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Colossal Brownian yet non-Gaussian diffusion induced by nonequilibrium noise
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We report on Brownian, yet non-Gaussian diffusion, in which the mean square displacement of the particle
grows linearly with time, and the probability density for the particle spreading is Gaussian like, but the
probability density for its position increments possesses an exponentially decaying tail. In contrast to recent
works in this area, this behavior is not a consequence of either a space- or time-dependent diffusivity, but is
induced by external nonthermal noise acting on the particle dwelling in a periodic potential. The existence of
the exponential tail in the increment statistics leads to colossal enhancement of diffusion, drastically surpassing
the previously researched situation known as “giant” diffusion. This colossal diffusion enhancement crucially
impacts a broad spectrum of the first arrival problems, such as diffusion limited reactions governing transport in
living cells.
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I. INTRODUCTION

Brownian diffusion is in the limelight of present activities
and enjoys seemingly never-ending interest [1–10] across a
broad spectrum of scientific disciplines, extending even into
socioeconomics where diffusion of ideas and innovations has
been considered recently [11,12]. It presents an archetype
stochastic process which is characterized by two fundamental
features. The first is its proportionality of the mean square
displacement σ 2

x (t ) to elapsed time, namely,

σ 2
x (t ) = 2Dt, (1)

where D is the diffusion coefficient. The second is rooted in
the Gaussian shape of the probability density function (PDF)
to observe the entity at position x at time t , i.e.,

p(x, t ) = 1√
4πDt

exp

(
− x2

4Dt

)
. (2)

The universal emergence of the Gaussian statistics is at-
tributed to the central limit theorem, which constitutes a
cornerstone result for statistical physics [13].

Recently, a new class of diffusion processes has been re-
ported in a growing number of systems, which typically are
of biological origin, such as soft and active matter setups
[14,15]. In the latter dynamics, the mean square displacement
σ 2

x (t ) exhibits the linear growth in time, but the corresponding
PDF is distinctly non-Gaussian and, in some cases, attains an
exponential decay. Such an exponential behavior is generally
valid for transport in random media [16–18], as, e.g., for
glassy systems [19] or the intracellular environment [20]. This
Brownian, yet non-Gaussian diffusion has been explained so
far by the classical idea of superstatistics [21,22] and by other
approaches assuming a diffusing diffusivity [23–25].
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In this work, we demonstrate another class of Brownian
dynamics, i.e., non-Gaussian diffusion in which the mean
square displacement σ 2

x (t ) is still a linear function of elapsed
time and the PDF P(x, t ) to observe the entity at position x
at time t is very close to Gaussian, but the corresponding
PDF p(�x) for the increments of the process is distinctly non-
Gaussian, exhibiting a nonconventional exponential tail. The
latter fact is in clear contrast to the usual Brownian diffusion
for which the increments are distributed as well according to
a Gaussian PDF. Particularly, such non-Gaussian behavior is
induced here by a stochastic, impulselike external forcing on
the system. This is different from previous approaches where
anomalous features were a consequence of either space- or
time-dependent diffusion coefficients, reflecting the charac-
teristic features of the particle environment [25]. Last but not
least, the existence of the exponential tail in the statistics of
increments leads to truly colossal enhancement of diffusion.

For this purpose, we consider a variant of an archetypal
model for a nonequilibrium system, namely, an overdamped
dynamics of a Brownian particle diffusing in a periodic po-
tential, U (x) = sin x, under the action of a static tilting force
f [26]. It came as a surprise for the community that the diffu-
sion coefficient for such a system at a critical deterministic
bias, f ∼ fc, near threshold towards running deterministic
solutions, pronouncedly exceeds the free diffusion value, thus
leading to the phenomenon known as giant diffusion [27–32].
This type of giant diffusion is theoretically well understood
[32] and corroborated experimentally [33–35]. We analyze the
variant of the above system by replacing the static force f
with a biased nonequilibrium noise η(t ) which pumps energy
to the system in a random way. Such a case is of paramount
interest in the understanding of transport properties of not
only physical but also biological systems, e.g., living cells
[36], where for a strongly fluctuating environment there is no
systematic deterministic load, but rather random collisions or
releases of chemical energy, which are modeled here in the
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FIG. 1. Exemplary realizations of Poisson noise for different mean spiking rate λ as well as intensity DP for the fixed average value
〈η(t )〉 = 1, as indicated by the red solid line. (a) λ = 2, DP = 0.5; (b) λ = 0.5, DP = 2.

form of kicks and impulses. In order to be able to make a
comparison with the deterministic bias f , we set the mean
value of the noise force η(t ) equal to f , namely, 〈η(t )〉 = f .
As we will show below, the nonequilibrium noise η(t ) may
drive the particle in such a way that the diffusion coefficient
grows arbitrarily large above the studied giant diffusion case
with a deterministic bias force f . This biased noise is shown
to be at the source for the non-Gaussianity of the PDF for the
increments of particle positions.

II. MODEL

Let us start with the overdamped Langevin dynamics for
position of the Brownian particle, which in dimensionless
variables reads

ẋ = −U ′(x) +
√

2DT ξ (t ) + η(t ). (3)

We refer the readers to the Appendix, wherein we detail the
scaling procedure. The dot and prime denote differentiation
with respect to time t and coordinate x of the Brownian
particle, respectively. Thermal fluctuations are modeled by
δ-correlated Gaussian white noise ξ (t ) of vanishing mean
〈ξ (t )〉 = 0 and the correlation function 〈ξ (t )ξ (s)〉 = δ(t − s).
Its intensity DT is proportional to temperature T of the ambi-
ent thermal bath, i.e., DT ∝ T [see Eq. (A6) in the Appendix].

As an example of the stochastic biasing force η(t ), we pro-
pose a sequence of δ-shaped pulses with random amplitudes
zi defined in terms of biased white Poisson shot noise (PSN)
[37,39,40], i.e.,

η(t ) =
n(t )∑
i=1

ziδ(t − ti ), (4)

where ti are the arrival times of a Poissonian counting process
n(t ), characterized by the parameter λ; i.e., the PDF for the
occurrence of k impulses in the time interval [0, t] is given by
the Poisson probabilities [13]

Pr{n(t ) = k} = (λt )k

k!
e−λt . (5)

The parameter λ can be interpreted as the mean number of
δ pulses per unit time. The amplitudes {zi} are independent
random variables distributed according to a common PDF,
ρ(z). The latter distribution is assumed to be of an exponential
form, i.e., ρ(z) = ζ−1 θ (z) exp(−z/ζ ), where the parameter

ζ > 0 and θ (z) denotes the Heaviside step function. As a
consequence, all amplitudes {zi} are positive of mean value
〈zi〉 = ζ and realizations of the force are non-negative, i.e.,
η(t ) � 0. This presents white noise of finite mean and a co-
variance given by [38]

〈η(t )〉 = λ〈zi〉 =
√

λDP, (6a)

〈η(t )η(s)〉 − 〈η(t )〉〈η(s)〉 = 2DPδ(t − s), (6b)

where we introduced the PSN intensity, DP = λ〈z2
i 〉/2 =

λζ 2. We also assume that thermal fluctuations ξ (t ) are un-
correlated with nonequilibrium noise η(t ), i.e., 〈ξ (t )η(s)〉 =
〈ξ (t )〉〈η(s)〉 = 0. The impact of PSN parameters λ and DP

on its stochastic realizations is presented in Fig. 1. There we
depict two example trajectories for different mean spiking
rates λ as well as noise intensities DP for a fixed average
value 〈η(t )〉 = 1. As can be deduced from these two panels,
the parameter λ may be interpreted as the frequency of the δ

spikes, whereas DP is proportional to the amplitude of the sin-
gle pulse. We mention that, e.g., if, simultaneously, λ is large
and DP is small, then the particle is frequently kicked by small
impulses. On the other hand, if λ is small and DP is large, then
it is rarely kicked by large spikes. It is worthwhile to note that
in the limiting case λ → ∞, ζ → 0 with DP = λζ 2 = const.
PSN tends to Gaussian white noise of intensity DP.

The Markovian stochastic dynamics given by Eq. (3)
yields, for the probability density P(x, t ) of the process x(t ),
the integro-differential master equation [39,40]

∂

∂t
P(x, t ) = ∂

∂x
[U ′(x)P(x, t )] + DT

∂2

∂x2
P(x, t )

+ λ

∫ ∞

−∞
[P(x − z, t ) − P(x, t )]ρ(z) dz. (7)

The observable of foremost interest for this study is the
diffusion coefficient, defined as

D = lim
t→∞

σ 2
x (t )

2t
= lim

t→∞
〈x2(t )〉 − 〈x(t )〉2

2t
, (8)

where σ 2
x (t ) is the variance of the particle position x(t ) and

the average value reads

〈xk (t )〉 =
∫ ∞

−∞
xkP(x, t )dx. (9)

The diffusion coefficient D for the overdamped dynamics
obeying Eq. (3) with the deterministic constant force f has
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FIG. 2. The relative diffusion coefficient D/DT , where DT cor-
responds to free thermal diffusion, vs the average value 〈η(t )〉 =√

λDP = f of the mean external force in the form of the biased
PSN. This characteristic is depicted for different magnitudes of the
spiking rate λ and fixed temperature, DT = 0.01. The red solid line
represents the diffusive behavior driven by the deterministic tilting
force f .

been calculated in a closed analytical form in [29,32]. Those
authors detected that for weak thermal noise and near the
critical tilt fc = 1, the diffusion may become greatly enhanced
as compared to free diffusion. In such a case, the correspond-
ing washboard potential V (x) = U (x) − f x exhibits a strictly
monotonic behavior and exactly one inflection point within
each period. The dynamics for weak thermal fluctuations is
mainly determined by two processes, namely, (i) noise in-
duced escape from the potential minimum and (ii) relaxation
towards the next minimum [26]. The relaxation time is robust
with respect to thermal noise intensity, whereas the escape
time exhibits an exponential sensitivity. This dichotomous
microdynamics can be detected from the particle trajectories,
as depicted in Fig. 5(a).

In this work, we demonstrate how the latter effect of giant
enhancement of diffusion is affected when the static force f
is replaced by stochastic forcing η(t ) in the form of biased
PSN. In this case, the dynamics is described by the integro-
differential master equation (7) and its solution P(x, t ) can no
longer be expressed in a closed analytical form. Therefore, we
investigate this problem by means of the precise numerical
simulations. In this approach, the averaging is over the initial
conditions x(0) distributed uniformly over the spatial period
[0, 2π ] of the potential U (x) as well as over Gaussian ξ (t )
and PSN η(t ) noise realizations. For details of the latter, we
refer the readers to Ref. [41].

III. RESULTS

In Fig. 2, we present the dependence of the relative dif-
fusion coefficient D/DT on the average 〈η(t )〉 of the biased
PSN η(t ) for different magnitudes of the spiking rate λ. The
red solid line corresponds to the diffusive behavior of the
particle under the action of the corresponding static tilting
force f . The reader can observe therein the known effect of
diffusion enhancement, being most pronounced near the criti-
cal tilt f = fc = 1, i.e., when deterministic running solutions
set in. The effect of biased stochastic forcing η(t ) is dual.
First, PSN much more strongly enhances the diffusion coeffi-

cient D/DT ; see, also, Fig. 4(a). Second, when the particle is
rarely kicked by large δ pulses, i.e., for λ → 0 and DP → ∞
with 〈η(t )〉 = √

λDP = const, the maximum in the relative
diffusion coefficient D/DT near the critical force f = fc = 1
disappears, indicating that the particle motion is decoupled
from the periodic potential. This is expected because, in this
limit, the PSN force dominates a contribution of U (x).

In Fig. 3, we depict the diffusion coefficient D/DT as a
function of the spiking frequency λ for selected values of
〈η(t )〉. The impact of different temperatures is also displayed.
The solid straight lines represent the diffusion coefficient for
the corresponding system with the static bias f , whereas the
dashed lines depict the influence of PSN. One notices that the
magnitude of the diffusion coefficient D/DT in the case of
PSN is equivalent to the corresponding one for the determinis-
tic force f in the limiting case of large λ and small DP, i.e., for
very frequent δ kicks of tiny amplitudes [38]. On the contrary,
for rarely occurring, very strong random kicks λ → 0 and
DP → ∞, the relative diffusion coefficient D/DT is divergent.
It is an instructive example: for the thermal noise intensity
DT = 0.01 and the system subjected to the critical tilt f = 1,
the effective diffusion coefficient D/DT = 18, meaning that
it is 18 times greater than thermal diffusion DT for the free
Brownian particle. For the same DT = 0.01, when the particle
is driven by Poissonian noise, 〈η(t )〉 = f = √

λDP = 1 with
λ = 1 and DP = 1, i.e., the mean value of Poissonian noise
amplitude 〈zi〉 = ζ = 1 [half of the rescaled potential U (x)
barrier], the relative diffusion coefficient D/DT = 151. This
implies that it is nearly one order of magnitude greater than
for the already giant diffusion observed when the particle is
subjected to the corresponding constant bias. Therefore, to
emphasize this fact, we term it colossal diffusion. Moreover,
as DT decreases (i.e., temperature decreases), the enhance-
ment of diffusion D/DT over the value observed for the static
bias f starts to be detected for the progressively larger spik-
ing rates λ, or with fc = 1 = λ〈zi〉 correspondingly smaller
amplitudes zi of the δ kicks.

In Fig. 3, we additionally depict the average velocity 〈v〉 =
limt→∞[x(t ) − x(0)]/t of the particle vs the mean frequency
λ of the δ spikes. This transport quantifier is likewise notably
enhanced when the static bias f is replaced with η(t ). The
main difference is that 〈v〉 does not diverge when the spiking
rate tends to zero λ → 0, but for λ < 0.1, it saturates at
the value corresponding to the free diffusion 〈v〉 = f /γ = 1
(recall that in the dimensionless units, the friction coefficient
γ = 1, and in the considered parameter regime, f = fc = 1)
[26]. We emphasize that colossal enhancement of the relative
diffusion coefficient D/DT , as well as the average velocity
〈v〉, caused by η(t ) is not restricted to the critical tilt regime
〈η(t )〉 = fc ∼ 1, but occurs as well for a subcritical regime
f < fc and a supercritical regime f > fc; cf. Fig. 2 as well
as Fig. 3. This phenomenon is particularly pronounced at low
temperature regimes where, in the system driven by the static
tilting force f , the crossing events of thermal noise induced
escape over the potential barrier are scarce.

There are two characteristic timescales for the dynamics
described by Eq. (3) that allow one to clarify the colos-
sal enhancement of diffusion; see, also, the Appendix. The
first characteristic time is τ0 = �L2/�U and characterizes
relaxation from a maximum of the potential U (x) to its
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FIG. 3. Left column: The relative diffusion coefficient D/DT . Right column: The average velocity 〈v〉 of the particle. All are presented
as a function of the spiking rate λ depicted for selected temperatures of the system, DT ∝ T . The solid straight lines correspond to the above
quantities for the system with the static force f , whereas the dashed lines indicate the influence of the PSN η(t ). (a), (b) 〈η(t )〉 = f1 = 0.9;
(c), (d) 〈η(t )〉 = fc = 1; (e), (f) 〈η(t )〉 = f2 = 1.1; cf. Fig. 2.

minimum. The second characteristic time is τλ = 1/λ, i.e.,
the inverse of the spiking rate of Poissonian noise η(t ). In
the present study, τ0 is chosen as the characteristic unit of
time. Therefore, its role can be easily deduced, e.g., from
Fig. 3. If τλ 
 τ0, there is no colossal enhancement and the
diffusion coefficient corresponds to giant diffusion. If τλ ≈ τ0,
the diffusion is already pronouncedly enhanced over the giant
diffusion situation and, for τλ � τ0, one can observe colossal
diffusion. Alternatively, if λτ0 
 1, i.e., in the time interval
(0, τ0), there is a small number of δ kicks of large amplitudes
and then colossal diffusion occurs.

In Fig. 4(a), we present a collection of trajectories of the
system driven by PSN. We note there the time intervals of
relaxation towards the potential minima as well as the long
jumps of many spatial periods of the potential caused by δ

spikes. The latter excursions are responsible for such impres-
sive enhancement of diffusion. The corresponding panel for
the system under action of the constant bias f is presented
in Fig. 5(a). The particle dynamics depicted there is radically

different. The reader can observe two processes: thermal noise
induced escape from the potential minimum and relaxation
towards the next minimum rather than long excursion which
is visible when PSN acts on the particle. We stress that for
both scenarios, diffusion is asymptotically normal, meaning
that the variance of the particle position scales linearly with
time, i.e., σ 2

x (t ) ∼ Dt . Moreover, it is known that for the
overdamped Brownian particle moving in a tilted periodic
potential, the PDF of the particle coordinate x is Gaussian-like
[42]. In Fig. 4(b), we present P(x, t ) for the system given by
Eq. (3). The Gaussianity of this PDF can be quantified by the
kurtosis K (t ), reading

K (t ) = 〈[x(t ) − 〈x(t )〉]4〉
{〈[x(t ) − 〈x(t )〉]2〉}2 − 3, (10)

which for the Gaussian density assumes zero, i.e., K (t ) = 0.
In the studied case, K (t ) calculated in the asymptotic long
time limit t = 10 000, for which the particle diffusion is
already normal, yields approximately zero, i.e., K (t ) ≈ 0, and
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FIG. 4. Overdamped Brownian particle driven by the biased PSN η(t ). (a) An exemplary set of realizations of stochastic system trajectories.
(b) The PDF P(x, t ) for the particle coordinate x at time t . (c), (d) The PDF pτ (�x) for the long time particle position increments �x(τ ) =
limt→∞[x(t + τ ) − x(t )] is depicted for the time difference (c) τ = 0.1 and (d) τ = 1. Other parameters are the thermal noise intensity DT =
0.01, the spiking rate λ = 0.1, and the Poisson noise intensity DP = 10 [i.e., 〈η(t )〉 = 1]. The above PDFs were calculated for t = 10 000 for
which we checked that σ 2

x (t ) ∼ Dt . The exponential fits are indicated with the green lines.

thus the PDF for the particle coordinate P(x, t ) is very close
to Gaussian statistics.

Next, we consider the PDF pτ (�x) of the particle position
increments,

�x(τ ) = lim
t→∞[x(t + τ ) − x(t )], (11)

where τ is the time increment. This quantity differentiates be-
tween the dynamics induced by the deterministic force f and
the stochastic bias η(t ). In Figs. 4(c) and 4(d), we depict these
characteristics for the particle driven by η(t ) with τ = 0.1 and
τ = 1, respectively. In Fig. 5(b), we present it for the case
of the static force f with the time difference τ = 1. For this
case, the PDF pτ (�x) can be well approximated by the sum of

two Gaussian densities representing the increments originat-
ing from the relaxation of the particle towards the potential
minimum as well as thermal noise induced crossing of the
potential barrier. In contrast, when PSN acts on the particle,
then pτ (�x) is distinctly non-Gaussian. Moreover, its tail is
characteristic for the class of Laplace distributions pτ (�x) ∼
e−�x; note the exponential fits (in green) in Figs. 4(c)
and 4(d). The impact of the time lag τ on the distribution
pτ (�x) is visualized there as well. First, for increasing τ , the
cutoff of the PDF grows. Second, in this latter case, the reader
can detect the multipeaked, comblike shape of the distribution
pτ (�x), which is characteristic for an overdamped dynamics
in a periodic potential in which the particle quickly relaxes
towards the neighboring potential minima.
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FIG. 5. Overdamped Brownian particle moving in a tilted periodic potential driven by the static force f = 1. (a) An exemplary set of
realizations of the system trajectories vs elapsed time t . (b) The probability density pτ (�x) for the long time particle position increments is
depicted for the time difference τ = 1. The thermal noise intensity DT = 0.01.

042121-5



K. BIAŁAS et al. PHYSICAL REVIEW E 102, 042121 (2020)

The question is how the diffusion coefficient D and the
PDF pτ (�x) of the particle position increments depend on the
choice of the nonthermal noise statistics, in particular on the
distribution ρ(z) of the amplitudes {zi} of the δ pulses. In gen-
eral, it is a very complex problem and may be resolved only in
a case by case manner. Our preliminary results for the gamma
(Erlang-2) distribution show that the colossal enhancement of
diffusion also emerges and pτ (�x) is also non-Gaussian.

IV. CONCLUSIONS

With this study, we revealed a manifestation of Brownian,
yet non-Gaussian diffusion. Its characteristic features are that
the particle diffusion still proceeds normal, with the PDF of
the particle position remaining Gaussian like; the correspond-
ing density for its increments, however, noticeably deviates
from the usual Gaussian shape and exhibits an exponential
tail. The latter feature results in colossal enhanced diffusion,
distinctly surpassing in magnitude the case of giant diffusion
[32], obtained upon applying a deterministic bias. In contrast
to recent works in the area of Brownian, yet non-Gaussian
diffusion, this peculiar behavior is solely a consequence of
the external stochastic forcing acting on the particle. This
feature opens an avenue within the recently established and
growing activity of non-Gaussian diffusion dynamics in which
the nonequilibrium state created by the external perturbations
serves as the seed for various kinds of diffusion anomalies
[43,44].

In conclusion, we considered a paradigmatic model of
nonequilibrium statistical physics consisting of an over-
damped Brownian particle diffusing in a periodic potential.
This setup comprises numerous experimental realizations
[26,33–35,45,46] and therefore we are confident that our find-
ings will inspire and invigorate a vibrant followup of both
experimental and theoretical studies. Our results have an im-
pact, as well, on a description of biological systems which
knowingly operate under nonequilibrium conditions while ex-
posed to nonthermal and non-Gaussian stochastic forces. The
result of an exponential tail for position increments leads to
a colossal amplification of the diffusion coefficient, which, in
addition, carries striking consequences for a broad spectrum
of the first arrival problems, such as physical and chemical
reactions occurring in living cells [47,48].
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APPENDIX: DIMENSIONLESS UNITS

In physics, the relations between scales of length, time,
and energy, but not necessarily their absolute values, play
a role in determining the observed phenomena. Therefore,
it is useful to transform the equations describing the model
into their dimensionless form. It often allows one to simplify
the setup description as, after such a rescaling procedure, a
number of relevant parameters appearing in the corresponding
dimensional version can be reduced. Moreover, recasting into
the dimensionless variables ensures that the obtained results

are independent of specific chosen setups, which is essential
to facilitate the choice in realizing the best scheme for testing
theoretical predictions in experiments. The dimensional ver-
sions of the overdamped Langevin dynamics read

�ẋ = −U ′(x) +
√

2�kBT ξ (t ) + F, (A1a)

�ẋ = −U ′(x) +
√

2�kBT ξ (t ) + η(t ), (A1b)

where the potential is assumed to be of the form

U (x) = �U sin

(
2π

x

L

)
. (A2)

The parameter � represents the friction coefficient, F and
η(t ) stand for the deterministic force and the biased Poisson
noise, respectively, kB is the Boltzmann constant, and T is
the thermostat temperature. Thermal fluctuations are modeled
by δ-correlated Gaussian white noise ξ (t ) of vanishing mean
〈ξ (t )〉 = 0 and the correlation function 〈ξ (t )ξ (s)〉 = δ(t − s).

To make Eqs. (A1) dimensionless, we rescale the particle
coordinate and time as

x̂ = 2π

L
x, t̂ = t

τ0
, τ0 = 1

4π2

�L2

�U
. (A3)

After such transformations, the equations reads

ẋ = −Û ′(x̂) +
√

2DT ξ̂ (t̂ ) + f , (A4a)

ẋ = −Û ′(x̂) +
√

2DT ξ̂ (t̂ ) + η̂(t̂ ), (A4b)

where the rescaled potential

Û (x̂) = 1

�U
U

(
L

2π
x̂

)
= sin x̂ (A5)

possesses the period 2π and the barrier height 2. Other dimen-
sionless parameters are as follows:

γ = 1, f = 1

2π

L

�U
F, DT = kBT

�U
. (A6)

The dimensionless thermal noise takes the form

ξ̂ (t̂ ) = 1

2π

L

�U
ξ (τ0t̂ ) (A7)

and possesses the same statistical properties as ξ (t ), i.e., it
is a Gaussian stochastic process with the vanishing mean
〈ξ̂ (t̂ )〉 = 0 and the correlation function 〈ξ̂ (t̂ )ξ̂ (ŝ) = δ(t̂ − ŝ).
The rescaled biased Poissonian noise reads

η̂(t̂ ) = 1

2π

L

�U
η(τ0t̂ ) (A8)

and is characterized by the following dimensionless parame-
ters:

λ̂ = τ0λ, D̂P = DP

��U
. (A9)

It is statistically equivalent to η(t ), namely, 〈η̂(t̂ )〉 =
√

λ̂D̂P

and 〈η̂(t̂ )η̂(ŝ)〉 − 〈η̂(t̂ )〉〈η̂(ŝ)〉 = 2D̂Pδ(t̂ − ŝ). In the main
text, we used only dimensionless quantities and therefore the
hat notation ∧ is omitted.
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