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We study the time-evolution of the joint and the conditional probability of macroscopic 
variables of a closed system from a microscopic point of view. We derive an exact 
generalized master equation for their time rate of change which consists of two parts, one 
instantaneous and local in state space, the other retarded and nonlocal in state space. It is 
represented by stochastic operators depending both on the initial preparation and on the 
initial macrodistribution, which reflects the non-Markovian character of the process. The 
connection with the time-evolution of the single-event probability is discussed. 

Introduction 

In the last two decades there has been considerable 
progress by the attempt to deduce the macroscopic 
properties of large physical systems from first prin- 
ciples. Especially the projection-operator technique 
originated by Nakajima [1] and Zwanzig [2] proved 
to be very useful in this field. In the first paper of this 
series [3] (referred to as 2) we have used this tech- 
nique to derive an exact equation of motion for the 
single-event probability p(1)(a, t) of a set of macrovari- 
ables a. By taking the preparation of the initial 
distribution explicitly into account, we obtained a 
homogeneous master equation with uniquely defined 
stochastic operators. 
It has been pointed out in I that the Greens function 
of the master equation for p(i)(a,t) allows for the 
calculation of initial time-correlation functions of 
macrovariables. To determine correlation functions 
for arbitrary times, however the p(a)(a, t)-level of de- 
scription is not sufficient, but one has to look for an 
evolution equation for the joint probability 
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p(2)(a', t';a, t). In this paper, we derive an exact equa- 
tion of motion for the macroscopic joint probability 
by means of extended projection-operator techniques 
in the framework of classical statistical mechanics. To 
our knowledge, up to now the time-evolution of the 
multivariate probability distributions has not been 
considered starting from first principles. The interest 
in this problem arises not only from the wellknown 
importance of time-correlation functions in non- 
equilibrium statistical mechanics [4] but multi- 
variate probability distributions are also important 
for the investigation of the nature of the stochastic 
process of macrovariables. For instance, a satisfac- 
tory discussion of the Markovian limit cannot be 
given on the p(1)(a, t)-level of description. 
The paper is organized as follows. In the next Section 
we give a detailed discussion of the microscopic joint 
probability p(2)(q',t';q,t) and the conditional proba- 
bility p(q',t'[q,t). Although the properties of 
p(Z)(q', t';q, t) are well-known, a comparison with the 
properties of the macroscopic joint probability 
p(Z)(a',t';a,t) is very informative as the micrody- 
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namics is a Markovian process whereas the macrody- 
namics is non-Markovian if no approximation is 
made. In Section3, the macroscopic probabilities 
p(2)(a', t'; a, t) and p(a', t'}a, t) are related to the micro- 
scopic ones by the coarse-graining operation. The 
connection is given in terms of the probability distri- 
bution w~(q, t) of macroscopically equivalent micro- 
states q corresponding to a given macrostate a. The 
time-evolution of this distribution is obtained as a 
preparation-dependent functional of the past history 
of the macroscopic single-event distribution p°)(t). In 
Section4 which contains the main results of this 
work, the time-evolution of the macroscopic joint 
and conditional probabilities is expressed completely 
in terms of the macroscopic motion by means of 
extended projection-operator techniques. We derive 
exact generalized master equations for p(flt) and 
p(2)(t',t) with stochastic operators depending ex- 
plicitly not only on the initial preparation but also on 
the initial macrodistribution pro(O). In Section 5, we 
finally discuss the connection with the time-evolution 
of the macroscopic single-event probability p(*)(t) and 
establish the connection with the results of I. 

2. The Microscopic Joint 
and Conditional Probabilities 

Throughout this paper we use the notation of I. In 
this Section we consider the time-evolution of the 
microscopic joint probability p(2)(t',t) which deter- 
mines time-correlation functions (F(t') G(t)) of arbitrary 
phase functions F(q), G(q), where q=(q> . . . ,G,  ...) 
is a point in the phase space F. 
Let p°)(q,O) be the initial microdistribution of the 
ensemble of systems considered. The mean value 
(F(t)) of a phase function F(q) at time t is given by 

~F(t) ) = S dq F(q(t)) p(1)(q, 0), (2.1) 

where q(t) is the solution of Hamilton's equations of 
motion with the initial condition q(0)= q. The time- 
correlation function of two phase functions F(q), G(q) 
reads 

(F(t') G(t)) = ~ dq F(q(t')) G(q(t)) p(1)(q, 0). (2.2) 

Hamilton's equations of motion lead to 

F(q(0) = e- L'F(q), (2.3) 

where L denotes the Liouvillian which acts on a 
phase function (p(q) as the Poisson bracket with the 
Hamilton function H(q), 

L qo = {H, go}. (2.4) 

This Poisson-bracket structure of the Liouvillian 
leads to the relations 

dq qo(q) L~(q) = - ~ dq O(q)L ~0 (q) (2.5) 

L ~o(q) @(q) = cp(q) LO(q) + O(q) L qo(q) (2.6) 

and 

d q qo (q) eLtt)(q) = ~ dq ~ (q) e- Ltqo (q) (2.7) 

e it q) (q) ~ (q) = (e L' q~ (q)) (e L' ~ (q)). (2.8) 

Using (2.1), (2.3) and (2.7) we have 

(F(t))=~dq(e I~F(q))p(1)(q,O) 

= ~ dq F(q) p(1)(q, t) (2.9) 

where 

p(1)(q, t) = eL'p(1)(q, 0) (2.10) 

denotes the single-event microdistribution at time t. 
With (2.3), (2.7) and (2.8) the time-correlation func- 
tion (2.2) reads 

( F(t') G(t) ) = ~ dq(e- L(¢-° F(q)) G(q) ett pO)(q, 0). 
(2.11) 

This may be written as 

(F(t') G(0) = ~ dq'dq F(q') G(q) p(2)(q, t'; q, 0, (2.12) 

where we have introduced the microscopic joint 
probability 

p(2)(q,, t'; q, t)=e L'(''-t) ~(q'--q)eL' p(1)(q, O) 

~: (~(q'-- q(t'-- t)) p(1)(q, t). (2.13) 

Here L' acts only on the @coordinate. 
The probability distributions p(1)(t), p(2)(t', t) are 
elements of H(F) and H(F®F), respectively, where 
//(~2) denotes the linear manifold of absolutely inte- 
grable real functions on £2. In spite of the fact that the 
single-event probabilities p(1)(t) at time t are sub- 
mitted to the constraints of positivity and 
normalization 

pO)(q, t)>=O 

dq p(1)(q, t)= 1, (2.14) 

the linear closure of this set coincides with H(F). 
There is a uniquely defined group of time-evolution 
operators U(T) with the properties 

u(~): n(r )  ~ n ( r )  

U(g  I -~- "C2 ) ~-~ U(~ t )  U(T2) 

u(o)=l 

U(-~)=u-~(~) 
p(1)(t')=U(t'-t)p(1)(t) Vp(1)(t) (2.15) 
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which is given by 

U(z) = e I~. (2.16) 

The joint probability p(Z)(t', t), t'=>t, and the single- 
event probability p(1)(t) are connected by the micro- 
scopic conditional probability p(t'l t) defined by 

p(2)(q,, t' ; q, t)=p(q', t'lq, t) p(a)(q, t). 

From (2.13) we see that 

p(q', t'lq, t ) = 3 ( q ' - q ( t ' - t ) ) .  

(2.17) 

(2.18) 

The microscopic conditional probability p(q', t'lq, t) 
is identical with the kernel of the time-evolution 
operator U ( t ' - t )  introduced in (2.15). Consequently, 
p(t'l t) satisfies the Chapman-Kolmogorov equation. 
These properties express the wellknown fact that the 
microscopic process is Markovian. 

3. The Macroscopic Joint and Conditional 
Probabilities 

On the macroscopic level, the system is characterized 
by a set of macrovariables a=(al ,  ..., a . . . . .  ) which 
form the state space £. These macrovariables are the 
values of phase functions A: F--->X. The reciprocal 
mapping associates with every point aeX a hyper- 
surface S(a) of macroscopically equivalent micro- 
states in F corresponding to fixed values A(q)=a of 
the macrovariables. 
The mean value of an arbitrary state space function 
f(a) at time t is given by 

( f (t) ) = ~ dq f (A(q)) p(1)(q, t) 

= ~ da f(a) p(1)(a, t), (3.1) 

where p(1)(a, t) is the macroscopic single-event proba- 
bility obtained from p(~)(q, t) by means of the coarse- 
graining operator 

C: H(F) ~ n(Z)  

(C p°)(t)) (a) = ~ dq 6(A(q) - a) p(1)(q, t) 

=p(1)(a, t). (3.2) 

This operator averages the microdistribution on 
every hypersurface S(a). 
The time-correlation function of two state space func- 
tions f(a), g(a) is given by 

( f (t') g(t) ) = ~ dq' dq f (A(q')) g(A(q)) p(Z)(q,, t' ; q, t) 

= ~ da' da f(a') g (a) p(2)(a', t'; a, t) (3.3) 
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where we have introduced the macroscopic joint 
probability 

p(Z)(a', t'; a, t) 

= [dq'dq 6(A(q')-a')6(A(q)-a)p(Z)(q ', t'; q, t). (3.4) 

The macrodistributions p(1)(t) and p(Z)(t', t) are ele- 
ments of the linear manifolds H(X) and H(X®£),  
respectively. The macroscopic joint probability 
p(2)(f, t), t '>  t and the macroscopic single-event prob- 
ability p(1)(t) are connected by the macroscopic con- 
ditional probability p(t'lt) which is defined for values 
a with p(Z)(a, t)4= 0 by 

p(Z)(a', t' ; a, t)=p(a', t'la, t) p(1)(a, t). (3.5) 

In contrast to the microscopic conditional probabili- 
ty p(t'] t) given by (2.18), the macroscopic conditional 
probability is a complicated quantity which depends 
on the history of the system between the time of 
preparation t o = 0 and the first time of observation t, 
as well as on the preparation itself. To make this 
explicit, we write (3.4) in the form 

p(2)(a', t'; a, t)= ~dq'6(A(q')-a')~dqp(q', t'lq, t) 
• 6 (A(q) -  a)p(1)(q, t), (3.6) 

where we have used (2.17). Equations (3.5) and (3.6) 
yield for the conditional probability 

p(a', t'[a, t )= S dq' 6(A(q')-a')  ~ dq p(q', t'lq, t) 

.6 (A(q) -a)  w ~(q, t) (3.7) 

where w~(q, t) is defined by 

p(1)(q, t)= w~(q, t)p(1)(A(q), t). (3.8) 

w~(q, t) is the probability distribution of the micro- 
states q on the hypersurfaces S(a) and is normalized 
on every hypersurface by 

S dq 6(A(q)-a)  w o(q, t)= 1. (3.9) 

It will be seen below that w,(q,t) generally is a 
different distribution for every stochastic process (a). 
In this context, the stochastic process is determined 
by both the Hamiltonian and the initial 
microdistribution. 
Our next aim is an expression for w~(q, t) in terms of 
macroscopic quantities. At the initial time to=0,  
w~(q,O) is the statistical weight of macroscopically 
equivalent microstates resulting from the preparation 
procedure, w~(q, 0) is identical with w,(q) introduced 
in (I 2.4) and characterizes the preparation classes (re). 
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It also determines the operator K s defined in (I3.1) by 

K /  n(z) - ,  u(r) 

(K~ p) (q) = w~(q) ~ da 6(A(q)- a) p(a) (3.10) 

as well as the projection operator 

p~: n(r)-~ n(r) 

P~=K~C, P~ =P~. (3.11) 

The operator K s associates with every macrodistri- 
bution p(a) a microdistribution p(A(q))w~(q), whereas 
the operator P~ projects all microdistributions that 
yield the same macrodistribution p(a) onto a single 
microdistribution p (A(q)) w~ (q). 
We now make use of the representation for p(1)(t), 

p(1)(t)=K~p(1)(t) 

t 

+ ~ ds(1 - P~) e L(1- v~)(,-,)(1 - P~) LK,  p(ll(s) (3.12) 
0 

which is a consequence of the operator identity 
(I3.10) and the property (I3.4) of the projection oper- 
ator P~. 
By comparing (3.12) with (3.8) we find 

w~(q, 0=w~(q) 

i ds(1 - P~) e L(1- P,,)(r- ~)(1 - P~) L w~(q)p(1)(A(q), s) 
0 

4 p(~ (A (q), t) 
(3.13) 

This equation determines w~(q, t) as a functional of 
the past history of the macroscopic single-event dis- 
tribution p(a)(t) where the form of the functional 
depends explicitly on the preparation (~). For every 
initial macrodistribution p(~)(0) we obtain p(1)(t) as a 
solution of the master equation (I3.15). Hence, 
w~(q, t) depends not only on the preparation class (re) 
but also on the initial macrodistribution p(1)(0), i.e. to 
every stochastic process (~) there will correspond a 
different function w~(q, t). There is one exception: For 
the initial time of preparation t o - 0 ,  we have w~(q, O) 
=w~(q) which is independent of the initial macrodis- 
tribution p(1)(0) and thus depends only on the pre- 
paration class 0z). 
From (3.7) we see that the macroscopic conditional 
probability p(t'[0 depends also on the initial macro- 
distribution p(1)(0). Consequently, Equation (3.5) which 
gives the connection between the joint and the single- 
event probabilities is not a linear relation with re- 
spect to p(1)(t). This shows clearly that the Markov 
property of the microscopic process has been lost by 
the coarse-graining operation. 

With the use of (2.18), Equation (3.7) may be written 
as  

p(a' , t ']a,t)  

= ~ dq ~ (A(q) - a') e L(~'- ') (5 (A(q) - a) w~ (q, t). (3.14) 

In this equation, part of the irrelevant microscopic 
dynamics is already eliminated as the dependence of 
p(t'lt) on the first time of observation t comes solely 
from the past history of p(1)(t), i.e. from a macro- 
scopic quantity which obeys the master equation 
(I3.15). In contrast to this, the dependence of p(fJt)  
on (t' - t) is still expressed in terms of the microscopic 
propagator e L(~'-t). It is the aim of the next Section to 
eliminate the irrelevant microscopic dynamics 
completely. 

4. Equations of Motion for the Macroscopic Joint 
and Conditional Probabilities 

In this Section, we derive exact generalized master 
equations for the joint and conditional probabilities 
by means of extended projection-operator techniques. 
Equation (3.14) shows that the macroscopic con- 
ditional probability is the kernel of an operator 

G~(t', t) = C e L(t'-t) K~(t) (4.1) 

acting on H(Z), where C is the coarse-graining opera- 
tor (3.2), and K~(t) is defined by 

K~(0: n(z)-~ n(r) 

(Ko(t) p) (q) = w o(q, t) ~ da • (A(q) -  a) p(a). (4.2) 

The operator Ko(t) associates with the macrodis- 
tribution p(1)(a, t) the microdistribution p(i)(q, t) 
=p(1)(A(q), t) w~(q, t) of the actual process (a) at time 
t. It has the property 

CK~(t)=I  (4.3) 

which allows the introduction of a time-dependent 
projection operator P~(t) defined by 

P~(t): n(r)-~ n(r) 

Po(t) =K~(t) C 

P~(t) P~(t') = P~(t). (4.4) 

The operator P~(t) projects all microdistributions that 
yield the same macrodistribution p(a) onto a single 
microdistribution p(A(q)) w ~(q, t). 
The operators Ko(t) and P~(t) are defined in terms of 
the distribution w,(q, t) of microstates on the hyper- 
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surfaces S(a) which is determined by (3.13) as a 
preparation (~)-dependent functional of the past his- 
tory of the macrodistribution p(~)(t). Thus, every sto- 
chastic process (or) will in general determine different 
operators K,(t), P~(t). 

From (4.1) we find 

c~ 
t~; G~ (t', t) = C L e L(t'- ,) K~ (t). (4.5) 

Using 

(1 - P~(t)) K~(t) = 0 (4.6) 

and the operator idendity 

e L(''-') = e~(t) e L(*'- ') 

+ (1 -- P~ (t)) e L(' - P~(t))(,'-,)(1 - P~ (t)) 
t '  

+ 5ds(1 - P~(t)) eLa- P~(t))(t'-')(1 --P~(t))LP~(t) e ts 
t (4.7) 

we easily get 

--&,Go( t', t) = ~ ( t )  G~ (t', t) 

t '  

+ SdsA~( t ' - s ,  t) G~(s, t), (4.8) 
t 

where we have introduced the time-dependent sto- 
chastic operators 

~ (t) = C LK~ (t) (4.9) 

and 

A~(s, t)= CL(1 - P,(t)) eL(l- e*(0)s(1 -- P,(t)) LK,(t). 
(4.10) 

Equation (4.8) determines the time rate of change of 
G~(t', t) in terms of macroscopic stochastic operators 
acting on H(Z). It has to be solved with the initial 
condition 

G~(t, t ) = l  (4.11) 

which follows from (4.1). 
Equation (4.8) can be written in a more explicit way if 
the stochastic operators f2~(t) and Ao(s, t) are trans- 
formed in a manner completely analogous to our 
procedure in I, Section 4 with the stochastic oper- 
ators ~=, A~(t). We then find 

(f2~(t) p) (a) = - ~ ~ vj(a, t) p(a) 
j °at 

(4.12) 

and 

( A o ( s , t ) p ) ( a ) = ~ d a '  

• Djk(a, a'; s, t) ~-U;-+Djo(a, a'; s, t) p(a'). (4.13) 

The drift vector ~ and the memory matrix Dig are 
defined by 

vj(a, t)= ~ dq 6(A(q)-a)  w ~(q, t) Aj(q) (4.14) 

and 

Dig (a, a' ; s, t)= ~ dq fi (A (q ) -  a)(Aj(q)-  vj(a, t)) 

. eL(l-P=(t))~ w ( q ,  t) 6 ( A ( q ) -  a ' ) ( A g ( q ) -  vk(a',  t)) ,  

respectively, where 
(4.15) 

Aj = {Aj, H}. (4.16) 

The memory functions Djo read 

Dj o (a, a' ; s, t)= ~ d q 6 (A(q) -  a) (Aj(q)-  v~(a, t)) 
• e L(1 - P~(t))s w~ (q, t) fi (A  (q) - a') (A  o (q, t) - v o (a', t)) 

where 
(4.17) 

Ao(t ) = {ln w ~(t), H} (4.18) 

and 

vo(a, t) = ~ dq 6(A(q) - a) w ~(q, t) Ao(q, t) 

= ~  ~ V k ( a , t ) .  
c? a k 

(4.19) 

With these relations, the equation of motion (4.8) 
may be written as an evolution equation for the 
kernel of G~(t',t), which coincides with the macro- 
scopic conditional probability by construction. We 
find 

c? a' ~3 
~-~ p( , t'la, t)= - ~  3~. vj(a', t) p(a', t'[a, t) 

+ S d s ~  da" Djk(a ' ,a"; t ' - s , t )Oa~ 
t j 

a" ; t ' - s ,  t)} p(a", s[a, t). (4.20) + Djo(a', 

This equation is the central result of the present 
work. 
Equation (4.20) is an exact generalized master equa- 
tion for the conditional probability of the non- 
Markov process under consideration. The initial con- 
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dition reads 

p(a', tla, t )=cS(a ' -a) .  (4.21) 

To deal with this equation, one first has to determine 
the single-event distribution p(1)(a,t) by solving the 
master equation (I 3.15) for a given initial distribution 
p(i)(a, 0). 
The stochastic operators ~ ( t ) ,  A~(s, t) depend both 
on the preparation class (7c) and the initial single- 
event probability p(~)(0), i.e. on the stochastic process 
(a). ~ ( t )  gives an instantaneous contribution to the 
rate of change of p(t'l t) whereas A~( t ' - s ,  t) describes 
the memory effect of the distribution p(slt) on the 
rate of change at time t'. 
As the stochastic operators do not act on the variable 
a at time t, it is clear that the joint probability 
p(2)(a', t'; a, t) is also a solution of the master equation 
(4.20), however with the initial condition 

p(2)(a', t; a, t )=b(a ' -a)p(1) (a ,  t). (4.22) 

The evolution equation (4.20) can be viewed as a 
generalized Fokker-Planck equation. It gives, de- 
pending on the initial condition, the evolution laws of 
both the joint and the conditional probability for a 
non-Markov process in the same way as the familiar 
Fokker-Planck equation does in the theory of Mar- 
kov processes. There are two kinds of generalizations 
contained in (4.20), the retardation and the non- 
locality in Z-space. The retardation is a well-known 
characteristic of a non-Markov process. The non- 
locality is not an additional independent property of 
(4.20), but is associated with the retardation. The 
generalized Fokker-Planck equation is nonstationary 
due to the nonstationarity of the single-event distri- 
bution. The special case of a stationary process will 
be considered in a separate paper. 

5. Connection with the Time-Evolution 
of the Macroscopic Single-Event Probability 

If we make use of (3.5) and the compatibility relation 

da p(2)(a ', t' ; a, t)=p(1)(a', t') (5.1) 

we find that the operator Go(t', t) has the property 

p(1)(t ' )=G o(t', t) p(1)(t), t > t'. (5.2) 

Thus, G~(t', t) is a propagator of the macroscopic 
single-event probability of the stochastic process. It 
should be noted, however, that (5.2) does not define 
G~(t',t) uniquely as there are many process- 
dependent propagators satisfying (5.2) [5]. The pro- 

pagator G~(t', t) is distinguished by the property that 
its kernel coincides with the conditional probability 
of the process under consideration. 
If we apply the operator relation (4.8) to the single 
event-probability p(~)(t) and take into account (5.2), 
we find an evolution equation for pro(0 

~-~p(1)(t')=g$~(t)p(1)(t')+ ~A~( t ' - s , t )p ( l ) ( s )ds .  (5.3) 
t 

For t=0,  (5.3) coincides with the single-event master 
equation (13.15), as the stochastic operators ~(0) ,  
A~(t, 0) are identical with the stochastic operators ~ ,  
A~(t) introduced in I. It is only in this special case t 
=0  that the stochastic operators in (5.3) become 
independent of the initial macrodistribution p(~)(0). 
On the other hand, we find for t '=  t 

~ t  p ( ) ( t )  = ~a( t )  p(1)(t). (5.4) 

This is an exact time-convolutionless master equation 
for the single-event probability with a stochastic op- 
erator O~(t) depending on the stochastic process (a), 
i.e. in particular on the initial macrodistribution 
p(~)(0). In I we have derived a time-convolutionless 
master equation 

8 
c?tP(1)(t) = F~ (t) p(1)(t) (5.5) 

with a stochastic operator F~(t) depending only on 
the preparation class (~) but independent of the in- 
itial distribution p(1)(0). In deriving this equation we 
made use of the inverse of the operator 
G~(t, 0)-G~(t). In general, however, one cannot ex- 
pect that G~(t) is a regular operator for all times t > 0, 
and the stochastic operator F~(t) may therefore not 
always exist [6]. 
The stochastic operator g?~(t) defines a set of process- 
dependent time-ordered propagators 

A¢(t', t) = Texp ds f~,(s , t' >= t 

satisfying 

(5.6) 

A~(t" , t ' )A~( t ' , t )=Aa( t" , t  ) t">__t'>_t. (5.7) 

From (5.4) we find 

p(1)(t') = Ao(t', t) p(1)(t). (5.8) 

The kernel of A~(t',t) satisfies a Chapman- 
Kolmogorov-equation according to (5.7) and may 
formally be considered as the conditional probability 
of a substitutive Markov process which yields the 
same single-event behaviour as the process in ques- 
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tion. But this Markovian conditional probability has 
nothing to do with the true conditional probability of 
the non-Markov process under consideration. In gen- 
eral, the propagators G~(t',t) and A~(t', t) coincide 
only when they are applied to the single-event proba- 
bility p(a)(t) of the considered process (a) according to 
(5.2) and (5.8), respectively. 
If G~(t) is a regular operator, there is another set of 
time-ordered propagators 

' t _ t  V~(t, t) = G~(t') G~- 1(0 ' >  (5.9) 

which is generated by F~(t) and is independent of the 
initial macrodistribution p(l)(0). In this case we have 

p~l)(t') = V~(t', t) p~i)(t) (5.1o) 

which holds for every stochastic process (a) belonging 
to the preparation class (n). Again, the kernel of 
V~(t', t) satisfies a Chapman-Kolmogorov equation, 
but has again nothing to do with the conditional 
probability of the non-Markov process under con- 
sideration, i.e. with the kernel of G~(t', t). This has not 
been observed in a recent work of Fox [7]. The 
propagators G~(t', t), on the other hand, do not sat- 
isfy an equation like (5.7). We only have 

G~(t", t') Go(t', t)p~l)(t)= G~(t", t)p(1)(t) (5.11) 

where p(1)(t) is the single-event probability of the 
considered process (o-). In this equation, p(l)(t) cannot 
be canceled because of the dependence of G~(t', t) on 
p(a)(0). This fact shows the non-Markovian property 
of the process most clearly. 

Conclusions 

We have studied the time-evolution of a closed mac- 
roscopic system from a purely microscopic point of 
view. Starting from hamiltonian microdynamics, we 
have derived an exact generalized master equation 
for the macroscopic conditional probability p(t'lt) 
(4.8, 4.20) which is also satisfied by the macroscopic 
joint probability p(Z)(t', t). The stochastic operators in 
this equation depend explicitly on the distribution 
w,(t) over macroscopically equivalent microstates, 
which has been calculated in (3.13) as a preparation- 
dependent functional of the past history of the mac- 
roscopic single-event probability p(1)(t). Thus, in or- 
der to construct the master equation, one has first to 
solve the master equation for the macroscopic single- 
event probability p(i)(t) for a given process (a), i.e. for 
a given preparation class (re) and a given initial 
condition p(~)(0) (Eq. (I3.15)), substitute the solution 
into (3.13) to obtain w~(t), then form the operators 

K~(t) (4.2) and P~(t) (4.4), and finally the stochastic 
operators ~2(t) (4.9) and A~(t, s) (4.10). 
The dependence on the initial macrodistribution 
p(1)(0) reflects the non-Markovian character of the 
macroscopic stochastic process. 
This procedure permits in principle the exact calcu- 
lation of arbitrary macroscopic two-time correlation 
functions without solving the microscopic equations 
of motion, in the same way as the Nakajima-Zwanzig 
theory [1, 2] for the single-event probability p~l)(t) 
permits  the calculation of arbitrary macroscopic 
single-time averages. It is evident that the calculation 
of higher-order correlation functions requires the 
construction of generalized master equations for 
higher-order joint probabilities, which will depend on 
the solution of all lower-order equations. 
From the master equation for the joint probability 
p(2)(t', t), various forms for the time-evolution equa- 
tion of the macroscopic single-event probability 
p(l)(t) can be obtained. In particular, there exist 
single-event propagators (process-dependent: A~(t', t) 
(5.6); under a regularity assumption even process- 
independent: V~(t', t) (5.9)) with kernels satisfying the 
Chapman-Kolmogorov equation, in spite of the fact 
that the process is non-Markovian. Further, there 
exist single-event master equations with a memory 
kernel (5.3) and time-convolutionless master equa- 
tions (5.4, 5.5). This illustrates again the fact stressed 
in [5] that the Markovian or non-Markovian charac- 
ter of a process cannot be decided on the basis of 
time-evolution equations for the single-event proba- 
bility: Neither the existence of a single-event pro- 
pagator with a kernel satisfying the Chapman- 
Kolmogorov equation nor the existence of a time- 
convolutionless single-event master equation imply a 
Markovian character of the process. Thus, the kernel 
of a single-event propagator should not be used for 
the calculation of time-correlation functions for gen- 
eral times t', t > 0 without independent proof that the 
process is (at least approximately) Markovian. A 
necessary condition for Markovian character is pro- 
vided by the generalized master equation for the 
conditional probability p(t'[t) derived in the present 
paper: In order for the process to be Markovian, the 
stochastic operators g2~(t) and A~(s, t) must be inde- 
pendent of the process (~) in a given preparation class 
(Tr). In this context, a quantitative measure for the 
deviation from Markovian behaviour would be very 
helpful. 
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