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The rate of escape of a metastable state is studied in a temperature regime where quantum 
tunneling acts as the rate limiting process. The particle is coupled to a heat bath so 
that it can dissipate energy in tunneling across an obstructing barrier. This objective 
then gives the generalization of the classical Kramers treatment of escape from a metasta- 
ble state for the quantum regime, thereby providing a description for dissipative escape 
at all temperatures. For a (memory)-damped particle moving in a metastable potential 
the dissipative quantum decay rate is evaluated by use of a thermodynamic scheme 
(imaginary free energy method). This free energy method (bounce technique) is contrasted 
with the semiclassical approximation to finite temperature quantum decay in full phase- 
space of system plus environment. This comparison sheds new insight into the type 
of approximations that are inherent in the semiclassical bounce technique for the dissipa- 
tive quantum system. The validity of the results is discussed as function of the barrier 
height, the temperature and the dissipation strength. In particular, we point out that 
dynamical nonequilibrium effects due to weak damping have with decreasing temperature 
an exponentially smaller effect for the thermodynamic rate expression (i.e. the Boltzmann 
average in full phase space over energy-dependent reactive tunneling probabilities). The 
regime of validity of the thermodynamic rate is depicted in a three-dimensional rate 
phase diagram, named the "Thomas-diagram'. 

1. Introduction 

Kinetic processes hindered by one or a series of inter- 
vening potential barriers are of fundamental impor- 
tance in a variety of systems, including chemical reac- 
tions, biological transport, diffusion in solids, nuclear 
reactions, and possibly even the birth of the universe. 
At high enough temperatures, the rate of such pro- 
cesses obeys the ubiquitous law by Svante Arrhenius, 
according to which the rate, 
stable state is proportional 
for thermal activation up to 
cess of thermal activation 
studied extensively in recent 
ious physical complexities. 

F, of escape from a meta- 
to the Boltzmann factor 
the barrier top. This pro- 
across barriers has been 
years, accounting for var- 
In particular, the study 

of the prefactor for the rate, A, becomes a highly non- 
trivial task if one attempts to describe its dependence 
on friction strength, noise correlation time, external 
periodic driving forces, dimension of the reaction co- 

ordinate, influence of nonadiabatic transport, etc. For 
more details on the many facets of the problem of 
classical escape from a metastable state in various 
situations we refer to a recent review [1], and to the 
historical overview by Landauer [2]. 

As one continuously lowers the temperature, the 
classical rate 

F = A exp ( - Eb/k T) 

predicts an exponential fast decrease with no action 
taking place at absolute zero temperature. It is in 
this very low temperature regime where the effect of 
quantum tunneling becomes increasingly important. 

As is well known, quantum mechanics allows a 
tunnel effect whereby the particle penetrates the clas- 
sically forbidden regime under the barrier (Fig. 1). 
Naturally, the role of quantum effects in reactive pro- 
cesses has been recognized long ago, during the hey- 
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heat bath 

thermal activation 

Fig. 1. Escape of a particle from a metastable state. The particle 
can leave the potential well either via thermal activation over the 
barrier, or via tunneling through the classically forbidden region. 
The interaction between the particle and the heat bath is modelled 
by frictional forces 

days of quantum mechanics. In 1927, F. Hund I-3] 
demonstrated that quantum tunneling occurs for in- 
tramolecular rearrangements as manifested by tunnel- 
splittings of spectra in pyramidal molecules such as 
ammonia. The tunneling phenomenon became a well 
known effect shortly after 1928, when G. Gamow [4], 
as well as R.W. Gurney and E.U. Condon [5] con- 
vincingly explained the decay of nuclei such as a- 
decay, and R. Fowler and L. Nordheim I-6] applied 
tunneling to the phenomenon of electron emission 
in intense electric fields. As early as in 1929, D. Bour- 
gin 1-7] hinted the possible role of the tunnel effect 
in chemical kinetics. Around the same time, the work 
of A.H. Wilson, L. Nordheim and C. Zener opened 
the important  chapter of tunneling phenomena in sol- 
id state sciences. Since then, the tunneling mechanism 
has been invoked, and developed further in a multi- 
tude of fields, encompassing biology, electronics, crys- 
talline and amorphous solids, or tunneling microsco- 
py [8]. 

Our focus, here will be on the problem of dissipa- 
tive quantum tunneling. This area has been evolving 
recently rather rapidly after Leggett 1-9] has initiated 
studies on the problem of low temperature tunneling 
and quantum coherence of macroscopic quantum 
variables (known as macroscopic quantum tunneling, 
MQT) such as the decay of the zero-voltage state 
in a biased Josephson junction, or the fluxoid quan- 
tum transitions in a single junction superconducting 
quantum interference device (SQUID) ring. In the fol- 
lowing I shall restrict myself to a discussion of inco- 
herent tunneling decay processes only, as they occur 
in Josephson junctions, quantum chemical and bio- 
logical reactions, quantum diffusion in solids and at 
surfaces, etc. For  a discussion of related dissipative 
quantum phenomena such as dissipative quantum co- 
herence [10], response to microwaves and macro- 
scopic energy quantization [-11], or Bloch oscillations 
in Josephson junctions [12], we refer the readers to 
the literature. 

2. Formulation of the Problem 

The quantum description of metastable and unstable 
states has been a subject of many investigations since 
the early days of quantum mechanics. As is well 
known, the description of such states gives rise to 
several conceptual problems that arise from the diffi- 
culty of finding a satisfactory characterization of these 
states. There are several methods available in the liter- 
ature that characterize the decay of a metastable state 
at zero temperature. Some of the more familiar ones 
are: 
(a) The axiomatic S-matrix theory, wherein one as- 
sociates decay rates in a one-to-one correspondence 
with poles of the S-matrix close to the real axis on 
the unphysical sheet of the energy Riemann surface, 
provided that the S-matrix can be analytically contin- 
ued there. 
(b) A time-dependent wave function approach, 
whereby one considers the outgoing scattered wave 
near a resonance energy. In this case, there occurs 
a typical delay, to = 2IF, in the arrival of the scattered 
wave of the order of the inverse of the decay rate, 
F, with respect to the case in which no resonance 
Occurs .  

(c) A dynamical semigroup approach for the evolu- 
tion of the density operator [13]. 

The approaches in (a) and (b) are not  readily 
extended to finite temperatures and to situations 
where the interactions with the environment become 
important. For  the following, we should also remind 
ourselves that a pure exponential decay at all times 
can only occur if a rescattering from the decay prod- 
ucts (backscattering) were to be absent*. However, 
the rescattering phenomenon cannot  be forbidden un- 
less one chooses a Hamiltonian that is not bounded 
from below. Khalfin [14] has pointed out, by use 
of a fundamental theorem due to Paley and Wiener, 
that the quantum nondecay probability, P(t), cannot 
be purely exponential for very large times if the mini- 
mum of the energy spectrum of the Hamiltonian is 
bounded from below at Emin=t  = - - O 0 .  Moreover, the 
quantum nondecay probability then also possesses a 
vanishing derivative at the origin of time evolution; 
that is, P(t) is also not of exponential form for very 
short times. Throughout  the rest of the paper, there- 
fore, we will focus our attention only on the decay 
at intermediate times for which the decay law has 
approximately exponential form. In practice, this in- 
termediate time regime is very large, it usually extends 
over a time scale at which 99% of the reduction in 
P(t) has occurred already. 

* For a recent study of the role of such backscattering effects in 
quantum decay at weak bias see [37] 
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Over the last two decades, probably the most de- 
veloped theory to describe dissipative quantum me- 
chanics at finite temperatures has been the semigroup 
approach. This type of method has been very popular 
in describing damping phenomena in nonlinear optics 
and in spin relaxation theory. However, these dissipa- 
tive semigroup methods treat the coupling to the envi- 
ronment perturbatively (weak coupling regime). This 
restricts the treatment only to the weak damping re- 
gime, where the largest damping coefficient, 7, typi- 
cally obeys 

?~COo, h ~ k T .  (2.1) 

Here, co o is the smallest frequency typical for revers- 
ible motion. In a tunneling system, co 0 may differ from 
zero just by the tunnel splitting. Thus, the first in- 
equality is violated already for very weak damping. 
Furthermore, macroscopic tunneling phenomena oc- 
cur at extreme low temperatures; that is, the second 
inequality is then also violated for an appreciable 
amount of dissipation. Hence, for tunneling systems, 
a more complete and more accurate description of 
dissipation is needed. 

Our emphasis will be on the study of quantum 
decay of a damped particle moving in a metastable 
potential V(q) (see Fig. 1) whose classical equation 
of motion (or its Ehrenfest equation) for the coordi- 
nate q has the form 

t 

M ii + M ~ ?(t--s) gl(S) d s +  0 V(q) = 0. (2.2) 
o Oq 

As is well known, tunneling problems are advanta- 
geously investigated in terms of complex-time path 
integrals [,15-293. 

3. Path Integral Approach 

In this subsection I shall present, for reasons of com- 
pleteness, a brief outline of the main ingredients of 
the method. Let me start with the partition function 
Z 

1 
Z=Tr{exp(--fiH)}, f i=kT" (3.1) 

With the usual replacement by a pure imaginary time, 
t ~ - ihf l ,  following Feynman, this quantity is recast 
in the form of a (Euclidean) functional path integral 

Z = ~ ~ q (z) exp { - (St [-q (0J/h}, (3.2) 

where ~ = i t  is a real variable (Wick rotation). The 
integral in (3.2) runs over all paths that are periodic 
with period 0=  hfl. Each path is weighted by the Eu- 
clidean action St. In order to account for dissipation 

we start out from the functional integral expression 
in full phase space of particle plus environment. 
Moreover, we assume that the environment couples 
bilinearly to the tunneling coordinate q. The sur- 
roundings is represented by a set of harmonic bath 
oscillator modes such that upon a contraction onto 
the coordinate q one arrives at an Ehrenfest equation 
equivalent with (2.2). This procedure yields an effec- 
tive action St [-1, 9, 15, 16, 26, 27] that reads 

O/2 

St['q]= ~ dz['�89 
0/2 

0/2 0/2 

+�89 ~ dz ~ dz'k(z-z')q(~)q(z'). (3.3) 
- 0 / 2  - 0 / 2  

The first term describes the reversible motion, while 
the second, nonlocal part describes the influence of 
dissipation. The influence kernel is periodic with peri- 
od 0, and may be represented in terms of a Fourier 
series as 

k ( 0 =  O ~ [v,l~)(lv, I) exp(iv, v); 
n =  - - o 9  

o/2 (3.4a) 

- 0/2 

where we used 
co  

v,=n2~/O, ~(z)= ~ 7(0 exp( - z t )d t .  (3.4b) 
0 

This result implies a relationship between the quan- 
tum mechanical dissipative influence kernel k(0 and 
the real time memory damping 7(0 in (2.2) [,16], i.e. 

o9 0 ( sinh(vs) 
k ( z ) = ~  o~ ds?(S)~s \cos(v~_~sosh(vs) ] 

+ MT(0) (3.5) 

where v=vl =2n/0  and [6] is the 6-fct periodically 
repeated at ~=n0.  Because of this connection there 
is no need to refer further to the specific microscopic 
model. Also note that k(O remains nonlocal for mem- 
ory-flee damping (i.e. pure Ohmic dissipation 
? (t)= 2 7 6 (t)); the nonlocal character is clearly due to 
the dissipative (non-reversible) part of the motion. 

4. The Tunneling Rate: 
Imaginary Free Energy Method 

4.A. The Bounce Solution 

Now we are prepared enough to discuss the dissipa- 
tive quantum decay rate from a metastable state (see 
Fig. 1). Initially, the particle is located near the origin 
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Fig. 2. The bounce trajectories qB(z) in a cubic metastable potential as a function of four decreasing temperatures (O=hfl). Note the 
approach of the bounce trajectory towards the constant saddle point solution qb=~og/u with increasing temperature. At the crossover 
temperature (00 o90/2n)= 1//6, qn(z) coincides with the trivial bounce solution qB(Z)= qb (taken from 1-21]) 

q=0 .  The free energy, F, of the particle is from (3.1) 
given by 

F =  --k T l n Z =  --k Tln{SN q exp(-S~[q]/h)},  (4.1) 

where SE is given in (3.3). The state q = 0 is metastable 
if its lifetime % -  F-1 ,  is long compared to all other 
characteristic time scales that describe relaxation to- 
wards the locally stable state at q=0 .  Keeping this 
physical situation in mind, it now turns out that the 
functional integral in (4.1) acquires an exponentially 
small imaginary part that is proportional to the decay 
rate. The origin of this behavior is as follows: We 
shall assume that the barrier height Eb (see Fig. 1) 
is large compared with the other relevant energy 
scales, i.e. 

k T ~ Eb, hcoo ~ Eb, (4.2) 

where co~ = M -  ~ V"(q = 0). The main contributions to 
the functional integral then stem from paths that 
make the Euclidean action S~ stationary, or almost 

stationary. It follows from (3.3), that SF is stationary 
for those paths that are solutions of the classical equa- 
tion of motion in the inverted potential, 
V(q) ~ - V(q); that is 

V 0/2 
M~B=~q + ~ dz 'k(z-z ' )qB(z ' ) ,  (4.3) 

- 0 / 2  

with %(z) obeying the periodic boundary condition 
q~(r = -- 0/2) --- qe(z = 0/2). 

Because of the second property in (3.4 a), we note 
that (4.3) has two trivial solutions: q l (z)=0,  where 
the particle just sits on top of the inverted potential, 
- V ( q )  (i.e. at the minimum of V(q)), and the saddle 
point solution q2(z)= qb, where the particle is located 
at the minimum of - V ( q )  (i.e. at the barrier top of 
V(q)). Solutions of (4.3) at different temperatures 
(0 = h/~) in a cubic potential V(q) = m ((o2 q 2 / 2  - -  u q3/3) 
are depicted in Fig. 2. Note the broadening of the 
bounce solution with increasing temperature towards 
the constant q2 = qb = CO~/U. 
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A nontrivial solution qR(z) of (4.3) exists below 
the crossover temperature T=  T o to quantum domi- 
nated escape (see below). We call this solution the 
"bounce" solution qB(Z). The bounce q~(~) is a 0-peri- 
odic orbit that rocks back and forth through the clas- 
sically forbidden region of the potential V(q) [19]. 
This bounce trajectory is not a minimum of the action 
S~ ; but a saddle point solution with an unstable direc- 
tion. For  temperatures T>  To, the role of qB(~) is tak- 
en over by the constant saddle-point solution qz(z) 
= %. Thus, there exists at all temperatures a fluctua- 
tion mode in function space with respect to which 
the bounce is a maximum of the action. Therefore, 
this characteristic fluctuation mode (q(z)=qb, for 
T >  To; q(r)=qB(r), for T<  To) has a negative eigen- 
value. Below T=  To, the action Se [q(z)= qb] exceeds 
the value obtained by the nontrivial bounce qn(z); 
hence with Se [q~(~)] < S~ [q(~) = %] = OEb, the trivial 
solution can be disregarded for T<  T o (except within 
the crossover region T ~  To). 

This feature obviously plagues the evaluation of 
the free energy (partition function). What is needed 
is an analytical continuation [17, 20], where the inte- 
gral of the unstable (negative eigenvalue) mode is dis- 
torted in the complex plane so that it passes through 
the saddle point, and then into the complex plane. 
This omnipresent negative eigenvalue is thus the ori- 
gin for the exponentially small imaginary part of the 
free energy F in (4.1). 

4.B. Energy Loss During Tunneling 

In Fig. 3 we depict the "exit" and "entrance" points 
of the bounce solution qB(z), as a function of increas- 
ing temperature T]" T 0. Note that at finite tempera- 
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Fig. 3. The "entrance" and "exit" points of bounce solutions qB(0 
depicted in Fig. 2. The "entrance" point corresponds to the minimal 
value at v=  ___ 1/20, the "exit" point is the maximum of the bounce 
at 0 = 0  (taken from [21]) 

tures the particle may loose or gain energy in tunnel- 
ing across the potential barrier [21]. The difference 
in energy between the two reference points at "exit" 
and "entrance" may then be identified with the energy 
loss (or gain) in quantum tunneling [21, 22]. At zero 
temperature, there is always an energy loss AE, which 
in terms of the bounce solution is expressed as [22] 

o o  o o  

AE = ~ d~ ~ d~' 0B(V) ~(Z + ~') 0B('C'), (4.4a) 
o o 

where 

~'(~)= i k(s) ds. (4 .4b)  
- o o  

4. C. The Tunneling Rate Formula 

Just as in the usual quantum mechanical theory for 
decay widths (or decay rates) of metastable quantum 
states, where the rate F is related to the imaginary 
part of the resonance energy, i.e. F , = - ( 2 / h ) I m E , ,  
we define by analogy the temperature averaged decay 
rate F by [15, 16, 21, 23-29] 

2 
r = - -~  ImF,  T< T O . (4.5) 

For temperatures T>  To, however, Affleck [23] has 
shown that the rate F and the imaginary free energy 
part are connected by 

F = - ~ Im F, T > To. (4.6) 

At T ~  To, (4.6) matches smoothly onto the expression 
in (4.5). The additional factor (To/T) is a remnant 
of the transition near T o where both qB(~) and q (z)= qb 
induce two zero modes [21, 24, 25]. In previous works 
[1, 15, 16, 21, 24, 26, 27] we used the above formulas 
by evaluating the imaginary part of the free energy 
F, (4.1), with the Euclidean action given by (3.3), after 
we integrated (exactly) over the environmental modes. 
Schmid [28] has shown that at T=  0 this procedure 
yields the same result as the direct evaluation of the 
quantum decay rate within the quasi-classical approx- 
imation in N-dimensional phase space of system plus 
environment. 

Alternatively, at finite temperatures, a direct 
Boltzmann average in N-dimensions (system plus 
bath) gives for the quantum rate F the expression 

o ~  

1 ~ dE(exp--flE)F(E), (4.7) F = Z ~  o 
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being valid for all temperatures, Z o is the partition 
function of the degrees of freedom in the N-dimen- 
sional metastable well. The semiclassical approxima- 
tion for the reactive probability F(E) is given [19] 

F(E) = ~ ( -  1) k-a e x p ( -  k~(E)/h) 
k = t  

N - 1  

" l~ [2 sinh(lkT(E) Cog(E))] - 1, (4.8 a) 
i = l  

with 

T (E) 

q9 (E) = ~; d z p ('c). r (z), 
0 

Pl  = M i { l i  (4.8 b) 

being the "small" action integral along the periodic 
orbit of period T(E) that rocks forth and back 
through the saddle-point region on the upside-down 
potential energy surface in N-dimensions. This mo- 
tion is described by a coordinate ql, along-side this 
orbit; the remaining ( N - 1 )  degrees of freedom are 
the orthogonal displacements away from this (energy- 
dependent) periodic orbit in the classically forbidden 
regime. The parameters {COk(E)} denote stability fre- 
quencies (dynamical normal mode analysis; for details 
see Miller [19]) characterizing the unstable periodic 
orbit ql (z) with period T(E)= -4)'(E). 

At low temperatures, T<  T 0, only the first term 
with k = 1 will contribute significantly to the sum in 
(4.8a). Then we can evaluate the integral in (4.7) by 
the method of steepest descent, yielding the condition 

0 = ~ + O' (E)/h 

i.e. the period becomes T(E) = hfl = O, which is precise- 
ly the period of the (dissipative) bounce in (4.3). Com- 
pleting the steepest descent approximation in (4.7) 
then yields with E=Eo, such that T(Eo)=O holds, 
the main result 

1 [ D TI \ l - ~  
F = Z ~  1 2 ~ h ~  J exp(--(o(O)/h) 

. I \  ]E=Eo/I 

N - 1  

' l-I [2 sinh(�89 T(Eo) co~(Eo))]-t (4.9) 
i = l  

where the " to ta l"  extremal action is given by* 

6(0) = 0 E0 + 
0 

= ~ d z  [V(q(z)) + �89 (4.10) 
0 

This total action qS(0) equals (again we assume a bilin- 
ear coupling to a heat bath of harmonic oscillators) 
the bounce action S~[qB(z)] in (3.3) of the reduced 

* Here, V(q) denotes the potential in full phase space of system 
plus environment (N-dimensions) 

system, i.e. 

~(0) = SE [qA -- SB = 
0/2 1- 1 0 V ]  

S 
- O l 2  

(4.11) 
Hereby, we made use of the equation of motion of 
qB(z) in (4.3). The explicit evaluation of the prefactor 
in (4.9) is cumbersome and nontrivial. In previous 
works [21, 27] we have evaluated this prefactor with- 
in Gaussian approximation, i.e. we consider up to 
second order the fluctuations around the nonlinear 
bounce trajectory in (4.3); and likewise, for the quan- 
tity Zo, we take into account the Gaussian fluctua- 
tions around the stable solution q(z)=0. This proce- 
dure induces another technical difficulty: Note that 
the bounce trajectory is not uniquely defined in the 
sense that a translation qB(z)~q,(z+b) also gener- 
ates a solution that leaves the Euclidian action (3.3) 
invariant. The invariance of the action under transla- 
tion qB (z) ~ q,  (z + b) induces an eigenmode 
Y l (z)oc 0B(z) with zero eigenvalue 2t = 0. This problem 
can be remedied if we perform a change of coordinates 
and integrate directly over the translation variable 
b [15, 17], rather than over the zero mode yl (z). This 
process then induces a zero mode normalization fac- 
tor W 

W M -0/2 0~dz} . (4.12) 

Collecting everything, the final result for the low tem- 
perature rates is then given explicitly by [1, 9, 15, 
16, 21, 25, 27-29] 

( Det(32S~/Sq2)q(~)_ 0 "15 

T< To. (4.13) 

Here Det' indicates that the eigenvalue zero must be 
omitted. An analytical evaluation of the formula (4.13) 
is possible only for a cubic potential at a few specific 
ohmic damping values [21]. Approximative calcula- 
tions are based either on a variation ansatz for the 
bounce [30], or on semiclassical methods as they ap- 
ply for parabolic,like shaped wells and barriers [31, 
32]. For  a numerical study of the quantum decay 
rate in a cubic metastable potential we refer the 
readers to the article by Grabert, Olschowski and 
Weiss [29] in this very issue. 

5. Crossover Temperature  To 

On inspecting the bounce solutions qB(z; O) in Fig. 2 
we note that q~(z; O) approaches the trivial solution 
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qz(z)= qb with increasing temperature. Thus, any lin- 
ear combination of the two solutions is an almost 
stationary solution of the Euclidian action S~. Each 
one of these two quasi-stationary solutions separately 
induces a quasi zero mode (an exact zero mode and 
a quasi-zero mode) [16, 21]. For the solution q2(~) 
= qb, the Gaussian fluctuation modes are seen to pos- 
sess the eigenvalue spectra (v = 27z/0) 

2(nb)=nZv2--oo~+ln[v~(lntv), n=0,  + l ,  ___2, ... (5.1) 

where 

~q~q~ > 0, 

is the angular frequency at the barrier top. Note the 
negative eigenvalue 20 = -  co{ (being independent of 
temperature) characteristic for the saddle point solu- 
tion qz('C)=qb. More importantly, the eigenvalues 
i_  1 = 11 become mutually zero (zero modes) at 

27c 
v2-co2 + v~(v)=O, v = - -  (5.2) 

hfl" 

The largest temperature satisfying (5.2) thus deter- 
mines the crossover temperature T o as [26, 33] 

h 
T o = ~ #  (5.3) 

with # being the largest positive solution of (5.2). With 
~=0, this yields the undamped crossover tempera- 
ture; i.e. #=co b . Interestingly enough, the quantity 
# just coincides with the memory-friction renormal- 
ized diffusive (angular) barrier frequency which enters 
the prefactor of the classical diffusion-controlled rate 
F~ 1 across the barrier, i.e. [13 

1 - -  ~COb j ~ exp ( - Eb/k T) (5.4) 

with # being determined from (5.2). Alternatively, the 
quantity # can be recast as 

+co  (5.5) 
2 ' 

which makes explicit the connection with the memo- 
ry-friction 9(co). 

The temperature T o is the threshold temperature 
below which quantum tunneling (as manifested by 
the existence of an oscillating periodic orbit in the 
classically forbidden regime) dominates over thermal 
activated hopping processes. Below T =  To the Ar- 
rhenius factor no longer describes the exponential 

leading part of the rate; this role is now taken over 
by the bounce action SB (see 4.11). At T=  T O itself, 
the bounce action SB smoothly matches onto the Ar- 
rhenius factor (Eb/k T). 

This crossover temperature T O can with 

T o =(1.216.10 12 s K)/t (5.6) 

be quite large, depending on the value of the dissipa- 
tion and memory-renormalized angular barrier fre- 
quency #. Typical atomic/molecular barrier frequen- 
cies are of the order of 1013-1014  Hz; thus, crossover 
temperatures of the order of 10-100 K are quite com- 
mon [33]. For MQT-experiments in Josephson junc- 
tions and SQUIDS, however, /~ is typically around 
10 al Hz; i.e. To is around 100m K. Thus, MQT ex- 
periments do require all the necessary expertise for 
a low temperature experiment. (Notice, however, that 
all of this might change with the recent discovery 
of high Tcsuperconductors.) 

As it follows from (5.5), T o is reduced with increas- 
ing dissipation strength. On the other hand, the cross- 
over temperature increases monotonically towards its 
undamped value (given by /t=C0b) with increasing 
memory-friction relaxation time and the zero-fre- 
quency dissipation, ~(o9=0)=7o kept constant [33]. 
For an exponential memory friction 

?(t) =7o exp(-- t/zc) (5.7) 
T c 

we depict in Fig. 4 the corresponding crossover tem- 
perature To(7o ; zc). 
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" ~  0.60 
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Fig. 4. The dimensionless crossover temperature (2~k/hc~b)To 
=p/co b for the exponential memory damping (5.7) as a function 
of the dimensionless memory relaxation time cu b %, for various 
values of the noise strength ~ = y0/e)b (taken from [33]) 
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6. Results for the Tunneling Rate 

In this subsection we briefly summarize general ana- 
lytic results for the dissipative tunneling rate, F (see 
4.7). 

6.A. Above To: Quantum Corrections to Thermal 
Activation 

Based on the (high-temperature) rate expression in 
(4.6) one finds [15, 16, 24, 25, 32, 33] a quantum 
rate enhancement factor Q; i.e. with (5.4) we obtain 

r = F~I Q. (6.1 a) 

The quantum enhancement factor Q reads explicitly 
[33] 

n2v2 +co2 +nvg(nv) 
Q= f i  n2v2 o)2+nvg(nv). (6,1b) 

the exponential leading part as well as the prefactor, 
are strongly influenced by dissipation. The tempera- 
ture dependence of the exponential part drastically 
differs from the Arrhenius law. Grabert, Weiss and 
Hfinggi [26] have shown that the quantum decay rate 
exhibits a universal temperature enhancement (i.e. it 
holds independent of potential shape and damping 
strength) which takes on the form of a power law, 
in F oc T". For  Ohmic-like dissipation (9 (co = 0) > 0) we 
obtain a universal T2-enhancement of the form 

In {r(T)/F(T= 0)} = a T 2, (6.4) 

with 
lZ ( k 2 /  ~ )2} 

a = - ~ 9 ( c o = O ) M ~ i _ ~ q n ( z ; T = O ; 9 ) d z  . (6.5) 

This characteristic law has recently been observed in 
decisive experiments on MQT in current biased Jo- 
sephson junctions [34] and SQUID rings [35]. 

For T>> T o, Q approaches unity. For weak-to-moder- 
ate damping strength there exists an accurate and 
very simple approximation to (6.1b) [33] which in 
leading order is independent of the dissipation 9, i.e. 

Q ,.~ exp {2~ (co0z + co2)~( (6.2) 

Thus, above T>  To, the Arrhenius factor becomes re- 
normalized towards smaller values: 

h2 (coo + Eb-  Eb--  (6.3) 

6.B. Near To: The Crossover Region [16, 21, 24, 25] 

As mentioned previously, near T ~  T o the rate evalua- 
tion is more complicated due to the presence of two 
quasi zero modes. This problem has been dealt with 
by treating the two dangerous modes in the effective 
action, S t ,  up to cubic and quartic order [21, 24, 
25]. Moreover, Grabert and Weiss [24] have shown 
that in this crossover region there exists a frequency 
scale and a temperature scale (which both depend 
on the particular system under consideration) such 
that the rate exhibits a universal scaling behavior (for 
further details see [16 and 24]). 

6. C. Below T o : Tunneling Behavior 

At sufficiently low temperatures we can use the steep- 
est decent expression in (4.13). In this regime both, 

7. Discussion: Rate-Phase-Diagram 

The general rate expression in (4.7) is clearly based 
on a thermodynamic method which does not involve 
a fully dynamical description of the rare rate events. 
In the evaluation of the rate formula, via the imagi- 
nary free energy method, we made use of the semi- 
classical approximation (see also (4.2)), i.e. 

kT'~E b, hcoo <~E b, 

and utilized (T< To) the steepest descent approxima- 
tion in function space (bounce technique). At T> T o, 
we thoroughly made use of the Gaussian approxima- 
tion around the stationary points q l--0, and q2-~ qb" 
Thus, this theory does not account for nonequili- 
brium effects which result in a deviation from the 
thermal Boltzmann equilibrium distribution for the 
energy-distribution inside the metastable well. For  
very weak dissipation, such effects are known to be 
important in the classical (high-temperature) regime 
(see e.g. [1, 2]); at lower temperatures T <  To, how- 
ever, the role of weak damping plays an increasingly 
less important role [15, 36]. 

First let us recall [1] the validity of the classical 
rate expression in (5.4). This expression is based on 
the assumption that thermal equilibrium inside the 
well holds at all times, i.e. it is valid for barrier heights 
E b > k T, and for moderate-to-strong friction strengths 

9(/t) ~> COb, (7.1) 

for which the equilibrization process inside the well 
away from the barrier occurs on a sufficient fast time 
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scale. For  high barriers, fl E b >~ 1, the regime of friction 
values extends to even lower friction, - approaching 
the result of simple transition state theory [1] -,  i.e. 
we have for the condition of validity of the classical 
rate Eel in (5.4) 

r Tcob/Eb, T >  To. (7.2) 

Put differently, a very high energy barrier implies an 
extreme long time scale for escape so that there re- 
mains sufficient time for thermalization inside the ini- 
tial well, even for weak friction obeying (7.2). The 
crossover value r (#)= k T cob/E b is obtained as follows: 
At very weak friction, energy-diffusion becomes the 
rate limiting mechanism. In order for it to be the 
dominant mechanism, the dissipative energy-loss 6 for 
a round trip inside the initial well must be small com- 
pared to kT. The classical energy loss in the metasta- 
ble well is given by 

6 = r  = r So, (7.3) 

where So is the classical action for a particle with 
energy at the barrier energy E = E b (in absence of fric- 
tion). Because So N Eb/cob we thus obtain from k T =  6 
the threshold value ~(#)= k Tcob/E b. 

Upon a lowering of temperature we reach the 
crossover temperature To(~) , see (5.3, 5.5). In view of 
quantum tunneling the following three dimensionless 
parameters determine the behavior of the rate 

k T ~(#) hco b 
Xl =~-b '  x2 - , . (7.4) 

co b x3 = 2 n k T  

The cylinder l=>xl=>0, cutting the positive 
(x2, x3)-plane at 

hcob hcob cob ~(~) 
- -  ~ - - ,  ( 7 . 5 )  

2 n k T  2nkTo(r  # ~(u)~>~,~ co b 

describes the crossover between thermal activation 
controlled, and quantum tunneling controlled escape 
from a metastable state. 
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Fig. 5. The "Thomas-diagram". The crossover cylinder [hatched vertically] separates the classical thermal activation regime (including 
quantum corrections) from the tunneling dominated regime in which the role of the Arrhenius factor is taken over by the dissipative 
bounce action SB(?'; T), (4.11). The volume [dotted] at the left-side corner indicates the regime as a function of damping, barrier height 
and temperature in which weak damping induces nonequilibrium effects that are not accounted for by the thermodynamic rate formula 
(4.7) (imaginary free energy method). For k T/Eb > 1, the rate becomes generally a time-dependent function, i.e. F ~  F(t); ~ (t)= - -F( t )x  (t) 



190 P. H/inggi: Dissipative Tunneling 

For temperatures below crossover, T<  To, the 
quantum rate is sufficiently small so that for almost 
all practical purposes weak friction does not have 
any impact on deviations from the thermal Boltz- 
mann distribution of population inside the well; i.e. 
the validity of the rate expression (4.7, 4.8), or the 
validity of the imaginary free energy method, respec- 
tively, holds practically for the whole damping regime. 
A simple Fermi's Golden Rule calculation for a meta- 
stable well containing two quantum levels indicates 
that the rate at which thermal equilibrization occurs 
is governed by ~(#). The rate for the decay from one 
quantum level to a lower one, emitting the excess 
energy into the normal modes of the heat bath is 
thus directly proportional to ~(#). Using as an upper 
limit the zero-temperature decay rate at zero dissipa- 
tion we can expect possible deviations from the low 
temperature rate formula (4.13) only for exponentially 
small friction; that is, for [15, 36] 

for) ~ r(T= 0, ~=0) 
(DO (DO 

12 [3Eb~ [ 36Eb~ 
- ~ / ~  (h~-~o) exp ~ - ~ ) .  (7.6) 

Typically we have Eb>2h(Do, in order for the semi- 
classical approximation to be valid. Then the condi- 
tion (7.6) becomes 

~(#) < 10 -6. (7.7) 
(Do 

Clearly, for rate processes in stationary nonequili- 
brium situations, e.g. for decay rates in presence of 
external microwaves, etc., or decay rates in systems 
prepared far from thermal equilibrium, one is re- 
quired to use a dynamical (real-time) rate approach 
(e.g. by use of the Feynman-Vernon technique). 

The physics of (7.1)(7.7) can be summarized in 
a rate-phase-diagram given in Fig. 5. The author 
would like to dedicate this diagram to Professor 
Harry Thomas ("Thomas-diagram'):  Because of re- 
peated clarifying and helpful discussions with him and 
his persistent encouragement, my motivation finally 
crossed the threshold to draw up the three-dimension- 
al rate-phase-diagram in Fig. 5. 

The author would like to thank H. Grabert, G.L. Ingold, P. Ol- 
schowski, P. Schramm and U. Weiss (University of Stuttgart) and 
E. Freidkin and P.S. Riseborough (Polytechnic University) for the 
many helpful discussions and the enjoyable collaboration in tunnel- 
ing problems. 
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