 

2) L. Boltzmaun,  Gastheorie 2. p. 142. 
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wird die 6%- Kurve aus zwei getrennten Stiicken bestehen 

(Fig. 4b). 
Wollen wir nun unsere Betrachtung auch auf alle der- 

artige Palle ausdehnen , so brauchen wir nur eine potentielle 

Energie zwischen den Wanden des GefaBes und den Molekiilen 
anzunehmen. D a m  ist es nicht notig, den Ortern der Massen- 
punkte irgendwelche Beschrankung aufzuerlegen. Auch ein 
Eindringen der Molekiile in den Stoff der Wand ist moglich, 
nur wird ein solches nberschreiten der normalen Grenzen 

mit dem Auftreten einer bedeutenden potentiellen Energie 

.++ -+ 
Fig. 4b. Fig. 4c. 

verbunden sein. Da ferner unter diesen Umstanden die Wand 
kein absolutes Hindernis bildet, werden alle Bahnkurven stetig 

verlaufen und nirgends einen scharfen Knick zeigen. Dem 
entspricht denn auch, dab die s*-Flache geschlossen und ab- 

gerundet erecheint. In  dem uns oben beschaftigenden Falle 
z. B. erhiilt die &*-Kurve etwa die in Fig. 4c angedeutete Ge- 
stalt. Um endlich zu dem idealen Grenzfall absoluter Starr- 
heit zu gelangen, braucht man nur anzunehmen, da6 die po- 

tentielle Energie auch bei dem geringsten Uberschreiten der 
WandflLche auBerordentlich groI3 wird. So wird es bei end- 
lichen Anfangsenergien unmoglich sein, da0 die Molekiile weit 

in die Wande eindringen. Trotzdem kann man als Varia- 
tionsbereich der Koordinaten den ganzen unendlichen Raum 
wahlen und sich so von den Bedingungsgleichungen frei machen. 

Denn die Wahl der potentiellen Energie bewirkt auch ohne 
Annahme solche Ungleichungen, daB der Ort der Molekiile 
praktisch auf das Gefabinnere beschrankt ist. 

Dieselbe oberlegung gilt, wenn die Gefk8wand beweglich 
ist. Eine solche bewegliche GefaBwand wollen wir einen 
Stempel nennen. Da der Stempel beweglich ist, miissen wir 
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ANNALEN DER PHYSIK. 
VIERTE FOLQE. BAND 33. 

1. Uiber dde 

mechanBschen Grumdlagem der T h m n t o d y n a m ~ k ;  

von Paul; E e r t x .  

I n h a l t :  Einleitung p. 225. - I. Teil. Thermische Vorgange. (Der 
Satz vom Wlirmegleichgewicht) p. 229. 5 1. Mechanische Grundlagen 
p. 229. 8 2. Di mikrokanonische Zeitgesamtheit p. 233. 3 3. Mittel- 
werte eines skalaren Produktes P. 240. 8 4. Kinetische Energie und 
Temperatur p. 243. 5. Erster Beweisvcrsuch des Satzes vom Wlirme- 
gleichgewicht p. 249. 9 6. Ideale Gase p. 255. § 7. Forderungcn an 

gewiase mit dem Mechanismus zussmmenhiingende Funktionen p 260. 

$ 8. Nachweis, daS die eben aufgestellten Forderungen von den idealen 

Gasen erfiillt werden p. 267. 8 9. Isopyknische Vorgange p. 273. 

Einleitung. 

Es kann nicht zweifelhaft sein, daB die kinetische Theorie 
der Qase so lange unvollstfindig ist, wie ihre Methoden keine 
Ausdehnung auf den Fall fester Korper erfahren haben. Ihr 
wichtigster Satz namlich, daB alle durch Wglnde hindurch mit 
der Atmosphare in Wiirmeaustausch stehende Gase bei gleichem 
Druck gleichviel Molekiile in der Volumeneinheit besitzen, kann 
nur gewonnen werden, sobald die Vorgange in den Wanden 
selbst in den Kreis der Betrachtung gezogen werden. Aber 
die Ergebnisse der Gastheorie machen auch von vornherein 
den Erfolg solcher Bemuhungen auBerst wahrscheinlich. Wenn 

die Gastheorie einerseits so manaigfache Bestatigung gefunden 
hat, da6 sie wohl als bewiesen gelten kann; wenn sich anderer- 
seits aus ihr 0ieSende Sktze - wie der Entropiesatz und der 
Satz vom Temperaturgleichgewicht - fur die gesamte Korper- 
welt ausnahmslos bestiitigen, so gewinneu wir dadurch das 
sichere Vertrauen, da6. bei festen Korpern ebenfalls den 
thermischen Vorghngen mechanische zugrunde liegen. Auch 

wird man nicht bald diese , bald jene Theorie heranziehen, 
sondern entsprechend der groBen Allgemeinheit jener Er- 

Annslen der Physik. IV. Folge. 33. 15 
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relativity gained an important boost from his attention. He was one of the physicists to very quickly realize
the revolutionary significance of Einstein’s Annalen paper on the electrodynamics of moving bodies and
was instrumental in furthering lasting appreciation of Einstein’s theory of relativity [104].

The fact that the majority of the theses Planck supervised before World War I examined related problems
reveals the depth of his interest and active promotion of relativity theory [105]. So it was by no means a
coincidence that Planck’s graduates were among the Annalen’s contributing authors. Kurd von Mosengeil is
a particularly tragic case in this connection. Shortly after submitting his dissertation he had a fatal accident in
the Alps. Planck went out of his way to prepare this manuscript on relativistic radiation theory for publication
himself, also making some substantial additions to it [106]. Another of his doctoral candidates, Wilhelm
Heil, wrote an equally noteworthy dissertation, entitled “On the Theory of Kaufmann’s Experiments on
the Electromagnetic Deflection of β-Rays,” in 1909. It weighed the pros and cons of the contemporaneous
theories of the electron by Abraham and by Lorentz and Einstein, reaching the conclusion that the available
experimental data did not offer any basis for deciding between the two theories. Erich Hupka, on the other
hand, arrived at much more positive conclusions. He was another graduate student, but working under
Heinrich Rubens’s guidance at the university’s institute of physics in Berlin. His cathode-ray measurements
to test the velocity-dependence of the mass of an electron claimed support for the theory of relativity [107].
Heil criticized Hupka’s results in an outspokenly polemical style [108] and it fell to Planck, as both editor
and doctoral advisor, to assume the “role of honest broker” [109] in this controversy. After meeting with the
opponents personally and some lengthy correspondence, he managed to reach a compromise acceptable to
all without bruising the sensitivities of either party. In the end, the papers and criticisms of both were able
to appear in the Annalen’s volumes 31 (1910) and 33 (1911) [110].

Other disputes did not cost Planck as much time and effort, as the co-editors quite quickly became
unanimous about rejecting papers that were blatantly faulty in substance as well as about “shuffling off”
analyses about the principle of relativity “which rather regard formulation, conceptualization, definitions
(rigid bodies!)” onto other periodicals [111]. Planck and Wien shared the view that in the long run theoretical
physics would become bland if it moved too far away from experimental findings. The editing of submissions
on the theory of relativity was ultimately conducted along these lines [2]. For example, the paper by a
Mr. Wisniewski was rejected even though “there is possibly a useful core” to his theory of gravitation. “Yet
it is at present very hard to decide … there are simply too few firm indicators for a complete theory of
gravitation. (About the Einsteinian one, which does not quite agree with me, observations at the next solar
eclipse will hopefully yield a decision.)” [112]

In another case, a paper by Hermann Weyl on gravitation theory [113], about which there could be “no
question of an experimental verification of his theory” either, there was a greater willingness to act more
generously and approve its appearance in print. That “the auth[or] stands at the pinnacle of the research of
his time” [114] spoke in its favor. Because considerations on non-Euclidean geometry played an important
part in Weyl’s paper, Planck was set before the general question of “to what extent such analyses, which
without a doubt are bound to multiply heavily, belong in the Annalen der Physik … For the time being,
especially as long as they appear in close connection with gravitation theory, one will probably have to
concede them guest rights.” [114] Such guest rights were later also granted to Cornelius Lanczos with his
paper on the planar distribution of matter in Einstein’s theory of gravitation [115], even though here too
Planck asked “whether the value of such analyses is suitably proportionate to their physical breadth.” [116]

Although Planck welcomed the fact, that “more and more mathematicians begin to take an interest in
physical problems”, he found it “always bad, when a mathematician makes physical hypotheses.” [117] By
the way, even David Hilbert was included in this verdict. Planck found his “deductions about the radiation
equilibrium formally interesting and general”, but for physics absolutely uninteresting [118]. In this sense
he was concerned to define an editorial policy that would exclude all too mathematical papers. However
he was willing to make exceptions, for instance regarding a very mathematical paper on the mechanical
foundations of thermodynamics by the Heidelberg physicist (and also later philosopher) Paul Hertz. But this
investigation was dealing with such an important and difficult aspect for understanding statistical mechanics,
that in this case “the comprehensiveness is a necessity for clarity” [119] and the author was even allowed to
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publish his work in two parts [120]; of course the problem discussed was also very close to Planck’s own
thermodynamical work. We also know, that Planck was always very interested in general questions and took
the view, that “epistemology is basically no less important as mathematics”, but nevertheless he sought to
exclude this “supporting science” (Hilfswissenschaft) of physical research. Therefore the Annalen should
not accept in principle “purely epistemological investigations as it also does not publish pure mathematical
or technical papers. For that we have other journals.” [121]

When in the early 1920s relativity theory became the topic of public controversy and even political
debate [122], it also had repercussions on the editing of the Annalen. The principles discussed above
regarding overly mathematical and philosophically oriented papers became relevant. A letter by Planck
suggests that Wien had recommended having the Physical Society’s newly founded editorial committee
impose a general rule in order to be able to regulate the acceptance of papers on relativity theory or even
prohibit them across the board. Planck had reservations about acquiescing to what was effectively a ban
but conceded that such articles did have to be handled with great caution and restraint. Nevertheless the
decision should always be made on a “case-by-case” basis, because

“I could imagine the case of a relativistic paper of truly current physical merit arriving sometime,
without it happening to contain new correlations to observable quantities. It could, e. g., show
known relations in a new, general connection; and then I would find it a shame if we wanted to
bar ourselves from the possibility of accepting such a paper by a general regulation. Therefore, I
think we should maintain our present practice at the Annalen for the moment.” [123]

During the twenties it became the usual practice for only the occasional paper on relativity theory to
gain entrance into the Annalen because – as one author was informed – “pursuant to the [editors’] opinion,
from the physical aspect the theory is closed.” [124] Such restrictions also concerned articles criticizing
relativity theory. E. Gehrcke complained in a letter to W. Wien when the Annalen editors had rejected a
paper by S. Mohorovic from Zagreb, “a very pro-German foreigner” and staunch critic of Einstein’s theory
of relativity [125]. This had not only deeply depressed the author but prompted Gehrcke to comment that “it
does not appear to me good that papers touching on relativity theory be rebuffed so very severely and abruptly,
especially when it regards papers suited to clarifying the essence of the relativistic method while casting the
matter in a critical light.” [126] Despite this appeal, the decision was not reexamined and Mohorovic was
not able to publish his paper in the Annalen. There certainly was a willingness to bend this principle from
time to time nonetheless, as the following case clearly demonstrates. When Erwin Schrödinger submitted to
the Annalen a paper on the accomplishment of the relativity condition in classical mechanics in the spring
of 1925 [127], nothing stood in the way of its going into press. Planck’s comment about it was: “It really is
good that we did not commit ourselves to rejecting all relativistic speculations. Cases simply do vary and
the editors must have a certain amount of freedom.” [128]

Whereas essays on relativity theory could count on a sympathetic and positive welcome by theAnnalen’s
editors at least until World War I, after which enthusiasm leveled off, the reception that papers on quantum
theory experienced was almost the reverse. For many years Max Planck could not conceal his scepticism
about the developments in radiation and quantum theory. It is not surprising that it would also find its
expression in his correspondence with Wilhelm Wien and his editorial work for the Annalen. One of
Planck’s letters from 27 February 1909 reads:

“Soon I too am going to say a word about radiation theory again, especially since Einstein is
now going to publish all sorts of reservations as well (in the Physikalische Zeitschrift). He arrives
at the assumption that the elementary quanta h have meaning also for processes in a pure vacuum.
I don’t believe that as yet, and surely neither do you, Lorentz quite certainly neither. Why should
one complicate the theory unnecessarily? There are enough difficulties as it is, and one can be
quite satisfied if everything can be clumped together in a single place, the processes inside the
molecule.” [129]
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In honour of Max Planck (1858–1947) on the occasion of his 150th birthday

Max Planck’s place in the history of the Annalen der Physik, which spans some two hundred years, can be
characterized as unique. Planck not only published the majority of his own scientific papers in this periodical
but was also connected to it personally in various editorial positions. Thus for over half a century, from 1894
until 1947, he contributed decisively toward its promotion as a leading international professional journal
of modern physics. This paper documents Planck’s diverse relationships with the Annalen der Physik and
analyzes his editorship against the backdrop of the evolving physics in the first quarter of the 20th century.
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1 Annalen der Physik

In the summer of 1790 Carl Gren, professor of physics, chemistry and pharmacology at the University
of Halle, founded the “Journal der Physik”. From 1795 it appeared under the name Neues Journal der
Physik and finally, after Gren’s death in 1798, as the Annalen der Physik. It numbered among the first
professional journals in science, nevertheless it lacked the international aura and repute enjoyed by such
sister periodicals as the Annales de Chimie et Physique (founded 1789) or the Philosophical Magazine
(founded 1798) originating at just about the same time. Germany was still a developing nation in the field of
the natural and technical sciences, which were being defined and developed by the discoveries and inventions
of British and French scientists and engineers. The intellectual metropolises of the world were Paris and
London; and the language of physics and the sciences in general at the turn of the 18th to the 19th centuries
was French. English dominated in the areas of technology and engineering. The task Gren’s Journal took on,
and that its successor editors William Gilbert (1799–1824) and Johann Christian Poggendorff (1824–1877)
continued to pursue, was to convey to the German scientific community the latest scientific findings by
means of translations of original papers or reviews. Original papers by German authors were also accepted,
of course, not least as reprints from series issued by the important academies, which had hitherto – before
the founding of the first professional journals at the close of the 18th century – provided and vouched for
the transmission of research results. Book reviews and notices rounded off the picture.
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Microscopic singularities & temperature oscillations
 

in the MCE

... using Hertz (volume) entropy



corresponding to the potential minimum r0. Again using Eqs. (17), but this time with r2 ¼ Y"1=6, we obtain

kT ¼
3½8LgðX ;Y Þ " 11 f ðX ;Y Þ&ð"EÞ1=3

55½X 1=3 " Y 1=3 þ 2LX 1=6ðY 1=3 " ð"EÞ1=6Þ&
, (20a)

pL

kT
¼

8LgðX ;Y Þ
8LgðX ;Y Þ " 11f ðX ;Y Þ

, (20b)

where we have made use of the abbreviations

g ( ð1þ 5X ÞY 5=6 " ð1þ 5Y ÞX 5=6; f ( ð1þ 2X ÞY 2=3 " ð1þ 2Y ÞX 2=3.

Expanding EOS (20b) near the groundstate energy E0 ¼ "1 yields

kT ¼ 2
3ðE þ 1Þ þ O½ðE þ 1Þ2&, (21a)

P

kT
¼

1

L" 1
þ O½ðE þ 1Þ1&. (21b)

Eq. (21a) indicates that, at low energy, each momentum variable as well as an approximately harmonic
excitation of the relative coordinate carries on average the energy amount kT=2. Obviously, this is in
agreement with the equipartition theorem for harmonic DOF. Eq. (21b) corresponds to the pressure law for
an ideal one-particle gas in the reduced 1D volume V eff ¼ L" 1, reflecting the fact that, at sufficiently low
energy values, the two particles form a bound molecule with distance r ) 1 between each other.

In Fig. 2(b) the caloric curves and the pressure law are shown for different fixed values of L and E,
respectively. When the volume is large enough, LX1, the caloric curves exhibit a characteristic convex region
(S-bend) and, in particular, also a non-differentiable point (see solid and dotted curves). These kinks occur
when the energy passes through the critical value EcðLÞ.

2.3.2. LJ chains with N42 particles
Analogous microscopic PTs do also occur in LJ molecules with larger particle numbers. For N42 it is very

difficult or, perhaps, even impossible to express the phase volume (11) in terms of closed functions. Usually,
one can perform only one or two of the N integrations analytically, and the remaining integrals have to be
calculated numerically, using e.g., Monte–Carlo methods. We employed the Divonne algorithm of the CUBA
library [59] to calculate the phase volume for LJ molecules with 3 and 4 particles. We used at least 1 million
sample points and partially increased the sample size up to 100 million points for testing. We also cross-
checked the results with other deterministic and probabilistic integration algorithms of the CUBA library and
found excellent agreement.
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Fig. 2. Microcanonical TDFs for the 1D diatomic LJ molecule (N ¼ 2). Energy is measured in units of the binding energy a. Volume
V ¼ L is measured in units of the parameter r0, corresponding to the minimum of the LJ potential. The mass unit is chosen such that
m ¼ 1. (a) Hertz entropy S0 ¼ S " S0 as function of the energy for L ¼ 20 (solid line), L ¼ 3 (dotted line), and L ¼ 0:95 (dashed), where
S0 ¼ "k ln½h2=ðmr20a

2Þ&. Note the convex curvature of the solid curve at the transition energy. (b) Caloric curves for L ¼ 20 (solid line),
L ¼ 3 (dotted line), and L ¼ 0:95 (dashed). One can readily see the singularity (peak) in the S-bend region, occurring exactly when the
critical line EcðLÞ ¼ ULJðLÞ in Fig. 1 is crossed.
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A straightforward calculation of the phase volume, based on relative and center-of-mass coordinates, yields

O ¼
2pm
h2

L

11r11
"

1

10r10
"

2L

5r5
þ

1

2r4
þ LrE "

r2E

2

! "####
rmax

rmin

, (17a)

where the boundary values are given by

rmin ¼ X"1=6; rmax ¼
L; EXEcðLÞ & ULJðLÞ;
Y"1=6; EoEcðLÞ;

(

(17b)

using the convenient abbreviations X & 1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ E

p
and Y & 1"

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ E

p
.

In the case Lp1 we have rmax ¼ L for all energies EXE0, and, hence, the phase volume OðEÞ is a smooth
function for all permitted energy values. For L41, however, the boundary value rmax changes its energy
dependence at E ¼ EcðLÞ in a non-analytic manner, and hence the phase volume OðEÞ is not analytic at
E ¼ EcðLÞ. The critical curve EcðLÞ & ULJðLÞ, LX1 separates a gas-like phase (dissociated state) from the
molecular phase (bound state) in the ðL;EÞ-parameter plane. This is illustrated in Fig. 1 and will become
particularly evident from the expansions presented in the next two paragraphs. It is worthwhile to stress again
that the critical curve EcðLÞ arises naturally due to the sudden change in the energy dependence of the phase
volume, occurring when the energy E passes the critical curve. The microcanonical caloric curve TðEÞ is
continuous but not differentiable along the critical transition curve EcðLÞ, which is located in the region of an
S-bend or van der Waals-type loop, respectively. Formally, this corresponds to a fourth-order transition.

Super-critical energy values (dissociated phase). Using result (17) with r2 ¼ L, corresponding to supercritical
energy values E4EcðLÞ—or region ‘(1)’ in Fig. 1, respectively—we can derive from Eq. (3) the microcanonical
EOS, yielding

kT ¼
Z þ 24LðX " 5EÞ=X 1=6 " 33ðX " 2EÞ=X 1=3

55½L2 " ðE þ X Þð2LX 1=6 " 1Þ=X 4=3ð1þ EÞ1=2(
, (18a)

pL

kT
¼

110L2E þ 10=L10 " 44=L4 " 2L½X ð5X " 22Þ þ 55E(=X 1=6

Z þ 11½X ðX " 5Þ þ 5E(=X 1=3 " 2L½X ð5X " 22Þ þ 55E(=X 1=6
, (18b)

where Z & 55L2E þ 11L"4 " L"10. Taking the high-energy limit at constant volume V ¼ L one finds

lim
E!1

kT

E
¼ 1; lim

E!1

PL

kT
¼ 2, (19)

corresponding to the laws for the ideal 1D two-particle gas. Hence, the parameter region E4EcðLÞ can be
identified as two-particle gas state or dissociated phase, respectively.

Sub-critical energy values (bound phase). Because of Eq. (16), the opposite case EoEcðLÞ—corresponding to
region ‘(3)’ in Fig. 1(a)—can only be realized, if L41 holds; i.e., if the box volume is larger than the distance
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Fig. 1. Microcanonical phase diagrams for the 1D LJ molecules. Energies below the minimum energy E0ðLÞ (solid line) are forbidden. (a)
Diatomic LJ molecule ðN ¼ 2Þ: the critical curve EcðLÞ (dashed line) separates a gas-like (or dissociated) phase from a molecule phase. (b)
Triatomic LJ molecule ðN ¼ 3Þ: the critical curve Ec1ðLÞ (dashed line) separates a gas-like (or dissociated) phase from an intermediate
(partially bound) phase, enclosed by the critical curves Ec1ðLÞ and Ec2ðLÞ (dotted line), and a bound molecule phase (3) below Ec2ðLÞ.
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microscopic PTs when discussing singular (non-analytic) points in the microcanonical TDFs of small systems.
Furthermore, we will adopt the following terminology to classify microscopic PTs in the MCE: If the primary
thermodynamic potential, the Hertz entropy S, is discontinuous, then we will call the PT discontinuous; if S is
non-analytic but continuous, the microscopic PT is called continuous.

Let us next discuss how the formal (Ehrenfest-type) order of a microscopic PT depends on the number of
DOF. For systems described by Hamiltonian (1a), the phase volume (11) is related to the admissible
configuration space volume

oðE;V Þ ¼
Z

Rd
dqYðE $Uðq;V ÞÞ (12)

via3

qd=2OðE;V Þ
qEd=2

¼
ð2pmÞd=2

N!hd
oðE;V Þ. (13)

If, at a given critical energy EcðV Þ, oðE;V Þ has continuous derivatives up to order j, but a discontinuous
ðj þ 1Þst derivative, then OðE;V Þ and hence SðE;V Þ have continuous derivatives up to order ðj þ d=2Þ, but a
discontinuity in the ðj þ d=2þ 1Þst derivative. Consequently, the formal order of the PT equals ðj þ d=2þ 1Þ,
i.e., the order increases with an increasing number of DOF. For the examples discussed below, the
differentiability class of the admissible configuration space volume oðE;V Þ does not change with particle
number (j ¼ 0 for LJ chains and j ¼ $1 for the Takahashi gas), and we indeed observe such an increasing
order with increasing particle number (cf. results of Section 2.3.2).4

2.3. Singular microscopic PTs in LJ chains

To demonstrate the appearance of non-analytic microscopic PTs in the MCE, we consider a 1D LJ chain,
moving freely in a 1D box volume ½$L=2;L=2'. In this case, the pair potential in Hamiltonian (1a) reads

UpairðqÞ ¼
1

2

XN

iaj
i;j¼1

ULJðjqi $ qjjÞ; ULJðrÞ ¼ 4a
s
r

! "12
$

s
r

! "6
# $

, (14)

where a; s40 are positive parameters. To simplify subsequent formulae, we will measure energy and length in
units of the parameters a and r0 ¼ 21=6s, where r0 is the position of the minimum of ULJðrÞ. With respect to
these units the LJ potential (14) is given by

ULJðrÞ ¼
1

r12
$

2

r6
. (15)

For small volumes Lp1 the LJ-force is always repulsive, whereas in the more interesting case of sufficiently
large volumes, L41, the LJ-force may also become attracting.

2.3.1. Diatomic LJ molecule
We start by discussing the simplest non-trivial example N ¼ 2 and D ¼ 1, where we can calculate the

microcanonical TDFs exactly.5 In this case, the energy E can take values E0ðLÞpEo1, where the
groundstate energy is given by

E0ðLÞ ( min
ðq;pÞ

Hðq; pÞ ¼
ULJðLÞ; Lp1;

$1; L41:

(

(16)
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3In an ordinary sense, Eq. (13) is defined for even integer values d40 only; however, by employing fractional derivatives [56], its range
of validity can be extended to odd integer values d40.

4Recently, similar results have been reported for the mean-field spherical spin model by Kastner and Schnetz [57].
5The phase volume for the more complicated three-dimensional problem was recently calculated by Umirzakov [58].
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Fig. 3 shows the numerically calculated microcanonical caloric curve TðEÞ of the three-particle LJ chain
ðN ¼ 3Þ and its first derivative for different values of L. For L ¼ 1:9, the caloric curve appears smooth and
almost linear. For L ¼ 6 and ¼ 40, TðEÞ is still continuous, but shows two S-bend regions around energies
Ec1 $ %1 and Ec2 $ 0. At these energies, the first derivative of TðEÞ exhibits a (negative) ‘lambda peak’,
whereas the second derivative diverges.

As in the two-particle case, the phase volume OðE;LÞ can be written as an integral with an integrand which
is analytic for all values of E and L, and integration boundaries which are analytic except for certain values of
E and L. A detailed analysis yields the two critical curves

Ec1ðLÞ ¼ ULJ
L

2

! "
þULJ

L

2

! "
þULJðLÞ if LX

2731

43

! "1=6

,

Ec2ðLÞ ¼ ULJðrc2ðLÞÞ þULJðL% rc2ðLÞÞ þULJðLÞ if LX2
13

7

! "1=6

,

where rc2ðLÞ is given by a polynomial equation of degree eighteen, with rc2ðLÞ $ %1 for Lb1. The resulting
phase diagram is shown in Fig. 1(b). One readily identifies three microscopic phases separated by the critical
curves Ec1ðLÞ and Ec2ðLÞ.

At high energies E4Ec1ðLÞ, the system is in a gas-like, fully dissociated phase. The relative positions
r21 ¼ jq2 % q1j and r32 ¼ jq3 % q2j of the particles are only restricted by the hard-core repulsive part of the
interaction potential, but apart from this constraint the particles can move independently inside the remaining
volume. In the high-energy limit, one finds E $ 3

2 kT , corresponding to a quasi-ideal 1D three-particle gas.
For L42ð137 Þ

1=6 and low energies E0ðLÞoEoEc2ðLÞ, the system is in a bound molecule phase. The relative
positions r21 and r32 are restricted by the interaction potential to be close to the equilibrium position.

For L42ð137 Þ
1=6 and intermediate energy values Ec2ðLÞoEoEc1ðLÞ, the system is in a partially dissociated

phase. One of the relative positions r21 and r32 is restricted to be close to its equilibrium value, whereas the
other is only restricted by the hard-core repulsive part of the interaction potential and the box volume.
Accordingly, one of the three particles may move rather independently inside the box, whereas the other two
remain bound to each other.

Although more complicated in detail, the calculations for the four-particle LJ chain are in principle the
same as for N ¼ 3. We briefly list the main results: For N ¼ 4 (and only taking nearest-neighbor interaction
into account), three critical lines Ec1ðLÞ, Ec2ðLÞ and Ec3ðLÞ divide the ðL;EÞ-plane into four different phases.
At high energies or at low volumes LoL0, L0 ¼ 3, the system is in a gas-like phase. At low energies and large
volume, the system is in a molecule phase, where the particles can only move as a whole molecule inside the
volume. Between the gas phase and the molecule phase, there are now two intermediate, or partly dissociated,
phases, where the LJ molecule is broken up into two or three parts consisting of one or two particles. For large
volumes, the caloric curve TðEÞ shows three PTs with a continuous first, but discontinuous second derivative.
This confirms that the formal order of the microscopic PTs increases with particle number as discussed in
Section 2.2.

ARTICLE IN PRESS

−1.5 −1 −0.5 0 0.5 1 1.5 2
E / a

0.25

0.5

0.75

1

1.25

1.5

1.75

kT
 / 

a

−2 −1 0 1 2
E / a

−1

−0.5

0

0.5

1

k 
dT

 / 
dE

(a) (b)

Fig. 3. LJ chain with N ¼ 3 particles. (a) The microcanonical caloric curve TðEÞ, and (b) its first derivative for different values of the
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regions, the first derivative dTðEÞ=dE exhibits a lambda peak pointing downward (the second derivative d2TðEÞ=dE2 has a pole).
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origin of singularity: change in “dimensionality” of phase (configuration space)
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with q= !q1 , . . . ,qN" denoting the coordinates and p
= !p1 , . . . , pN" the conjugate momenta. In the case of an iso-
lated system the total energy E is conserved. The potential
energy U=Uint+Ubox is determined by the interaction poten-
tial

Uint!q;N" =
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2 #
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Upair!$qi − qj$" !2a"

and the box potential
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The pair potential is given by

Upair!r" = ( ! , r " dhc,

− U0, dhc # r # dhc + r0,

0, r $ dhc + r0,

!2c"

where dhc%0 is the hard-core diameter of a particle with
respect to pair interactions. The interaction potential !2c" can
be viewed as a simplified Lennard-Jones potential. The depth
of the potential well is determined by the binding energy
parameter U0%0 and the interaction range by the parameter
r0, where we shall additionally impose that

0 # r0 " dhc.

The latter condition ensures that particles may interact with
their nearest neighbors only. Furthermore, we assume that
L%Lmin)!N−1"!dhc+r0", i.e., the volume is assumed to be
sufficiently large for realizing the completely dissociated
state, corresponding to U=0. The energy E of the system can
take values between the ground state energy

E0 ) − !N − 1"U0

and infinity.

III. MICROCANONICAL ENSEMBLE

The microcanonical ensemble !MCE" refers to an isolated
system. Thence the control parameters are energy E, volume
L, and particle number N. The thermodynamic !Hertz" en-
tropy of the MCE is given by &30–33'

S!E,L,N" = kB ln &!E,L,N" , !3a"

where kB is the Boltzmann constant and

&!E,L,N" =
1

N ! hN*
RN

dq*
RN

dp'!E − H" !3b"

the phase volume &h is Planck’s constant, and '!x")0 for
x#0 and '!x")1 for x$0'. Using N-dimensional spherical
momentum coordinates, one can rewrite Eq. !3b" as

& = C!N"*
RN

dq!E − U"N/2'!E − U" , !4a"

C!N" )
2!2(m"N/2

)!N/2"N ! NhN , !4b"

where ) denotes the Euler gamma function. For Hamiltonian
!1" one can calculate integral !4a" exactly, yielding !see the
Appendix"

& = C#
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*k!E + kU0"N/2'!E + kU0" , !5a"

where, for L% !N−1"!r0+dhc",

*k!N,L" = +N − 1

k
,#

i=0

k +k

i
,!− 1"i

+&L − !N − 1"dhc − r0!N − 1− k + i"'N. !5b"

Given Eqs. !5", the microcanonical temperature T and pres-
sure P are obtained from the standard definitions T−1

)"S /"E and P /T)"S /"L &2,33–35'. For example, for the
temperature one finds

kBT =
2
N

#
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N−1

*k!E + kU0"N/2'!E + kU0"

#
k=0

N−1

*k!E + kU0"N/2−1'!E + kU0"

, !6"

which reduces to the ideal gas law E=NkBT /2 in the limit
E!NU0. It is worthwhile to recall that, for a Hamiltonian of
the form !1", the thermal energy !6" derived from the Hertz
entropy is directly related to the microcanonical mean kinetic
energy per degree of freedom by virtue of the equipartition
theorem &33,34':

kBT

2
= - pi

2

2m
., i = 1, . . . ,N , !7"

where /·0 denotes the average with respect to the microca-
nonical probability density function

f!q,p" = + "&

"E
,−1 1

N ! hN,&E − H!q,p"' . !8"

Hence for isolated ergodic systems with an arbitrary particle
number N, the caloric law T!E" can be measured experimen-
tally by monitoring the kinetic energy over a sufficiently
long time interval !at fixed energy values E".

As shown in Fig. 1, the microcanonical caloric law !6" as
well as the pressure P!E" exhibit N nonanalytic points at the
energies Ek=−kU0, k=0, . . . ,N−1, separating N energeti-
cally different dissociation states !all bindings intact, one
binding broken, etc.". The formal order &30,36,37' of these
nonanalyticities equals N /2, i.e., the entropy has continuous
derivatives up to order !N /2−1 ", but the !N /2"th derivative
becomes discontinuous !a similar result was obtained re-
cently by Kastner and Schnetz for the mean-field spherical
spin model &38'; see also Gross &39' for a general discussion
of differentiability properties of the microcanonical partition
function". Consequently, the “microscopic !dissociation"
phases” as well as the singularities appear to be smoothened
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respect to pair interactions. The interaction potential !2c" can
be viewed as a simplified Lennard-Jones potential. The depth
of the potential well is determined by the binding energy
parameter U0%0 and the interaction range by the parameter
r0, where we shall additionally impose that

0 # r0 " dhc.

The latter condition ensures that particles may interact with
their nearest neighbors only. Furthermore, we assume that
L%Lmin)!N−1"!dhc+r0", i.e., the volume is assumed to be
sufficiently large for realizing the completely dissociated
state, corresponding to U=0. The energy E of the system can
take values between the ground state energy

E0 ) − !N − 1"U0

and infinity.

III. MICROCANONICAL ENSEMBLE

The microcanonical ensemble !MCE" refers to an isolated
system. Thence the control parameters are energy E, volume
L, and particle number N. The thermodynamic !Hertz" en-
tropy of the MCE is given by &30–33'
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where kB is the Boltzmann constant and
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where ) denotes the Euler gamma function. For Hamiltonian
!1" one can calculate integral !4a" exactly, yielding !see the
Appendix"
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Given Eqs. !5", the microcanonical temperature T and pres-
sure P are obtained from the standard definitions T−1

)"S /"E and P /T)"S /"L &2,33–35'. For example, for the
temperature one finds

kBT =
2
N

#
k=0

N−1

*k!E + kU0"N/2'!E + kU0"

#
k=0

N−1

*k!E + kU0"N/2−1'!E + kU0"

, !6"

which reduces to the ideal gas law E=NkBT /2 in the limit
E!NU0. It is worthwhile to recall that, for a Hamiltonian of
the form !1", the thermal energy !6" derived from the Hertz
entropy is directly related to the microcanonical mean kinetic
energy per degree of freedom by virtue of the equipartition
theorem &33,34':

kBT

2
= - pi

2

2m
., i = 1, . . . ,N , !7"

where /·0 denotes the average with respect to the microca-
nonical probability density function

f!q,p" = + "&

"E
,−1 1

N ! hN,&E − H!q,p"' . !8"

Hence for isolated ergodic systems with an arbitrary particle
number N, the caloric law T!E" can be measured experimen-
tally by monitoring the kinetic energy over a sufficiently
long time interval !at fixed energy values E".

As shown in Fig. 1, the microcanonical caloric law !6" as
well as the pressure P!E" exhibit N nonanalytic points at the
energies Ek=−kU0, k=0, . . . ,N−1, separating N energeti-
cally different dissociation states !all bindings intact, one
binding broken, etc.". The formal order &30,36,37' of these
nonanalyticities equals N /2, i.e., the entropy has continuous
derivatives up to order !N /2−1 ", but the !N /2"th derivative
becomes discontinuous !a similar result was obtained re-
cently by Kastner and Schnetz for the mean-field spherical
spin model &38'; see also Gross &39' for a general discussion
of differentiability properties of the microcanonical partition
function". Consequently, the “microscopic !dissociation"
phases” as well as the singularities appear to be smoothened
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Hence for isolated ergodic systems with an arbitrary particle
number N, the caloric law T!E" can be measured experimen-
tally by monitoring the kinetic energy over a sufficiently
long time interval !at fixed energy values E".

As shown in Fig. 1, the microcanonical caloric law !6" as
well as the pressure P!E" exhibit N nonanalytic points at the
energies Ek=−kU0, k=0, . . . ,N−1, separating N energeti-
cally different dissociation states !all bindings intact, one
binding broken, etc.". The formal order &30,36,37' of these
nonanalyticities equals N /2, i.e., the entropy has continuous
derivatives up to order !N /2−1 ", but the !N /2"th derivative
becomes discontinuous !a similar result was obtained re-
cently by Kastner and Schnetz for the mean-field spherical
spin model &38'; see also Gross &39' for a general discussion
of differentiability properties of the microcanonical partition
function". Consequently, the “microscopic !dissociation"
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Hence for isolated ergodic systems with an arbitrary particle
number N, the caloric law T!E" can be measured experimen-
tally by monitoring the kinetic energy over a sufficiently
long time interval !at fixed energy values E".

As shown in Fig. 1, the microcanonical caloric law !6" as
well as the pressure P!E" exhibit N nonanalytic points at the
energies Ek=−kU0, k=0, . . . ,N−1, separating N energeti-
cally different dissociation states !all bindings intact, one
binding broken, etc.". The formal order &30,36,37' of these
nonanalyticities equals N /2, i.e., the entropy has continuous
derivatives up to order !N /2−1 ", but the !N /2"th derivative
becomes discontinuous !a similar result was obtained re-
cently by Kastner and Schnetz for the mean-field spherical
spin model &38'; see also Gross &39' for a general discussion
of differentiability properties of the microcanonical partition
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Hence for isolated ergodic systems with an arbitrary particle
number N, the caloric law T!E" can be measured experimen-
tally by monitoring the kinetic energy over a sufficiently
long time interval !at fixed energy values E".

As shown in Fig. 1, the microcanonical caloric law !6" as
well as the pressure P!E" exhibit N nonanalytic points at the
energies Ek=−kU0, k=0, . . . ,N−1, separating N energeti-
cally different dissociation states !all bindings intact, one
binding broken, etc.". The formal order &30,36,37' of these
nonanalyticities equals N /2, i.e., the entropy has continuous
derivatives up to order !N /2−1 ", but the !N /2"th derivative
becomes discontinuous !a similar result was obtained re-
cently by Kastner and Schnetz for the mean-field spherical
spin model &38'; see also Gross &39' for a general discussion
of differentiability properties of the microcanonical partition
function". Consequently, the “microscopic !dissociation"
phases” as well as the singularities appear to be smoothened
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out in the thermodynamic limit N→!. Nevertheless, for fi-
nite systems—and in particular at small densities—the
nonanalytic behavior is accompanied by strong variations/
oscillations of observable quantities as temperature and pres-
sure, when continuously varying E. Both qualitatively and
quantitatively, this behavior is analogous to what is usually
denoted as a “phase transition.” However, since these micro-
scopic nonanalyticities do not survive in the thermodynamic
limit !at least for our one-dimensional model", they strictly
speaking are not covered by the conventional definition of
singular macroscopic PTs. We shall, therefore, speak of sin-
gular (or nonanalytic) microscopic PTs in the MCE #48$.

Let us also briefly discuss the parameter dependence of
the microcanonical TDFs shown in Fig. 1. As evident from
Eq. !5a", the positions Ek of the singular macroscopic PTs are
just proportional to U0. The amplitude of the associated os-
cillations in T and P does also depend on the particle number
N and box size L: The strength of the oscillations increases
for larger values U0 and L, but becomes smaller for larger
particle numbers N. The number and formal order of the PTs,
however, only depend on the particle number N and are in-
dependent of U0 and L !as long as U0"0 and L"Lmin".
Thus, qualitatively, the results are independent of the particu-
lar choice of the model parameters U0 and L. Moreover,
analogous features can be found in the microcanonical ca-
loric curves of one-dimensional !1D" Lennard-Jones chains
#30$.

It should be mentioned that the exact phase volume !5a"
of our model system resembles in structure the phase volume
obtained by the harmonic superposition method !HSM" ap-
plied to Lennard-Jones clusters !see, e.g., Doye #40$ or Wales
and Doye #25$ and references therein". The HSM approxi-

mates the phase volume #!E" by a sum of ellipsoidal regions
around all local minima of the potential U lower than the
total energy E. This method has been successfully applied to
describe melting phenomena, as, e.g., the low-temperature
properties of three-dimensional Lennard-Jones clusters and
their transition from a solidlike state, where the cluster only
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phase volume stemming from !partly" dissociated !or gas"
states of the cluster, and therefore, is not suitable for describ-
ing evaporation phenomena. In particular, the HSM does not
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ground state, exists" therewith contradicting exact analytical
and numerical results #30$. By contrast, the model system
discussed here—if considered as an approximation to
Lennard-Jones chains—does reproduce these microscopic
PTs related to evaporation !but, of course, our model cannot
be applied to melting processes because it is one-
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A!E" = %q ! RN&$#E − U!q"$ = 1' . !9"
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since then some parts of the boundary !A suddenly become
determined by the box potential.
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number of orthogonal configuration space directions in
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dissociated fragments have very little kinetic energy !since
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FIG. 1. !a" Microcanonical temperature T and !b" pressure P as
a function of energy per particle %=E /N for a !reduced" density n
=N / #L− !N−1"dhc$=0.001/r0 and different number of particles N
=5 !dashed line", N=15 !dotted", and N=500 !solid". Note that each
of the curves is !N /2−2 " times differentiable.
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H!p,q;L,N" =
p2

2m
+ U!q;L,N" = E , !1"

with q= !q1 , . . . ,qN" denoting the coordinates and p
= !p1 , . . . , pN" the conjugate momenta. In the case of an iso-
lated system the total energy E is conserved. The potential
energy U=Uint+Ubox is determined by the interaction poten-
tial

Uint!q;N" =
1
2 #

i,j=1
i!j

N

Upair!$qi − qj$" !2a"

and the box potential

Ubox!q;L,N" = % 0, q ! &0,L'N,

+ ! , otherwise.
!2b"

The pair potential is given by

Upair!r" = ( ! , r " dhc,

− U0, dhc # r # dhc + r0,

0, r $ dhc + r0,

!2c"

where dhc%0 is the hard-core diameter of a particle with
respect to pair interactions. The interaction potential !2c" can
be viewed as a simplified Lennard-Jones potential. The depth
of the potential well is determined by the binding energy
parameter U0%0 and the interaction range by the parameter
r0, where we shall additionally impose that

0 # r0 " dhc.

The latter condition ensures that particles may interact with
their nearest neighbors only. Furthermore, we assume that
L%Lmin)!N−1"!dhc+r0", i.e., the volume is assumed to be
sufficiently large for realizing the completely dissociated
state, corresponding to U=0. The energy E of the system can
take values between the ground state energy

E0 ) − !N − 1"U0

and infinity.

III. MICROCANONICAL ENSEMBLE

The microcanonical ensemble !MCE" refers to an isolated
system. Thence the control parameters are energy E, volume
L, and particle number N. The thermodynamic !Hertz" en-
tropy of the MCE is given by &30–33'

S!E,L,N" = kB ln &!E,L,N" , !3a"

where kB is the Boltzmann constant and

&!E,L,N" =
1

N ! hN*
RN

dq*
RN

dp'!E − H" !3b"

the phase volume &h is Planck’s constant, and '!x")0 for
x#0 and '!x")1 for x$0'. Using N-dimensional spherical
momentum coordinates, one can rewrite Eq. !3b" as

& = C!N"*
RN

dq!E − U"N/2'!E − U" , !4a"

C!N" )
2!2(m"N/2

)!N/2"N ! NhN , !4b"

where ) denotes the Euler gamma function. For Hamiltonian
!1" one can calculate integral !4a" exactly, yielding !see the
Appendix"

& = C#
k=0

N−1

*k!E + kU0"N/2'!E + kU0" , !5a"

where, for L% !N−1"!r0+dhc",

*k!N,L" = +N − 1

k
,#

i=0

k +k

i
,!− 1"i

+&L − !N − 1"dhc − r0!N − 1− k + i"'N. !5b"

Given Eqs. !5", the microcanonical temperature T and pres-
sure P are obtained from the standard definitions T−1

)"S /"E and P /T)"S /"L &2,33–35'. For example, for the
temperature one finds

kBT =
2
N

#
k=0

N−1

*k!E + kU0"N/2'!E + kU0"

#
k=0

N−1

*k!E + kU0"N/2−1'!E + kU0"

, !6"

which reduces to the ideal gas law E=NkBT /2 in the limit
E!NU0. It is worthwhile to recall that, for a Hamiltonian of
the form !1", the thermal energy !6" derived from the Hertz
entropy is directly related to the microcanonical mean kinetic
energy per degree of freedom by virtue of the equipartition
theorem &33,34':

kBT

2
= - pi

2

2m
., i = 1, . . . ,N , !7"

where /·0 denotes the average with respect to the microca-
nonical probability density function

f!q,p" = + "&

"E
,−1 1

N ! hN,&E − H!q,p"' . !8"

Hence for isolated ergodic systems with an arbitrary particle
number N, the caloric law T!E" can be measured experimen-
tally by monitoring the kinetic energy over a sufficiently
long time interval !at fixed energy values E".

As shown in Fig. 1, the microcanonical caloric law !6" as
well as the pressure P!E" exhibit N nonanalytic points at the
energies Ek=−kU0, k=0, . . . ,N−1, separating N energeti-
cally different dissociation states !all bindings intact, one
binding broken, etc.". The formal order &30,36,37' of these
nonanalyticities equals N /2, i.e., the entropy has continuous
derivatives up to order !N /2−1 ", but the !N /2"th derivative
becomes discontinuous !a similar result was obtained re-
cently by Kastner and Schnetz for the mean-field spherical
spin model &38'; see also Gross &39' for a general discussion
of differentiability properties of the microcanonical partition
function". Consequently, the “microscopic !dissociation"
phases” as well as the singularities appear to be smoothened
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which reduces to the ideal gas law E=NkBT /2 in the limit
E!NU0. It is worthwhile to recall that, for a Hamiltonian of
the form !1", the thermal energy !6" derived from the Hertz
entropy is directly related to the microcanonical mean kinetic
energy per degree of freedom by virtue of the equipartition
theorem &33,34':
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where /·0 denotes the average with respect to the microca-
nonical probability density function

f!q,p" = + "&
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N ! hN,&E − H!q,p"' . !8"

Hence for isolated ergodic systems with an arbitrary particle
number N, the caloric law T!E" can be measured experimen-
tally by monitoring the kinetic energy over a sufficiently
long time interval !at fixed energy values E".

As shown in Fig. 1, the microcanonical caloric law !6" as
well as the pressure P!E" exhibit N nonanalytic points at the
energies Ek=−kU0, k=0, . . . ,N−1, separating N energeti-
cally different dissociation states !all bindings intact, one
binding broken, etc.". The formal order &30,36,37' of these
nonanalyticities equals N /2, i.e., the entropy has continuous
derivatives up to order !N /2−1 ", but the !N /2"th derivative
becomes discontinuous !a similar result was obtained re-
cently by Kastner and Schnetz for the mean-field spherical
spin model &38'; see also Gross &39' for a general discussion
of differentiability properties of the microcanonical partition
function". Consequently, the “microscopic !dissociation"
phases” as well as the singularities appear to be smoothened
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respect to pair interactions. The interaction potential !2c" can
be viewed as a simplified Lennard-Jones potential. The depth
of the potential well is determined by the binding energy
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r0, where we shall additionally impose that
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The latter condition ensures that particles may interact with
their nearest neighbors only. Furthermore, we assume that
L%Lmin)!N−1"!dhc+r0", i.e., the volume is assumed to be
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which reduces to the ideal gas law E=NkBT /2 in the limit
E!NU0. It is worthwhile to recall that, for a Hamiltonian of
the form !1", the thermal energy !6" derived from the Hertz
entropy is directly related to the microcanonical mean kinetic
energy per degree of freedom by virtue of the equipartition
theorem &33,34':
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where /·0 denotes the average with respect to the microca-
nonical probability density function
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Hence for isolated ergodic systems with an arbitrary particle
number N, the caloric law T!E" can be measured experimen-
tally by monitoring the kinetic energy over a sufficiently
long time interval !at fixed energy values E".

As shown in Fig. 1, the microcanonical caloric law !6" as
well as the pressure P!E" exhibit N nonanalytic points at the
energies Ek=−kU0, k=0, . . . ,N−1, separating N energeti-
cally different dissociation states !all bindings intact, one
binding broken, etc.". The formal order &30,36,37' of these
nonanalyticities equals N /2, i.e., the entropy has continuous
derivatives up to order !N /2−1 ", but the !N /2"th derivative
becomes discontinuous !a similar result was obtained re-
cently by Kastner and Schnetz for the mean-field spherical
spin model &38'; see also Gross &39' for a general discussion
of differentiability properties of the microcanonical partition
function". Consequently, the “microscopic !dissociation"
phases” as well as the singularities appear to be smoothened
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ing!. The larger the system the less likely it is that the frag-
ments temporarily recombine in a state of high kinetic en-
ergy; i.e., from a probabilistic standpoint, the average "Eq.
#7!$ is then dominated by phase space regions of low kinetic
energy. With regard to practical applications, this means that
one could cool such a small isolated system of bound par-
ticles by injecting energy until the fragmentation process sets
in #cooling by evaporation/dissociation!.

The above-described features of microscopic PTs are ge-
neric and shared by all physical systems that exhibit disso-
ciation and evaporation #e.g., similar microscopic PTs and
temperature oscillations are also found for small 1D-
Lennard-Jones molecules "30$!. In particular, microscopic
PTs should become more pronounced in two or three dimen-
sions #since then effective dimension of A grows even more
rapidly at the dissociation levels! and also be observable in
quantum systems. By virtue of dissociation experiments with
small particle numbers and very low densities #similar to
those of Schmidt et al. "41$, but without heat bath!, one
should, in principle, be able to detect the oscillating behav-
ior, e.g., in temperature and pressure curves. However, to
actually observe such oscillations one has to realize the re-
quirements of the MCE, i.e., a thermally isolated system with
regulated energy injection. Furthermore, due to the micro-
scopic origin of the oscillations and the requirement of a
relatively low particle density, a high sensitivity of the ve-
locity and force measurements and long measuring time
spans will be necessary.

IV. CANONICAL ENSEMBLE

Employing the canonical ensemble #CE! is appropriate if
the system under consideration is in thermal contact with a
much larger system #heat bath!, as, e.g., realized in dusty
cluster experiments "42$. The relevant thermodynamic poten-
tial is the free energy "2$

F#!,L,N! % − !−1 ln ZC#!,L,N! , #10!

where ZC is the canonical partition function. The external
control variables are now the inverse temperature !
%#kBT!−1 of the heat bath, the volume L, and the particle
number N. For the above model, ZC can be exactly calcu-
lated, analogous to Eq. #5!, as

ZC =
1

N!
&2"m

!h2 'N/2

(
k=0

N−1

#ke
!kU0 #11!

with #k#N ,L! given by Eq. #5b!. Mean energy and pressure

of the CE are defined by Ē%−!#ln ZC! /!! and P̄
%−!F /!L, yielding, e.g., the canonical caloric law

Ē =
N

2!
−

(k=0

N−1
#ke

!kU0kU0

(k=0

N−1
#ke

!kU0
. #12!

Figures 2#a! and 2#b! show Ē#T! and P̄#T! for different
values of the reduced particle density n=N / "L− #N−1!dhc$.
In contrast to the microcanonical pressure "Fig. 1#b!$, the

canonical pressure is a monotonous function of T or Ē, re-
spectively. In the thermodynamic limit, microcanonical and
canonical caloric curves become nearly indistinguishable.
The canonical heat capacity c̄L=!Ē /!T exhibits a strong
#nonsingular! peak in the temperature region, where disso-
ciation occurs "Fig. 2#c!$. If observed in an experimentally
measured curve, such behavior would possibly be interpreted
as a PT. For decreasing density n, the position of the maxi-
mum of c̄L moves closer to T=0, while its height increases
rapidly. Furthermore, our results indicate that for N$15 the
TDFs %̄ and c̄L become virtually independent of N. The #non-
singular! peak in the heat capacity persists in the thermody-
namic limit #analogous to the 1D Ising model "43$!.

To obtain a more detailed characterization of the dissocia-
tion process in the CE, we next study the distribution of
complex zeros #DOZ! of ZC. As evident from Eq. #11!, the
only relevant configurational part of ZC#!! is a polynomial
of degree #N−1! in z=e!U0, and, therefore, has #N−1! com-
plex Fisher zeros "10$ per branch of the logarithm. This qua-
sipolynomial structure is a consequence of the fact that, for

FIG. 2. #a! Canonical mean energy per particle %̄= Ē /N, #b!
pressure P̄, and #c! specific heat capacity c̄L=!Ē /!T #logarithmic
scale! as a function of temperature T for N=15 particles and differ-
ent values of the reduced density n=10−1 /r0 #dashed line!, n
=10−3 /r0 #dotted!, and n=10−6 /r0 #full!.

STEFAN HILBERT AND JÖRN DUNKEL PHYSICAL REVIEW E 74, 011120 #2006!

011120-4

ing!. The larger the system the less likely it is that the frag-
ments temporarily recombine in a state of high kinetic en-
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scale! as a function of temperature T for N=15 particles and differ-
ent values of the reduced density n=10−1 /r0 #dashed line!, n
=10−3 /r0 #dotted!, and n=10−6 /r0 #full!.
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ing!. The larger the system the less likely it is that the frag-
ments temporarily recombine in a state of high kinetic en-
ergy; i.e., from a probabilistic standpoint, the average "Eq.
#7!$ is then dominated by phase space regions of low kinetic
energy. With regard to practical applications, this means that
one could cool such a small isolated system of bound par-
ticles by injecting energy until the fragmentation process sets
in #cooling by evaporation/dissociation!.

The above-described features of microscopic PTs are ge-
neric and shared by all physical systems that exhibit disso-
ciation and evaporation #e.g., similar microscopic PTs and
temperature oscillations are also found for small 1D-
Lennard-Jones molecules "30$!. In particular, microscopic
PTs should become more pronounced in two or three dimen-
sions #since then effective dimension of A grows even more
rapidly at the dissociation levels! and also be observable in
quantum systems. By virtue of dissociation experiments with
small particle numbers and very low densities #similar to
those of Schmidt et al. "41$, but without heat bath!, one
should, in principle, be able to detect the oscillating behav-
ior, e.g., in temperature and pressure curves. However, to
actually observe such oscillations one has to realize the re-
quirements of the MCE, i.e., a thermally isolated system with
regulated energy injection. Furthermore, due to the micro-
scopic origin of the oscillations and the requirement of a
relatively low particle density, a high sensitivity of the ve-
locity and force measurements and long measuring time
spans will be necessary.

IV. CANONICAL ENSEMBLE

Employing the canonical ensemble #CE! is appropriate if
the system under consideration is in thermal contact with a
much larger system #heat bath!, as, e.g., realized in dusty
cluster experiments "42$. The relevant thermodynamic poten-
tial is the free energy "2$

F#!,L,N! % − !−1 ln ZC#!,L,N! , #10!

where ZC is the canonical partition function. The external
control variables are now the inverse temperature !
%#kBT!−1 of the heat bath, the volume L, and the particle
number N. For the above model, ZC can be exactly calcu-
lated, analogous to Eq. #5!, as

ZC =
1

N!
&2"m

!h2 'N/2

(
k=0

N−1

#ke
!kU0 #11!

with #k#N ,L! given by Eq. #5b!. Mean energy and pressure

of the CE are defined by Ē%−!#ln ZC! /!! and P̄
%−!F /!L, yielding, e.g., the canonical caloric law

Ē =
N

2!
−

(k=0

N−1
#ke

!kU0kU0

(k=0

N−1
#ke

!kU0
. #12!

Figures 2#a! and 2#b! show Ē#T! and P̄#T! for different
values of the reduced particle density n=N / "L− #N−1!dhc$.
In contrast to the microcanonical pressure "Fig. 1#b!$, the

canonical pressure is a monotonous function of T or Ē, re-
spectively. In the thermodynamic limit, microcanonical and
canonical caloric curves become nearly indistinguishable.
The canonical heat capacity c̄L=!Ē /!T exhibits a strong
#nonsingular! peak in the temperature region, where disso-
ciation occurs "Fig. 2#c!$. If observed in an experimentally
measured curve, such behavior would possibly be interpreted
as a PT. For decreasing density n, the position of the maxi-
mum of c̄L moves closer to T=0, while its height increases
rapidly. Furthermore, our results indicate that for N$15 the
TDFs %̄ and c̄L become virtually independent of N. The #non-
singular! peak in the heat capacity persists in the thermody-
namic limit #analogous to the 1D Ising model "43$!.

To obtain a more detailed characterization of the dissocia-
tion process in the CE, we next study the distribution of
complex zeros #DOZ! of ZC. As evident from Eq. #11!, the
only relevant configurational part of ZC#!! is a polynomial
of degree #N−1! in z=e!U0, and, therefore, has #N−1! com-
plex Fisher zeros "10$ per branch of the logarithm. This qua-
sipolynomial structure is a consequence of the fact that, for

FIG. 2. #a! Canonical mean energy per particle %̄= Ē /N, #b!
pressure P̄, and #c! specific heat capacity c̄L=!Ē /!T #logarithmic
scale! as a function of temperature T for N=15 particles and differ-
ent values of the reduced density n=10−1 /r0 #dashed line!, n
=10−3 /r0 #dotted!, and n=10−6 /r0 #full!.
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ergy; i.e., from a probabilistic standpoint, the average "Eq.
#7!$ is then dominated by phase space regions of low kinetic
energy. With regard to practical applications, this means that
one could cool such a small isolated system of bound par-
ticles by injecting energy until the fragmentation process sets
in #cooling by evaporation/dissociation!.
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Lennard-Jones molecules "30$!. In particular, microscopic
PTs should become more pronounced in two or three dimen-
sions #since then effective dimension of A grows even more
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quantum systems. By virtue of dissociation experiments with
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those of Schmidt et al. "41$, but without heat bath!, one
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scopic origin of the oscillations and the requirement of a
relatively low particle density, a high sensitivity of the ve-
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The canonical heat capacity c̄L=!Ē /!T exhibits a strong
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ciation occurs "Fig. 2#c!$. If observed in an experimentally
measured curve, such behavior would possibly be interpreted
as a PT. For decreasing density n, the position of the maxi-
mum of c̄L moves closer to T=0, while its height increases
rapidly. Furthermore, our results indicate that for N$15 the
TDFs %̄ and c̄L become virtually independent of N. The #non-
singular! peak in the heat capacity persists in the thermody-
namic limit #analogous to the 1D Ising model "43$!.

To obtain a more detailed characterization of the dissocia-
tion process in the CE, we next study the distribution of
complex zeros #DOZ! of ZC. As evident from Eq. #11!, the
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pressure P̄, and #c! specific heat capacity c̄L=!Ē /!T #logarithmic
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Exactly solvable model: 1D Takahashi gas
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Canonical caloric curve

non-singular 1D “PT”
Hilbert & Dunkel, PRE 74: 011120 (2006)

H!p,q;L,N" =
p2

2m
+ U!q;L,N" = E , !1"

with q= !q1 , . . . ,qN" denoting the coordinates and p
= !p1 , . . . , pN" the conjugate momenta. In the case of an iso-
lated system the total energy E is conserved. The potential
energy U=Uint+Ubox is determined by the interaction poten-
tial

Uint!q;N" =
1
2 #

i,j=1
i!j

N

Upair!$qi − qj$" !2a"

and the box potential

Ubox!q;L,N" = % 0, q ! &0,L'N,

+ ! , otherwise.
!2b"

The pair potential is given by

Upair!r" = ( ! , r " dhc,

− U0, dhc # r # dhc + r0,

0, r $ dhc + r0,

!2c"

where dhc%0 is the hard-core diameter of a particle with
respect to pair interactions. The interaction potential !2c" can
be viewed as a simplified Lennard-Jones potential. The depth
of the potential well is determined by the binding energy
parameter U0%0 and the interaction range by the parameter
r0, where we shall additionally impose that

0 # r0 " dhc.

The latter condition ensures that particles may interact with
their nearest neighbors only. Furthermore, we assume that
L%Lmin)!N−1"!dhc+r0", i.e., the volume is assumed to be
sufficiently large for realizing the completely dissociated
state, corresponding to U=0. The energy E of the system can
take values between the ground state energy

E0 ) − !N − 1"U0

and infinity.

III. MICROCANONICAL ENSEMBLE

The microcanonical ensemble !MCE" refers to an isolated
system. Thence the control parameters are energy E, volume
L, and particle number N. The thermodynamic !Hertz" en-
tropy of the MCE is given by &30–33'

S!E,L,N" = kB ln &!E,L,N" , !3a"

where kB is the Boltzmann constant and

&!E,L,N" =
1

N ! hN*
RN

dq*
RN

dp'!E − H" !3b"

the phase volume &h is Planck’s constant, and '!x")0 for
x#0 and '!x")1 for x$0'. Using N-dimensional spherical
momentum coordinates, one can rewrite Eq. !3b" as

& = C!N"*
RN

dq!E − U"N/2'!E − U" , !4a"

C!N" )
2!2(m"N/2

)!N/2"N ! NhN , !4b"

where ) denotes the Euler gamma function. For Hamiltonian
!1" one can calculate integral !4a" exactly, yielding !see the
Appendix"

& = C#
k=0

N−1

*k!E + kU0"N/2'!E + kU0" , !5a"

where, for L% !N−1"!r0+dhc",

*k!N,L" = +N − 1

k
,#

i=0

k +k

i
,!− 1"i

+&L − !N − 1"dhc − r0!N − 1− k + i"'N. !5b"

Given Eqs. !5", the microcanonical temperature T and pres-
sure P are obtained from the standard definitions T−1

)"S /"E and P /T)"S /"L &2,33–35'. For example, for the
temperature one finds

kBT =
2
N

#
k=0

N−1

*k!E + kU0"N/2'!E + kU0"

#
k=0

N−1

*k!E + kU0"N/2−1'!E + kU0"

, !6"

which reduces to the ideal gas law E=NkBT /2 in the limit
E!NU0. It is worthwhile to recall that, for a Hamiltonian of
the form !1", the thermal energy !6" derived from the Hertz
entropy is directly related to the microcanonical mean kinetic
energy per degree of freedom by virtue of the equipartition
theorem &33,34':

kBT

2
= - pi

2

2m
., i = 1, . . . ,N , !7"

where /·0 denotes the average with respect to the microca-
nonical probability density function

f!q,p" = + "&

"E
,−1 1

N ! hN,&E − H!q,p"' . !8"

Hence for isolated ergodic systems with an arbitrary particle
number N, the caloric law T!E" can be measured experimen-
tally by monitoring the kinetic energy over a sufficiently
long time interval !at fixed energy values E".

As shown in Fig. 1, the microcanonical caloric law !6" as
well as the pressure P!E" exhibit N nonanalytic points at the
energies Ek=−kU0, k=0, . . . ,N−1, separating N energeti-
cally different dissociation states !all bindings intact, one
binding broken, etc.". The formal order &30,36,37' of these
nonanalyticities equals N /2, i.e., the entropy has continuous
derivatives up to order !N /2−1 ", but the !N /2"th derivative
becomes discontinuous !a similar result was obtained re-
cently by Kastner and Schnetz for the mean-field spherical
spin model &38'; see also Gross &39' for a general discussion
of differentiability properties of the microcanonical partition
function". Consequently, the “microscopic !dissociation"
phases” as well as the singularities appear to be smoothened
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“Conjecture”

‣ Relation between micro-canonical temperature oscillations and 
macroscopic canonical PTs ?
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Zeros of Z!B" are poles of F!B" and CV !B ". As can be
seen from Eq. (2) the major contributions to the specific

heat come from zeros close to the real axis, and a zero ap-

proaching the real axis infinitely close causes a divergence

in the specific heat.

In the following we will give a discretized version of the

classification scheme of Grossmann et al. [10]. To char-

acterize the DOZ close to the real axis let us assume that

the zeros lie approximately on a straight line. The cross-

ing angle of this line with the imaginary axis (see Fig. 1)

is then n ! tang with g ! !b2 2 b1"#!t2 2 t1". The
crossing point of this line with the real axis is given by

bcut ! b1 2 gt1. We define the discrete line density f
as a function of tk as the average of the inverse distances

between Bk and its neighboring zeros

f!tk" !
1
2

µ
1

jBk 2 Bk21j
1

1
jBk11 2 Bkj

∂
, (3)

with k ! 2, 3, 4, . . . . Guidelined by the fact that the im-
portance of the contribution of a zero to the specific heat

decreases with increasing t we approximate f!t" in the
region of small t by a simple power law f!t" $ ta . A

rough estimate of a considering only the first two zeros

yields

a !
lnf!t3" 2 lnf!t2"

lnt3 2 lnt2
. (4)

Together with t1, the imaginary part of the zero closest to

the real axis, the parameters g and a classify the DOZ.

As will be shown below, the parameter t1 is the essential

parameter to classify phase transitions in small systems.

For a true phase transition in the Ehrenfest sense we have

t1 ! 0. For this case it has been shown [10] that a phase
transition is completely classified by a and g. In the

case a ! 0 and g ! 0 the specific heat CV !b" exhibits
a d peak corresponding to a phase transition of first order.
For 0 , a , 1 and g ! 0 (or g fi 0) the transition is of
second order. A higher order transition occurs for 1 , a
and arbitrary g. This implies that the classification of

phase transitions in finite systems by g, a, and t1, which

reflects the finite size effects, is a straightforward extension

of the Ehrenfest scheme.

The imaginary parts ti of the zeros have a simple

straightforward interpretation in the quantum mechanical

case. By going from real temperatures b ! 1#!kBT " to

!

"
zeros

! 2

! 1

Phase A 

Phase B

#

CUT!

FIG. 1. Schematic plot of the DOZ illustrating the definition
of the classification parameters given in the text.

complex temperatures b 1 it#h̄ the quantum mechanical
partition function can be written as

Z!b 1 it#h̄" ! Tr%exp!2itH#h̄" exp!2bH"& , (5)

! 'Ccanj exp!2itH#h̄" jCcan( (6)

! 'Ccan!t ! 0" jCcan!t ! t"( ,

introducing a canonical state, which is the sum of all

eigenstates of the system appropriately weighted by

the Boltzmann factor, jCcan( !
P

i exp!2bei#2" jfi(.
Within this picture a zero of the partition function occurs

at times ti where the overlap of a time evoluted canonical

state and the initial state vanishes. This resembles a

correlation time, but some care is in order here. The time

ti is not connected to a single system, but to an ensemble

of infinitely many identical systems in a heat bath, with a

Boltzmann distribution of initial states. Thus, the times

ti are those times after which the whole ensemble loses

its memory.

Equation (5) is nothing but the canonical ensemble av-

erage of the time evolution operator exp!2itH#h̄". Fol-
lowing Boltzmann the ensemble average equals the long

time average which was proven quantum mechanically

by Tasaki [13]. Therefore ti indeed resembles times for

which the long time average of the time evolution operator

vanishes.

The observation of Bose-Einstein condensation in di-

lute gases of finite number ($103 107) of alkali atoms in

harmonic traps [14] has renewed the interest in this phe-

nomenon which has already been predicted by Einstein

[15] in 1925. The number of condensed atoms in these

traps is far away from the thermodynamic limit, raising the

interesting question how the order of the phase transition

changes with an increasing number of atoms in the con-

densate. For this reason we treat the Bose-Einstein con-

densation in a three-dimensional isotropic harmonic trap

(h̄ ! v ! kB ! m ! 1) as an example for the applica-
tion of the classification scheme given above.

For noninteracting bosons the occupation numbers of an

eigenstate ji( and N 1 1 particles can be evaluated by a
simple recursion [16]

hi!N 1 1,B" !
ZN !B"

ZN11!B"
exp!2Bei" %hi!N ,B" 1 1& .

(7)

Since the particle number is a conserved quantity in the

canonical ensemble the direct calculation of the normal-

ization factor can be omitted by using the relation

ZN !B "
ZN11!B"

!
N 1 1P`

i!0 exp!2Bei" %hi!N ,B" 1 1&
. (8)

Since ZN !B" is an exponentially decreasing function in b
it is a difficult numerical task to calculate its zeros directly.

Zeros of the partition function are reflected by poles of the

ground state occupation number

h0!N ,B" ! 2
1
B

≠e0ZN !B"
ZN !B "

(9)
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Summary

‣ Hertz (volume) entropy   =   micro-canonical thermodynamic entropy

‣ microscopic dissociation transitions indicated by temperature 
oscillations in the MCE

‣ “conjecture”:

• Fisher zeros of  canonical distribution function reflect/arise from oscillations in the corresponding 
micro-canonical caloric curve (via Laplace transformation)

• (order of the) macroscopic PT encoded in the micro-canonical temperature oscillations 

Hilbert & Dunkel, PRE 74: 011120 (2006)
Dunkel & Hilbert, Physica A 370: 390-406 (2006)


