University of Lorraine
P. E. Meunier, Reader in Physics,
and
École Polytechnique de Lille
Fernand Morel, Professor of Physics.

Special Applications
Theory of noise induced processes in
Volume 2
Noise in nonlinear dynamical systems

1. C. Coello
The text on the page is not legible due to the quality of the image. It appears to be a page from a document, possibly containing text in a language that is not easily identifiable from the image provided. Without clearer visibility or transcription, it is not possible to accurately transcribe the content.
Theorem 1. The equation $x^3 + y^3 = z^3$ has no non-trivial integer solutions.

Proof. Assume for contradiction that there exist non-trivial integers x, y, and z such that $x^3 + y^3 = z^3$. Without loss of generality, assume that x and y are relatively prime. Since x^3 and y^3 have the same parity, z^3 must also have the same parity, which means that x, y, and z must all have the same parity. Let p be a prime that divides both x and y. Then p divides z as well, which contradicts the assumption that x, y, and z are relatively prime. Therefore, there are no non-trivial integer solutions to the equation $x^3 + y^3 = z^3$. \square

Theorem 2. The function $f(x) = x^2 + 1$ is injective.

Proof. Suppose $f(x) = f(y)$. Then $x^2 + 1 = y^2 + 1$, which implies $x^2 = y^2$. Since x and y are non-negative, we have $x = y$. Therefore, $f(x)$ is injective. \square

Theorem 3. The group $(\mathbb{Z}, +)$ is abelian.

Proof. Let $a, b \in \mathbb{Z}$. Then $a + b = b + a$, which shows that $(\mathbb{Z}, +)$ is abelian. \square
\[
\left(\frac{3v}{\varphi} \right) \frac{dx}{dx} = f(x)
\]

(8.4.11)

\[
\begin{align*}
(1 - t)F + \left(\frac{x}{1 - t} \right) F &= \int (1 - t) F + \left(\frac{x}{1 - t} \right) F \\
\text{where} & \quad \int (1 - t) F + \left(\frac{x}{1 - t} \right) F = (t)
\end{align*}
\]

\[
\frac{\partial}{\partial t} \frac{\partial}{\partial x} = f(x)
\]

(8.4.12)

\[
\left(\frac{3v}{\varphi} \right) \frac{dx}{dx} = f(x)
\]

(8.4.13)

The quadratic is an expression of the form of the quadratic equation.

Combining (8.4.11) with (8.4.10), we find the following for each wave more the

\[
\int (1 - t) F + \left(\frac{x}{1 - t} \right) F = (t)
\]

(8.4.14)

\[
\frac{\partial}{\partial t} \frac{\partial}{\partial x} = f(x)
\]

(8.4.15)

\[
\left(\frac{3v}{\varphi} \right) \frac{dx}{dx} = f(x)
\]

(8.4.16)

The quadratic is an expression of the form of the quadratic equation.

Combining (8.4.11) with (8.4.10), we find the following for each wave more the

\[
\int (1 - t) F + \left(\frac{x}{1 - t} \right) F = (t)
\]

(8.4.17)

\[
\left(\frac{3v}{\varphi} \right) \frac{dx}{dx} = f(x)
\]

(8.4.18)

The quadratic is an expression of the form of the quadratic equation.

Combining (8.4.11) with (8.4.10), we find the following for each wave more the

\[
\int (1 - t) F + \left(\frac{x}{1 - t} \right) F = (t)
\]

(8.4.19)

\[
\left(\frac{3v}{\varphi} \right) \frac{dx}{dx} = f(x)
\]

(8.4.20)

The quadratic is an expression of the form of the quadratic equation.

Combining (8.4.11) with (8.4.10), we find the following for each wave more the

\[
\int (1 - t) F + \left(\frac{x}{1 - t} \right) F = (t)
\]

(8.4.21)

\[
\left(\frac{3v}{\varphi} \right) \frac{dx}{dx} = f(x)
\]

(8.4.22)

The quadratic is an expression of the form of the quadratic equation.

Combining (8.4.11) with (8.4.10), we find the following for each wave more the

\[
\int (1 - t) F + \left(\frac{x}{1 - t} \right) F = (t)
\]

(8.4.23)

\[
\left(\frac{3v}{\varphi} \right) \frac{dx}{dx} = f(x)
\]

(8.4.24)

The quadratic is an expression of the form of the quadratic equation.

Combining (8.4.11) with (8.4.10), we find the following for each wave more the

\[
\int (1 - t) F + \left(\frac{x}{1 - t} \right) F = (t)
\]

(8.4.25)

\[
\left(\frac{3v}{\varphi} \right) \frac{dx}{dx} = f(x)
\]

(8.4.26)

The quadratic is an expression of the form of the quadratic equation.

Combining (8.4.11) with (8.4.10), we find the following for each wave more the

\[
\int (1 - t) F + \left(\frac{x}{1 - t} \right) F = (t)
\]

(8.4.27)

\[
\left(\frac{3v}{\varphi} \right) \frac{dx}{dx} = f(x)
\]

(8.4.28)

The quadratic is an expression of the form of the quadratic equation.

Combining (8.4.11) with (8.4.10), we find the following for each wave more the

\[
\int (1 - t) F + \left(\frac{x}{1 - t} \right) F = (t)
\]
The text on the page is not legible due to the quality of the image. It appears to be a page from a book or a report, but the content is not discernible from the image provided.