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From time to time, it is good to look back 
and reflect on the very foundations 
of science. Something that is now 

textbook material was usually once a 
topic of debate, and a generally accepted 
solution might still turn out to be incorrect. 
Writing in Nature Physics1, Jörn Dunkel and 
Stefan Hilbert have revisited the concepts 
of temperature and entropy — a timely 
rethink in the light of some beautiful recent 
experiments involving negative temperature 
states in ultracold quantum gases that are 
trapped in optical lattices2,3.

Negative temperature states were 
first observed4 in nuclear spin systems 
by Edward Purcell and Robert Pound 
in 1951, and the implications of 
negative temperatures were discussed5 
by Norman Ramsey in 1956. Negative 
temperatures arise in situations where the 
high-energy states of a system are occupied 
more strongly than its low-energy states. 
The temperature T can be defined by fitting 
the occupation probabilities pi, which are 
proportional to the Boltzmann factors 
exp(−Ei/kBT), where Ei is the energy of 
state i. The negative temperature states of 
the system have higher energies than those 
associated with positive temperatures. 
Thus, the temperature scale runs +0 K,…, 
+300 K,…, +∞ K, −∞ K,…, −300 K,…, −0 K 
(ref. 5); systems at negative temperature 
are hotter than systems at positive 
temperature4 — they are ‘hotter than hot’.

The important question now addressed 
by Dunkel and Hilbert1 is whether the fit 
parameter T = TB (where the subscript 
‘B’ stands for Boltzmann) corresponds to 
the usual thermodynamic interpretation 
of temperature. In thermodynamics, 
temperature is a derived quantity, the two 
primary properties being the system’s 
energy and entropy. If the dependence 
of entropy S on energy E is known, the 
system’s temperature is obtained simply as 
the inverse of the derivative of S(E) with 
respect to E. The axiomatic framework 
of thermodynamics — founded on an 
enormous number of observations, and 
checked through application to a multitude 

of systems — is extremely solid, and has a 
clear mathematical structure based on the 
theory of differential forms.

To connect the thermodynamic properties 
of a system to its atomistic structure, one has 
to resort to statistical physics, pioneered by 
Josiah Willard Gibbs and Ludwig Boltzmann 
more than a century ago. Statistical 
mechanics has its own concept of entropy, 
or rather, several related concepts, which are 
‘surrogates’ of the thermodynamic entropy. 
The idea is to look for a mathematical 
quantity that is connected with the equations 
governing the collective dynamics of 
the system’s particles and complies with 
the axioms of thermodynamics. This 
‘mathematical entropy’ can fulfil these 
axioms exactly or only approximately, with 
the corresponding approximation becoming 
exact in some limiting cases.

The entropy of statistical mechanics 
has to do with counting the possible states 
of a system. In a quantum system with a 

discrete energy spectrum, one simply counts 
all possible states with energies in some 
prescribed interval. If the number of states 
is W, the entropy is given by Boltzmann’s 
famous formula S = kB ln W. For isolated 
systems, the standard (textbook) approach 
is to take some energy interval ΔE around 
the actual energy E of the system (which 
for macroscopic systems can never be 
measured exactly anyway) and count the 
states within it. Gibbs’ proposal was instead 
to count all states with energies lower 
than E. Dunkel and Hilbert1 call these 
definitions the Boltzmann entropy and the 
Gibbs entropy, respectively, and show that 
it was Gibbs who proposed the correct way 
of ‘counting’: it is the Gibbs entropy that 
exactly matches the mathematical structure 
of thermodynamics, whereas Boltzmann’s 
is only an approximation. The temperature, 
calculated from the functional dependence 
of the entropy on the energy as stated above, 
will be different for both definitions.

THERMODYNAMICS

Not hotter than hot 
A careful revision of the rudiments of statistical physics shows that negative temperatures are artefacts of 
Boltzmann’s approximate definition of entropy. Gibbs’ version, however, forbids negative absolute temperatures 
and is consistent with thermodynamics.
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Figure 1 | Gibbs versus Boltzmann. In counting microstates to measure the entropy of a system, 
Gibbs (left) had a different prescription to that of Boltzmann (right). Although Boltzmann’s approach 
can seemingly result in negative absolute temperatures, Dunkel and Hilbert1 have proved that the correct 
thermodynamic treatment, following Gibbs, causes no such problems.
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For typical macroscopic systems, the 
difference between the two procedures (as 
well as the exact value of the width of ΔE 
in Boltzmann’s approach) does not play 
any role: the number of states grows so fast 
with the system’s energy that almost all 
states that should be included in the count 
are concentrated around E. The difference 
becomes important, however, when the 
energy of the system is bounded from above, 
as it is in Purcell and Pound’s nuclear spin 
system4 or in a quantum gas2 displaying 
energy gaps. In this case, the number of 
states within an interval ΔE (and thus the 
Boltzmann entropy) decays as a function 
of E, and the temperature associated with 
Boltzmann’s prescription (which is the 
same as the fitting parameter TB) can 
become negative.

The overall number of states below E 
cannot decay, however: the Gibbs entropy is 
a non-decaying function of the energy, and 

the Gibbs temperature TG (which coincides 
with the thermodynamic one) remains 
positive. On the Gibbs temperature scale, 
the whole domain of negative Boltzmann 
temperatures corresponds to the limiting 
case TG → ∞: such systems are hot, but not 
hotter than hot. The two temperatures TG 
and TB are connected to each other through 
a simple equation involving the heat 
capacity of the system, and that equation 
reveals the conditions under which the 
difference between the two temperatures can 
be neglected1. 

Negative absolute temperatures are 
neither bad nor wrong, as long as one 
doesn’t forget what one is talking about. 
Failing to remember that the Boltzmann 
temperature is not the thermodynamic 
temperature can cause problems. From 
the point of view of pure logic, it could be 
that thermodynamics is faulty, and that the 
Boltzmann temperature is the ‘real’ one. 

However, using negative temperatures with 
the formalism of thermodynamics (which, 
as we have now seen, forbids them) is 
inconsistent anyway. The incorrect use of 
negative (Boltzmann) temperatures — such 
as inserting a negative temperature into 
the Carnot formula for the efficiency of a 
heat engine, giving an efficiency exceeding 
unity — simply doesn’t work. ❐
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From its beginnings in the experiments 
of Joseph Fraunhofer to the most 
recent laser-based measurements 

with uncertainty at the 10–17 level1,2, 
spectroscopy has been a fantastically 
successful tool for unravelling the structure 
and workings of atomic and molecular 
systems. Indeed, optical spectroscopy 
progressed hand-in-hand with the birth 
of quantum mechanics in the 1900s. And 
the invention of the laser around 1960 
provided a more precise spectroscopic tool, 
which not only enabled exquisite probing 
of atomic structure, but was also critical for 

spectroscopy-based cooling and trapping 
of atoms.

With such a storied past, one might 
wonder what worthwhile spectroscopic 
advances could help reveal still further 
details of our physical world? An outstanding 
challenge in laser spectroscopy is the 
precise measurement of transitions in the 
vacuum ultraviolet (VUV) region of the 
optical spectrum — wavelengths between 
approximately 10 and 200 nm. Of particular 
interest are small atomic and molecular 
species such as hydrogen and helium and 
their ionic and more exotic counterparts, 

antihydrogen or antiprotonic helium, for 
example3–5. The relative simplicity of these 
atoms makes their energy structure amenable 
to precise calculations based on quantum 
electrodynamics, which can then be compared 
with spectroscopic measurements. Another 
noteworthy VUV spectroscopic problem is 
the direct observation of the low-lying nuclear 
transition in thorium-229, which is predicted 
to be near 160 nm. This rare optical transition 
could serve as a unique window into the 
nucleus, as well as a reference for a nuclear 
clock6 with an exceptional quality factor and 
uncertainty potentially approaching 10–20.

However, it is at this point that a 
challenging measurement issue arises: there 
are no widely tunable narrow-linewidth 
lasers below about 180 nm that would be 
suitable for precision spectroscopy of these 
interesting species. And although nonlinear 
conversion techniques in gases can produce 
VUV laser radiation, these require high-
energy pulsed lasers that lack the necessary 
spectral resolution. Thus, it seems that 
Fourier’s uncertainty limit prevents the 
combination of high peak power from a 
short-pulsed laser needed to generate VUV 
light, and high spectral resolution from a 
continuously oscillating laser required to 
achieve the desired precision.

SPECTROSCOPY

Combs grow bigger teeth
A combination of two Nobel ideas circumvents the trade-off between power and accuracy in ultraviolet spectroscopy.
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Figure 1 | Ramsey-comb spectroscopy. Morgenweg et al.7 selectively amplified pairs of Ramsey pulses 
from a train, separated by a time TR, generated by a frequency-comb laser. These pulses excited a mix 
of rubidium and caesium vapours. A time-domain analysis of the oscillating Ramsey signal as the time 
between the pulses varied (δT) provided simultaneous determination of the frequencies (f1, f2, f3…) of the 
electronic transitions of the atoms.
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