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ABSTRACT

Evolutionary game theory is a framework to formalize the evolution of collectives (“populations”) of competing agents that are playing a
game and, after every round, update their strategies to maximize individual payoffs. There are two complementary approaches to modeling
evolution of player populations. The first addresses essentially finite populations by implementing the apparatus of Markov chains. The
second assumes that the populations are infinite and operates with a system of mean-field deterministic differential equations. By using a
model of two antagonistic populations, which are playing a game with stationary or periodically varying payoffs, we demonstrate that it
exhibits metastable dynamics that is reducible neither to an immediate transition to a fixation (extinction of all but one strategy in a finite-
size population) nor to the mean-field picture. In the case of stationary payoffs, this dynamics can be captured with a system of stochastic
differential equations and interpreted as a stochastic Hopf bifurcation. In the case of varying payoffs, the metastable dynamics is much more
complex than the dynamics of the means.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0019736

Although first formalized by Darroch and Seneta in 1964,1 the
best (in our opinion) outline of quasi-stationary states (QSs) was
given by Yaglom when he asked in 1947:2 “We are dealing with
a stochastic process with an absorbing state (i.e., a state which
cannot be left once the system got into it) so that the absorp-
tion happens with probability one. What is the distribution in the
limit t → ∞ provided that the absorption did not happen until
time t?” In the Markov chain framework, the QSs are related to
the probability distributions over the set of states from which all
the absorbing3 ones are excluded. Some quasi-stationary distribu-
tions could be very sustainable so that the time needed for their
eventual “evaporation” into the absorbing states is much longer
than all the relevant observation time scales.4 In this case, the QS
is also a metastable state.5 The QS concept naturally applies to the
game-driven evolution of finite populations.6,7 Quasi-stationary
states were recently interpreted as a mean9 to resolve a conflict6

between the stochastic approach based on the Markov chain
ideology7 and deterministic mean-field description.8 Specifically,
while the former tells that the asymptotic regime of any finite
population is a fixation, the latter yields an asymptotic solution

either in the form of a periodic cycle or a chaotic attractor or a
fixed point (an “evolutionary stable strategy” in which different
types of players are represented8). The gap between the two mutu-
ally exclusive pictures could be bridged with QSs by observing
that, in the case of large but finite populations, the correspond-
ing distributions are localized around the mean-field solutions
and declaring that the mean-field solution is thus transformed
into a transient (metastable) dynamics.9–11 Here, we demonstrate
that this is not always the case, and the metastable dynamics,
underlying the QSs, can be very different from the mean-field
solution.

I. INTRODUCTION

The agenda of Evolutionary Game Theory (EGT) is to explain
the evolution of biological populations by formalizing two main
driving factors, conflict and cooperation.12 Current applications of
the theory range far beyond the original biological context, and
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it is used to model dynamics of financial markets13 and interpret
condensation phenomena in dissipative quantum systems.14

The central element of EGT is the interaction of players dur-
ing a round of a game. Although formally any number of players
can be involved into the interaction,15 most of the existing results
were obtained for two-player games. Players can choose strategies
from fixed sets, and their interaction is mediated by payoffs corre-
sponding to the choices they made. For a two-player game with two
strategies per player, the payoffs can be arranged in a bi-matrix,8

[

a11, b11 a12, b21

a21, b21 a22, b22

]

. (1)

For example, if player A chooses strategy 1 and player B chooses
strategy 2, the former receives payoff a12 and the latter receives pay-
off b21. After every round, players monitor the payoffs obtained by
their peers (other members of the population) and try to adapt the
strategy of the most successful ones. There are several formalizations
of the strategy adaptation process; the Moran process16,17 is currently
the most popular one; see, e.g., Refs. 6, 9, 10, and 18.

Finite sizes of animal populations favor stochastic Markovian
approaches3,19 to modeling game-driven evolution. By assuming that
players belonging to the same population are indistinguishable, the
iterative process of matching and consequent strategy adaptation
can be recast in the form of a Markov chain. The state of a population
is then fully specified by the probability vector, which assigns proba-
bility to every possible arrangement of the strategies. In the absence
of mutations20 (the case we address here), a state corresponding to
the situation when the whole population uses the same strategy is an
absorbing state.21 Once the population enters this state, a fixation has
happened.19

An alternative approach, which was prevailing in the EGT field
until recently, addresses the case of infinite populations. Its main
tool is the celebrated replicator model, which is a system of nonlin-
ear deterministic differential equations.8 The variables governed by
these equations are relative frequencies of the strategies, which are
assumed to be continuous probabilities. Because of the non-linearity
of its equations, the replicator model is able to exhibit a spectrum of
dynamical regimes, ranging from fixed point solutions to periodic
oscillations and chaos (when the number of players and/or number
strategies per player are larger than two; see, e.g., Refs. 22–24).

In between these two limits, there is a land of large but finite
populations. Many animal populations fall into this category; there-
fore, analysis of the corresponding models can provide some addi-
tional insight into complex real-life phenomena.25 It is intuitive
that finite size fluctuations play an important role in the evolution-
ary dynamics of such populations, but these populations are too
big to be modeled with Markov chains.26 The diffusion approxi-
mation of Markov processes27 is an appealing tool to bridge the
two approaches and explore the land between them. When imple-
mented to Moran processes,16,17 the approximation yields a system of
stochastic differential equations (SDEs) with a multiplicative cross-
correlated noise.6,28 The noise strength scales down as the population
size increases so that, in the thermodynamic limit, the equations
reduce to the deterministic replicator model.

Because the size of the population enters the SDEs as a param-
eter, the diffusion approach provides a tremendous speed-up as

compared to Markov chain simulations and allows for simulating
models of an arbitrary large size.28 The SDE approach can be used to
resolve QSs and capture the transient (before the fixation) dynam-
ics, e.g., by replacing the absorbing boundary conditions with the
reflecting ones10 and then performing a routine ensemble averaging.

Here, we apply the concept of quasi-stationary distributions
(QDs)1,29 to analyze evolutionary dynamics of two antagonistic pop-
ulations driven by a two-player game. We consider two variants of
the game, with stationary payoffs and with payoffs changing from
round to round, in a periodic manner (this choice is motivated by
biological phenomena; see Sec. II).

We demonstrate that, in both cases, the metastable dynam-
ics underlying the QDs is very different from the solutions of the
corresponding replicator models. In the stationary case, the lat-
ter is a fixed point, while the metastable dynamics is manifested
by a stochastic limit cycle, which, within the SDE framework, can
be interpreted as a result of a stochastic Hopf bifurcation.30–32 By
employing the Floquet theory,33,34 we generalize the notion of QD to
evolutionary games with periodically varying payoffs. We demon-
strate that the corresponding non-equilibrium states are the result
of a complex dynamics, which cannot be reduced to the evolution of
means.

II. MODEL

Motivated by the original biological context of EGT, we decided
to use the celebrated “Battle of Sexes” model by Dawkins35 as an
example. This model formalizes a sex conflict over the parental
investment,36 and two antagonistic populations are represented by
females and males of a species (see sketch in Fig. 1). Players of each
sex have two strategies, and payoffs are given by a 2 × 2 bi-matrix.
We generalize this model by introducing periodic time variations in
the payoffs. We are not only inspired by the possibility to encounter
a more complex evolutionary dynamics but also by several new
findings in ecology.

In recent years, it has been found that in many species, mating
strategies and preferences are not constant in time but are season-
dependent.37–40 When courting (selecting) a mate, a female or male
of the species faces a complex choice problem when benefits of
a choice depend on the season and have to be traded off against
each other in the context of current environmental conditions. For
example, the rate of the hormonal activity, courtship strategies, and
mate selection of Carolina anole lizards (Anolis carolinensis), both
of females and males, are regulated by the temperature and photo-
period and thus are strongly season dependent.41 Even the amount
of different types of muscle fibers that control the vibrations of a red
throat fan (dewlap)—which males employ during courtship—is sea-
son dependent.42 Within the “Battle of Sexes” framework, this can be
modeled by introducing periodically varying payoffs, as illustrated
in Fig. 1.

Specifically, players A (males) and B (females) form two pop-
ulations of a fixed size N, with each of them having two strategies
s = {1, 2}. Payoffs, {ass′ } and {bs′s}, s, s′ = {1, 2}, may change from
round to round. During a single round, members of the antagonistic
populations are randomly matched and then simultaneously play N
games. After that, a strategy adaptation phase takes place in every
populations. Then, the process is iterated.
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FIG. 1. “Battle of Sexes” with seasonal variations of mate preferences. It can
model, e.g., the process of mate selection in a population of Carolina anole lizards.
A female of the species could be either coy (and prefer a long and arduous
courtship in order to be sure that a mate will contribute to parental care) or fast
(and not worry much about parental care). A male could be either faithful (and
ready to assure a potential partner that he will be a “faithful husband” by perform-
ing a long courtship) or philanderer (and thus would prefer to shorten the courtship
stage). Depending on the strategies, s (played by the female) and s′ (played by
her mate), the female gets payoff bss′ (red) and the male gets as′s (blue). Both
females and males are season-constrained in their preferences of opposite-sex
mates. These seasonal constraints are modeled via time-periodic variations of the
payoffs.

This evolution is an essentially discrete-time process and its
rounds are labeled with index m. In order to be able to compare
the discrete-time evolution to the mean-field dynamics, we intro-
duce time variable t, which is counted from zero and incremented
by 1t after every round. Now, we define time-periodic payoffs,
css′(t) = css′(t + T), c = {a, b}, where 1t = T/M. The payoffs can be
represented as sums of constant and zero-mean time-periodic com-
ponents, css′ (t) = c̄ss′ + c̃ss′ (t), 〈c̃ss′(t)〉T = 0. After M rounds, the
payoffs return to their initial values.

To introduce the strategy adaptation stage, we use the Moran
process,16,17 which works in the following way. The state of the pop-
ulations after the mth round is specified by the number of players
playing first strategy from their strategy list, i (males with s = 1)
and j (females with s′ = 1), 0 ≤ i, j ≤ N. The payoffs obtained by the
players using strategy s are

πA
s (j, t) = as1(t)

j

N
+ as2(t)

(N − j)

N
, (2)

πB
s (i, t) = bs1(t)

i

N
+ bs2(t)

(N − i)

N
. (3)

Payoffs determine the probabilities for a player to be chosen for
reproduction, e.g., for population A,

PA
s (i, j, t) =

1

N
·

1 − w + wπA
s (j, t)

1 − w + wπ̄A(i, j, t)
, (4)

where π̄A(i, j, t) = [iπA
1 (j, t) + (N − i)πA

2 (j, t)]/N is the average pay-
off for the population A.

The baseline fitness w ∈ [0, 1] is a tunable parameter of the
game-driven evolution.6,17 For example, when w = 0, the probabil-
ity to be chosen for reproduction does not depend on player’s payoff
and is uniform across the population. After the choice for reproduc-
tion has been made, another member of the population is chosen
completely randomly and replaced with an offspring of the chosen
player, i.e., with a player that uses the same strategy as its parent.43

This mechanism is acting simultaneously in both populations, A and
B, so that one male and one female are chosen for reproduction. The
mating pair then produces two offspring, a male and female, which
then introduced into the corresponding populations. The size N of
both population is therefore preserved.

A single round can be considered a two-dimensional Markov
chain, a generalization of the one-dimensional chain introduced in
Refs. 6 and 28. Before formalizing the Markov chain, we first define
the transition rates for two populations of players. For example, the
probability for population A to get one more player with strategy 1
after one round (and, correspondingly, one player with strategy 2
less) is given by

T+
A (i, j, t) =

1 − w + wπA
1 (t)

1 − w + wπ̄A

i

N

N − i

N
. (5)

The probability to get one more player with strategy 2 (and,
correspondingly, one player with strategy 1 less) is

T−
A (i, j, t) =

1 − w + wπA
2 (t)

1 − w + wπ̄A

N − i

N

i

N
. (6)

The probability for population B is defined in a similar manner.
These four probabilities are building blocks to construct the tran-
sition matrix for the two-dimensional Markov process (see the
Appendix).

By following the procedure from Ref. 6, it can be shown that,
in the limit N → ∞ and dt = 1

N
→ 0, the dynamics of the vari-

ables x = i/N and y = j/N is governed by the adjusted replicator
equations,12,44

ẋ = x[1 − x][MA (t) + 6A(t)y]
1

0 + π̄A(x, y, t)
, (7)

ẏ = y[1 − y][MB (t) + 6B(t)x]
1

0 + π̄B(x, y, t)
, (8)

where M
C= c12 − c22, 6C = c11 + c22 − c12 − c21, 0 = 1−w

w
, and

C(c) = {A(a), B(b)}.
Within the stochastic framework, a single round can be repre-

sented as the multiplication45 of the state p, expressed as a N × N
matrix with elements p(i, j), with the transition fourth-order tensor
S, with elements S(i, j, i′, j′) (see the Appendix). By using the bijec-
tion k = (N − 1)j + i, we can unfold the probability matrix p(i, j)
into the vector p̃(k), k = 0, . . . , N2, and the tensor S(i, j, i′, j′) into the
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matrix S̃(k, l) with k, l = 0, 1, . . . , N2. This reduces the problem to a

Markov chain,46 p̃m+1 = S̃
m

p̃m, where m is the round to be played
and every state is fully specified now with a single integer k.

The four states (i = {0, N}, j = {0, N}) are absorbing states
because the transition probabilities leading out of them, Eqs. (5)
and (6), are identically zero. The absorbing states are, therefore,
attractors (sinks) of the evolutionary dynamics, and it is evident that
finite-size fluctuations will eventually drive a population to one of
these states.

We are interested in the dynamics before the absorption; there-
fore, we merge the four states into a single absorbing state by
summing the corresponding incoming rates. The boundary states,
(i = {0, N}, j ∈ {1, . . . , N − 1}) and (i ∈ {1, . . . , N − 1}, j = {0, N}),
can also be merged into this absorbing “super-state.” The reason
for including these additional states into the “absorbing” state is
that once the population gets to the boundary, it will only move
toward one of the two nearest absorbing states. By labeling the
absorbing super-state with index k = 0, we end up with a stochastic
(L + 1) × (L + 1) matrix

S̃m =
[

1 %0
m

0 Q̃m

]

, (9)

where L = (N − 2)2, %m
0 is the row vector given by the set of incom-

ing transition probabilities to the absorbing super-state, 0 is a L × 1

column vector with all entries zero, and Q̃m is a L × L reduced
transition matrix.

With Eq. (9), we arrive at the setup used by Darroch and Seneta
to formulate the concept of QDs.1 Specifically, there exists a vector
d, which represent a quasi-stationary distribution (QD). This distri-
bution can be very sustainable and remains near invariant under the

action of the matrix S̃m. In this case, it is a metastable state.5 The
QD can be obtained from the right eigenvector d of the reduced

transition matrix Q̃m corresponding to the maximum (by modu-
lus) eigenvalue λ.1 By virtue of the Perron–Frobenius theorem, λ

is real and vector d is real and non-negative.46 By applying the
inverse bijection and then performing the normalization, we obtain
two-dimensional probability distribution d(x, y).

The most straightforward way to evaluate the dynamics under-
lying the QDs is to perform Monte-Carlo sampling. To address
the limit N � 1, we follow the recipe given in Refs. 6 and 28 and
derive stochastic differential equations (SDEs), which can be then
used to approximate the evolution. As the first step, we intro-
duce continuous variables x = i/N, y = j/N, and t = m/N. Next,
we define probability density %(x, y, t) w N · pm(i, j). Finally, by Tay-
lor expanding the Markov chain in orders of 1/N and truncating
the expansion after the second order, we obtain a Fokker–Planck
equation,48

ρ̇(x, y, t) = −
∑

k=A,B

∂

∂xk

·
[

νk(x, y, t)ρ(x, y, t)
]

+
1

2

∑

k,l=A,B

∂2

∂xkxl

·
[

dkl(x, y, t)ρ(x, y, t)
]

, (10)

where

νk(x, y, t) = T+
k (x, y, t) − T−

k (x, y, t), (11)

dkk(x, y, t) =
T+

k (x, y, t) + T−
k (x, y, t)

N
, (12)

dkl(x, y, t) =
νk(x, y, t) · νl(x, y, t)

N
, k 6= l, (13)

where k, l ∈ {A, B}. The corresponding stochastic differential equa-
tions can be represented in the Langevin form,48

ẋ(t) = νA(x, y, t) +
∑

l=A,B

gAl · ξl(t), (14)

ẏ(t) = νB(x, y, t) +
∑

l=A,B

gBl · ξl(t), (15)

where ξ(t) is an uncorrelated Gaussian white noise of variance one.

The 2 × 2 matrix G =
(

gAA gAB

gBA gBB

)

can be expressed in terms of

the diffusion matrix D =
(

dAA dAB

dBA dBB

)

via GTG = D. We integrate

Eqs. (14) and (15) by using the standard Euler– Maruyama method49

with time step dt = 10−4. In order to obtain matrix G, on every
step, we diagonalize 2 × 2 diffusion matrix D = U3UT and use its

eigenvectors to construct matrix G = U
√

3UT. A conditional sam-
pling of QD is performed by integrating the Langevin equations up
to time tfin and updating the histogram with the final points of the
trajectories.

III. STATIONARY PAYOFFS: A STOCHASTIC

BIFURCATION

We first consider the case when all payoffs are constant. As an
example, we use a game with payoffs a11, a22, b12, and b21 equal to
1, and −1 for the rest of strategies (this choice corresponds to the
“Matching Pennies” game50). Figure 2 presents the metastable states
of the corresponding evolution. In order to find them, we numer-

ically obtain the maximal-eigenvalue eigenvector of the matrix Q̃1

(m = 1 since the payoffs are constant) and perform sampling by
using the SDEs, Eqs. (14) and (15).

The means (first moments of the QD),

x̄ =
N−1
∑

i,j=1

i · d(i, j)

(N − 2)2
; ȳ =

N−1
∑

i,j=1

j · d(i, j)

(N − 2)2
, (16)

coincide with the Nash equilibrium
(

1
2
, 1

2

)

for any N. Yet, the distri-
butions obtained for N = 100 and N = 200 are not simply peaked
but have “craters” on their tops. Stochastic Markovian simulations
reveal the existence of a long transient trajectory going along the
ridge of the craters and encircling the Nash equilibrium; see Fig. 3.
The SDE integration yields a near identical dynamics. However, the
SDE framework offers an interpretation of the dynamics as a limit
cycle resulted from a stochastic Hopf bifurcation.30–32,51 The latter is a
result of a marginal stability of the fixed point ( 1

2
, 1

2
) of the replicator

system (7) and (8).52
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FIG. 2. Quasi-stationary probability distributions of the “Battle of Sexes” with constant payoffs. For all values of N, the distribution was obtained by finding the maximal-eigen-

value eigenvector of the reduced transient matrix Q̃1, Eq. (9).47 For N = 200, the plot combines the distribution obtained by reshuffling the eigenvector (left half) and the
histogram sampled by using Langevin equations (14) and (15), which were propagated to time tfin = 106 (right half). The total number of realization is 107. In the thermody-
namic limit N = ∞ (right panel), the quasi-stationary distribution shrinks to the Nash equilibrium

(

1
2
, 1
2

)

, which thus becomes a fixed point of the mean-field dynamics. The
baseline fitness w = 0.3.

The limit-cycle character of the dynamics can be validated by
tracking the trajectory polar angle as a function of time and not-
ing a well pronounced linear dependence; see the inset in Fig. 4. We
also calculate radius RMC of the metastable cycle and its period TMC

by performing both Monte-Carlo and SDE samplings. The radius
scales proportionally to the fluctuation strength, ∼ 1√

N
, and the

period is near independent of N, as expected for a stochastic Hopf
bifurcation.51

The average lifetime of the metastable dynamics can be defined
by using the largest eigenvalue λ of the reduced transition matrix

Q̃1, as tlife = 1/(1 − λ).1 It can then be compared with the average

FIG. 3. Transient evolution of two populations driven by the “Battle of Sexes”
game with constant payoffs. The color indicates the quasi-stationary distribution
d(x, y). The white line corresponds to a single realization of the Markov process
initiated at the point ( N

2
, N
2
). N = 200. Other parameters are as in Fig. 2.

extinction time,53 obtained by performing Monte-Carlo sampling of
the Markovian dynamics. The two times are in a perfect agreement;
see Fig. 5.

IV. PERIODICALLY VARYING PAYOFFS: A METASTABLE

FLOQUET DYNAMICS

By introducing periodic variations into the payoffs of the “Bat-
tle of Sexes,” we find that the mean-field dynamics, Eqs. (7) and (8),

FIG. 4. Radius of the metastable limit cycle (red) and its period (blue) for the

“Battle of Sexes” with constant payoffs. For N ≤ 300 (1/
√
N ≥ 0.057), both

quantities were obtained from quasi-stationary distributions and Monte-Carlo
sampling. For N > 300, a sampling with the SDEs, Eqs. (14) and (15), was used.
The inset shows the evolution of the polar angle (black line) of the stochastic
trajectory of the stochastic differential equations Eqs. (14) and (15). The black
dashed line corresponds to linear dependence 〈�〉t, where 〈�〉 = 2π/TMC for
N = 200. The red dashed line indicates an inverse dependence of the cycle

radius with respect to the fluctuation strength
√
N. The radius scaling and the

period independence of N are signatures of a stochastic Hopf bifurcation.51 All
parameters are the same as in Fig. 3.
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FIG. 5. The average lifetime tlife vs average extinction time text for the “Battle of
Sexes” with constant payoffs. The average extinction time was sampled with 105

realizations per non-absorbing state. All parameters are the same as in Fig. 3.

does not exhibit substantial changes even for a relatively large
variation amplitude. For example, for a choice when ε(t) = ã11

(t) = b̃22(t) = f cos(ωt), with f = 0.5 and ω = 2π/T and all other
payoffs kept constant, we observe a period-one limit cycle local-
ized near the Nash equilibrium of the constant payoff case; see
Fig. 6(a). In the limit ω � 1, the cycle collapses to a set of adiabatic

Nash equilibria [dashed black lines in Fig. 6(a)]. Here, an adi-
abatic Nash equilibrium is defined as the Nash equilibrium of
a stationary game with “frozen” instantaneous values of payoffs,
{

xNE(ε) = 2−ε

4−ε
, yNE(ε) = 2

4+ε

}

.
Figure 7(a) shows the average extinction time text as a function

of variation strength f for ω = 0.1. In order to compare the evolution
for different population size N, we keep T constant and scale the time
step as 1t = 2π

N
. Another words, in terms of index m, the number of

the rounds needed for one variation cycle is M = ωN.
As it can be seen from Fig. 7(a), changes of text with f are not

substantial for all three considered values of N. However, the extinc-
tion times are more than the order of magnitude shorter than in
the case of constant payoffs (compare to Fig. 5). The Monte-Carlo
sampling reveals the cycling transient dynamics that is much less
localized around the Nash equilibrium than the limit cycle corre-
sponding to the mean-field description; see Fig. 6(b). Evidently, the
dynamics of the means is not able to unreveal the whole complexity
of the transient dynamics. We are going now to generalize the idea of
QDs to the case of periodically varying payoffs and demonstrate that
the corresponding quasi-stationary state provides a deeper insight
into the transient dynamics.

The transition matrices, Eq. (9), are round-specific now and

form a set {S̃m}, m = 1, . . . , M (recall that after M = T/1t rounds,
the payoffs return to their initial values). The propagator over

the interval [0, t], 0 < t < T, is the product Ũ(0, t) =
∏m

k=1 S̃k with
m = t/1t. All the propagators, including the period-one propagator
Ũ(0, T) = ŨT, have the same structure as the matrix in Eq. (9).

We introduce the quasi-stationary distribution of ŨT, d[0].
It is a Floquet state33,34 of the reduced period-one propagator
Ũr

T, obtained by replacing, in the definition of the propagator,

FIG. 6. Evolution driven by a “Battle of Sexes” with periodically varying payoffs. (a) Period-one limit cycles of the mean-field dynamics, N → ∞ withω = 0.1 (solid blue line)
and ω = 0.01 (solid red line) are localized near the point

(

1
2
, 1
2

)

(arrows indicate the direction of the motion). In the adiabatic limit, ω → 0, the mean-field cycle collapses to
the set of the instantaneous Nash equilibria (dashed black line). Averages of the Floquet quasi-stationary distribution d[t] for N = 200, x̄(t) and ȳ(t), evolve along a limit cycle
(blues dots) localized near the Nash equilibrium

(

1
2
, 1
2

)

. (b) A stochastic trajectory (gray line) reveals the existence of a very de-localized transient dynamics. The trajectory
was initiated at an interior point (square) and ended up at an absorbing state (cross). The parameters are f = 0.5, ω = 0.1, and other parameters as in Fig. 2.
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FIG. 7. Metastable Floquet dynamics. (a) The average extinc-
tion time text as a function of the modulation strength f for the
population size N = 50 (dots), 100 (squares), and 200 (tri-
angles). For every values of the variation strengthf , text was
sampled with 105 realizations per non-absorbing state. (b) Stro-
boscopic snapshots of quasi-stationary Floquet distributions
d[t] for different time instances, t = m · 1t ∈ [0, T ]. Distribu-

tions are obtained by diagonalizing the reduced propagators Q̃m

for N = 200. Other parameters are as in Fig. 2.

transition matrix S̃m′
with reduced transition matrix Q̃m′

. The
maximal-eigenvalue eigenvector of the matrix, after the reshuf-
fling, leads to probability distribution d[0] = d[T]. This is a stro-
boscopic snapshot of Floquet QD, which periodically evolves,
d[t] = d[t + T], being locked by payoff variations; see Fig. 7(a). For
any value of t, 0 < t < T, QD d[t] can be obtained by acting with the
reduced propagator Ũr(0, t) on the distribution d[0].

The structure and dynamics of the Floquet QD explain the dra-
matic shortening of the average extinction times. Specifically, while
in the constant limit, QD d(x, y) was localized near the Nash equi-
librium; i.e., at the maximal distance from the absorbing boundaries,
both maxima of the Floquet QD skim very close to the boundary [see
Fig. 7(b)]. In the ecological context, this can be considered a periodic
sequence of population bottlenecks.35 A better articulated biological
interpretation of this effect is intriguing but goes outside the scope
of our work.

Finally, we compare an average lifetime extracted from the Flo-
quet QD with the result of the sampling of the average extinction
time. The average lifetime of d[t] is defined by using the largest
eigenvalue λT, 0 < λT < 1, of matrix Ũr

T. In order to compare it with
the lifetime introduced for the case of constant payoffs, we define
the mean single-round exponent as λ̄T = T

√
λT. The average life-

time is defined then as tlife = 1/(1 − λ̄T). The obtained values are
in a perfect agreement (within the sampling error) with the values
presented in Fig. 7(a).

Different from the constant payoff case, the SDE approach,
when realized numerically by using the first order Euler–Maruyama
scheme, works poorly in this case. In particular, the trajectory
often crosses the boundary of the unit square, thus making results
meaningless.54 Even though the noise strength is strictly zero along
the adsorbing boundary, it is not enough to prevent the trajectory
from crossing the latter. A numerical integration of stochastic equa-
tions with multiplicative noise and time-dependent coefficients is
a non-trivial task, and its realization demands more sophisticated
higher-order schemes.55

V. CONCLUSIONS

By implementing the idea of quasi-stationary distributions,1,29

we demonstrated that the transient (before the fixation) game-
driven evolution of a large but finite population can be very dif-
ferent from the mean-field replicator picture. In the case of a
game with constant payoffs, the transient evolution corresponds
to a noisy cycling dynamics, which can be reproduced with a sys-
tem of stochastic differential equations. Within this framework, the
dynamics can be interpreted as a stochastic Hopf bifurcation.30–32,51

There are ongoing discussions on the role of “stochasticity in
population cycling,”61–63 and the phenomenon of “noise-sustained
oscillations around otherwise stable equilibria” was addressed
recently in the ecological context.62
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It is important, therefore, to demarcate this type of cycling
from the well-known phenomena observed in many EGT models,8

especially in a system driven by games with so-called “cycling
dominance”56,57 (Rock–paper–scissors is perhaps the most cele-
brated example). This phenomenon goes under different names,
depending on the interpretation, e.g., “evolutionary cycling,”58

“cycles of cooperation and defection,”59 and “oscillating tragedy
of the commons.”60 At the formal level, the corresponding mod-
els demonstrate cycling behavior in the thermodynamics limit, and
the origin of the cycling is a limit-cycle dynamics exhibited by the
corresponding mean-field system.

In contrast, in our models, oscillations are absent in the mean-
field picture due to the marginal stability of the fixed point. Our
findings can be considered an extension of the results by McKane
and Newman.61 Namely, McKane and Newman highlighted the exis-
tence of a cycling behavior in a finite predator–prey model, while
the corresponding mean-field system is characterized, similar to
adjusted replicator equations we considered, Eqs. (7) and (8), by a
single marginally stable fixed point (an attracting point with zero
Lyapunov exponents). Their main finding is that the mechanism
responsible for the appearance of the cycling is internal, and it is
a “demographic stochasticity inherent in discrete birth, death, and
predation events.”61 We consider a complimentary aspect, i.e., the
transient character of the cycling dynamics and the finiteness of its
lifetime.

By introducing periodically varying payoffs, we demonstrated
the existence of a metastable, periodically changing probability dis-
tribution, which cannot be deduced from the evolution of the means.
To be more specific, the mean-field system yields the limit cycle
strongly localized near the Nash equilibrium of the average (in terms
of the payoffs) game; see Fig. 6(b). In the case of finite-size dynamics
with N � 1, it is usually expected that the corresponding probabil-
ity distribution is localized on the cycle and the localization becomes
stronger upon the increase of N. This is not so in the model with
periodically varying payoffs: The corresponding probability distri-
bution is multi-modal, and its first moments, x̄(t) and ȳ(t), Eq. (16),
do not reflect the complex shape and dynamics of the distribution.
For example, during a single round of modulations, maxima of the
distribution pass very close to the absorbing border [see Fig. 7(b)]
so that the probability of extinction for the corresponding player

species is high. This, however, cannot be guessed by looking at the
evolution of x̄(t) and ȳ(t).

The idea that the Floquet theory can be used to model the
evolution of ecological systems subjected to time-periodic environ-
mental variations has recently been emphasized in Refs. 64 and 65.
However, it was used to analyze asymptotic regimes of models
described with a set of deterministic linear differential equations in
the spirit of the conventional Floquet theory.33

Other potential applications of quasi-stationary Floquet distri-
butions include modeling of periodically modulated finite systems
with complex kinetics. For example, transient Floquet states can
be related to a transient single-cell gene-expression dynamics when
the chemical kinetics of molecule ensembles is modulated by the
inner-cell circadian rhythm.66,67

Finally, we would like to mention a possibility of extension
of the QS concept to quantum systems. Quantum channels,68 also
known as “completely positive trace-preserving maps” and “quan-
tum operations,”69 which can transform a quantum state (den-
sity operator) into another quantum state while preserving some
important properties, are conventionally accepted as a quantum
generalization of Markov chains. Formalization of quasi-stationary
quantum states and figuring out their relations to metastable70 and
Floquet71 states of open quantum systems is a thought-provoking
perspective.
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APPENDIX: THE TRANSITION TENSOR

Here, we describe the transition fourth-order tensor Sm(i, j, i′, j′)
in terms of the rates [T+,−

A (i, j, t) and T+,−
B (i, j, t)] for populations A

and B, given by Eqs. (5) and (6) in the main text. The stochastic
Moran process can be expressed as a Markov chain

pm+1(i, j) =
[

1 − T+
A (i, j) − T−

A (i, j)
] [

1 − T+
B (i, j) − T−

B (i, j)
]

pm(i, j) + T−
B (i, j + 1)

[

1 − T−
A (i, j + 1) − T+

A (i, j + 1)
]

pm(i, j + 1)

+ T+
B (i, j − 1)

[

1 − T−
A (i, j − 1) − T+

A (i, j − 1)
]

pm(i, j − 1) + T−
A (i + 1, j)

[

1 − T−
B (i + 1, j) − T+

B (i + 1, j)
]

pm(i + 1, j)

+ T+
A (i − 1, j)

[

1 − T−
B (i − 1, j) − T+

B (i − 1, j)
]

pm(i − 1, j) + T−
A (i + 1, j + 1)T−

B (i + 1, j + 1)pm(i + 1, j + 1)

+ T+
A (i − 1, j + 1)T−

B (i − 1, j + 1)pm(i − 1, j + 1) + T−
A (i + 1, j − 1)T+

B (i + 1, j − 1)pm(i + 1, j − 1)

+ T+
A (i − 1, j − 1)T+

B (i − 1, j − 1)pm(i − 1, j − 1). (A1)

Above, we have suppressed the time index t = m1t for all the rates.
Equation (A1) can be recast into

pm+1(i, j) =
∑

i′ ,j′
Sm(i, j, i′, j′)pm(i′, j′), (A2)
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where the fourth-order tensor Sm(i, j, i′, j′) is given by

Sm(i, j, i′, j′) =
[

1 − T+
A (i′, j′) − T−

A (i′, j′)
] [

1 − T+
B (i′, j′) − T−

B (i′, j′)
]

δi′ ,i δj′ ,j + T−
B (i′, j′)

[

1 − T−
A (i′, j′) − T+

A (i′, j′)
]

δi′ ,i δj′ ,j+1

+ T+
B (i′, j′)

[

1 − T−
A (i′, j′) − T+

A (i′, j′)
]

δi′ ,i δj′ ,j−1 + T−
A (i′, j′)

[

1 − T−
B (i′, j′) − T+

B (i′, j′)
]

δi′ ,i+1 δj′ ,j

+ T+
A (i′, j′)

[

1 − T−
B (i′, j′) − T+

B (i′, j′)
]

δi′ ,i−1 δj′ ,j + T−
A (i′, j′)T−

B (i′, j′)δi′ ,i+1 δj′ ,j+1 + T+
A (i′, j′)T−

B (i′, j′)δi′ ,i−1 δj′ ,j+1

+ T−
A (i′, j′)T+

B (i′, j′)δi′ ,i+1 δj′ ,j−1 + T+
A (i′, j′)T+

B (i′, j′)δi′ ,i−1 δj′ ,j−1, (A3)

with the indices i, j, i′, and j′ ∈ {0, . . . , N}. Using the bijection
k = (N − 1)j + i and l = (N − 1)j′ + i′, we obtain the required
matrix form, Eq. (9), in the main text.
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