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Diffusion of colloidal rods in corrugated channels

Xiang Yang,1 Qian Zhu,1 Chang Liu,1 Wei Wang,2 Yunyun Li,3 Fabio Marchesoni,3,4 Peter Hänggi,5,6 and H. P. Zhang1,7,*

1School of Physics and Astronomy and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, China
2School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, China

3Center for Phononics and Thermal Energy Science, School of Physics Science and Engineering, Tongji University, Shanghai, China
4Dipartimento di Fisica, Università di Camerino, I-62032 Camerino, Italy

5Institut für Physik, Universität Augsburg, D-86135 Augsburg, Germany
6Nanosystems Initiative Munich, Schellingstrasse 4, D-80799 München, Germany

7Collaborative Innovation Center of Advanced Microstructures, Nanjing, China

(Received 23 July 2018; published 21 February 2019)

In many natural and artificial devices diffusive transport takes place in confined geometries with corrugated
boundaries. Such boundaries cause both entropic and hydrodynamic effects, which have been studied only for
the case of spherical particles. Here we experimentally investigate the diffusion of particles of elongated shape
confined in a corrugated quasi-two-dimensional channel. The elongated shape causes complex excluded-volume
interactions between particles and channel walls which reduce the accessible configuration space and lead to
novel entropic free-energy effects. The extra rotational degree of freedom also gives rise to a complex diffusivity
matrix that depends on both the particle location and its orientation. We further show how to extend the standard
Fick-Jacobs theory to incorporate combined hydrodynamic and entropic effects, so as, for instance, to accurately
predict experimentally measured mean first passage times along the channel. Our approach can be used as a
generic method to describe translational diffusion of anisotropic particles in corrugated channels.
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Diffusive transport through microstructures such as occur-
ring in porous media [1,2], micro- and nanofluidic channels
[3–7], and living tissues [8,9], is ubiquitous and attracts ever-
growing attention from physicists [10,11], mathematicians
[12], engineers [1], and biologists [8,9,13]. A common feature
of these systems is confining boundaries of irregular shapes.
Spatial confinement can fundamentally change the equilib-
rium and dynamical properties of a system by both limiting
the configuration space accessible to its diffusing components
[10] and increasing the hydrodynamic drag [14] on them.

An archetypal model to study confinement effects consists
of a spherical particle diffusing in a corrugated narrow
channel, which mimics directed ionic channels [15], zeolites
[16], and nanopores [17]. In this context, Jacobs [18] and
Zwanzig [19] proposed a theoretical formulation to account
for the entropic effects stemming from constrained transverse
diffusion. Focusing on the transport (channel) direction, they
assumed that the transverse degrees of freedom (d.o.f.’s)
equilibrate sufficiently fast and can, therefore, be eliminated
adiabatically by means of an approximate projection scheme.
In first order, they derived a reduced diffusion equation in the
channel direction, known as the Fick-Jacobs (FJ) equation.
Numerical investigations [11,20–23] demonstrated that the
FJ equation provides a useful tool to accurately estimate the
entropic effects for confined pointlike particles. However,
our recent experiments [5] evidentiated that hydrodynamic
effects for finite size particles cannot be disregarded if
the channel and particle dimensions grow comparable. In
order to incorporate such hydrodynamic corrections, the FJ
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equation must then be amended in terms of the experimentally
measured particle diffusivity.

Previous studies on confined diffusion focused mostly on
spherical particles, for which only the translational d.o.f.’s
were considered. However, particles in practical applications
appear inherently more complex in exhibiting anisotropic
shape and possessing additional degrees of freedom other
than translational. For example, anisotropic particles, such as
colloids [24–28], artificial and biological filaments [29,30],
DNA strands [31,32], and microswimmers [33,34], exhibit
complex coupling between rotation and translation, even in
the absence of geometric constraints. How can complex shape
and additional d.o.f.’s such as rotation alter the current picture
of confined diffusion? Here, we address this open question and
study how a colloidal rod diffuses in a quasi-two-dimensional
(2D) corrugated channel [35]. Our experiments reveal that the
interplay of a channel’s spatial modulation, a rod’s shape, and
rotational dynamics causes substantial hydrodynamic and en-
tropic effects. We succeed in extending the standard FJ theory
to incorporate both effects; the resulting theory accurately pre-
dicts the experimentally measured mean first-passage times
(MFPTs) associated with rod translation along the channel.

Experimental setup. Our channels were fabricated on a
coverslip by means of a two-photon direct laser writing sys-
tem, which solidifies polymers according to a preassigned
channel profile, f (x), with a submicron resolution [5]. As
depicted in Fig. 1(a), the quasi-2D channel has a uniform
height (denoted by H). In the central region, the periodically
curved lateral walls form cells of length L with inner bound-
aries a distance y = ±h(x) away from the channel’s axis.
The preassigned profile f (x) is given the form of a cosine,
which tapers off to a constant in correspondence with the cell
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FIG. 1. (a) Electron scanning image of a thin channel (H =
1.0 μm, α = 7/8). Narrow openings at the two ends are marked
by red asterisks. The inset illustrates a section of the channel with
laser-scanning contour, f (x), wall inner boundary, h(x), and upper
effective boundary, g+(x, θ ), delimiting the region accessible to the
center of a rod with a given tilting angle, θ . Rod’s length and width
and wall thickness are denoted, respectively, by 2lX , 2lY , and dt . The
coordinates x, y, z and X,Y refer, respectively, to the laboratory and
body frames. (b) Sample of time discretized trajectory (dotted line)
for a rod with lX = 1.5 μm in a tall channel (H = 2.0 μm, α = 1);
the rod’s orientation at different times is also reported according to
the depicted color code.

connecting ducts, or necks, that is,

f (x) =
{

1
2 ( fw + fn) + 1

2 ( fw − fn)cos
(

2πx
αL

)
, |x| < αL

2

fn,
αL
2 � |x| < 1

2 L.

(1)

The minimum (maximum) half-width of f (x) is denoted by
fn(w), respectively, whereas (1 − α)L is the length of the neck.
Due to the lateral wall thickness dt = 0.8 μm [see inset of
Fig. 1(a)], f (x) and h(x) are separated by a distance dt/2,
so that fn(w) = hn(w) + dt/2. We changed fn continuously for
fixed L = 12 μm and fw = 4.6 μm, while for the remaining
channel parameters we considered two typical geometries:
tall channels (H = 2.0 μm, α = 1) and thin channels (H =
1.0 μm, α = 7/8).

After fabrication, channels were immersed in water with
suspended iron-plated gold rods of width 2lY = 0.3 μm and

length 2lX , which varies in the range 1.6–3.2 μm. Using a
magnet, we dragged a rod into the channel through a narrow
entrance, which creates insurmountable entropic barriers to
prevent the rod from exiting the channel. The rod’s motion
in such quasi-2D channel was recorded through a microscope
at 30 frames per second for up to 20 h [5]. We tracked
rod trajectories in the imaging plane and extracted its center
coordinates, (x, y), and tilting angle, θ , by standard particle-
tracking algorithms. We detected no sizable rod dynamics in
the out-of-plane direction (see Movie S1.mp4 in the Supple-
mental Material [36]).

A typical rod trajectory is displayed in Fig. 1(b). The
channel boundaries limit the space accessible to the rod and
such a limiting effect depends on the rod’s orientation: the
rod gets closer to the boundary if it is aligned tangent to
the walls. To quantify this orientation-dependent effect, we
distributed the recorded rod’s center coordinates, (x, y), for a
given orientation, θ , into small bins (0.26 μm × 0.2 μm) and
counted how many times the rod’s center was to be found in
each bin. The resulting rod center distributions for three values
of θ are plotted in Fig. 2(a). Nearly uniform distributions
demonstrate that the rod diffuses in a flat energy landscape,
whereas sharp drops of the distributions near the boundaries
mark the edge of the accessible space, consistently with y =
g±(x, θ ) computed from the excluded-volume considerations
[see Fig. 2(a)]. The channel boundaries also affect the rod’s
orientation. For instance, when the rod is relatively long,
namely, for hn < lX , then it tends to orient itself parallel to
the channel direction inside the neck region, as illustrated in
the middle panel of Fig. 2(a).

Fick-Jacobs free energy. The rod diffusion can be de-
scribed as a random walk in the configuration space (x, y, θ ).
The dashed curves y = g±(x, θ ) in Fig. 2(a) illustrate how
the walls limit the channel’s space accessible to the rod’s
center for three different θ values. From these curves one
can construct a surface in the configuration space, as shown
in Fig. 2(b), and model the motion of the confined rod as
that of a pointlike particle diffusing inside the reconstructed
three-dimensional (3D) channel enclosed by that surface. For
a rod with length of about 1 μm, the relaxation times of
θ and y are short enough for the FJ approach to closely
reproduce the long-time diffusion in the reconstructed 3D
channel (see Supplemental Material Sec. II B [36]). To that
end, we integrate the probability density ρ(x, y, θ, t ) to ob-
tain p(x, t ) = ∫∫

ρ(x, y, θ, t )dy dθ and the corresponding FJ
equation governing its time evolution,

∂ p(x, t )

∂t
= ∂

∂x

{
D(x)

[
∂ p(x, t )

∂x
+ p(x, t )

∂

∂x

(
− ln

G(x)

G(0)

)]}
.

(2)

Here, G(x) = 1
2π

∫ π/2
−π/2[g+(x, θ ) − g−(x, θ )]dθ represents the

area of the (y, θ ) cross section of the reconstructed 3D channel
at a given point x. Three such cross sections are plotted in
Fig. 2(c). Restrictions in both the center coordinates, (x, y),
and the tilting angle, θ , cause variation of G(x). The latter
effect is most pronounced in the neck regions, as illustrated
by the blue cross section in Fig. 2(c). Consequently, the
variations of G(x) modulate the FJ free-energy profile along
the channel. The free-energy potentials plotted in Fig. 2(d),
− ln[G(x)/G(0)], exhibit barriers of about 1.8kBT for a rod
with a half-length lX = 1.6 μm, which is 50% higher than that
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FIG. 2. (a) Spatial distributions of the rod center for three tilting angles, θ = π

6 , π

2 , and − π

6 . The channel’s inner boundaries, y = ±h(x), and
the tilt-dependent effective boundaries, y = g±(x, θ ), are marked by solid and dashed lines, respectively. (b) The configuration space accessible
to the confined rod is delimited by the surfaces y = g±(x, θ ). Five cross sections are shown in color; three of them, at x/L = 0, 0.22, and 0.46,
are displayed in (c). (d) Free-energy profile (in units of kBT ), − ln[G(x)/G(0)], for different rod lengths (see text). The black line represents
the case of a sphere of radius lX = 0.15 μm. Data in (a)–(d) were obtained in a tall channel (H = 2.0 μm, α = 1) with hn = 1.8 μm, while
the rod used in (a)–(c) had half-length lX = 1.6 μm.

of a sphere. This novel entropic effect is induced by particle
shape and its strength increases with increasing rod length.

Fick-Jacobs effective diffusivity. Apart from the entropic
potential, the FJ approach introduces an effective longitudinal
diffusivity function, D(x) in Eq. (2). To estimate it, we first
determined the local diffusivity matrix DIJ (x, y, θ ) of a rod
located at (x, y) with angle θ , where I and J represent any
pair of coordinates X , Y , or θ in the body frame. As shown
in Fig. S1, off-diagonal elements of DIJ (x, y, θ ) are small and
can be neglected. The remaining three diagonal elements,
DXX , DYY , and Dθθ , exhibit a complicated structure inside
the channel and generally have smaller values near channel
boundaries [see Figs. S1(c)–S1(e)]. We also numerically
computed the hydrodynamic friction coefficient matrix and
then used the fluctuation-dissipation theorem to numerically
estimate the diffusivity matrix. As shown with Fig. S3,
numerical calculations closely reproduce experimental
findings. Diffusivity at the channel center can be computed
analytically [37–40] and results are in close (5% difference)
agreement with our findings.

We next transformed DIJ (x, y, θ ) from the body frame to
the laboratory frame and then, in the spirit of the FJ theory,
averaged the element of the resulting diffusivity matrix in the
channel’s direction, Dxx, over y and θ to obtain

Dave(x) = 〈Dxx〉y,θ

= 〈DXX (x, y, θ ) cos2 θ + DYY (x, y, θ ) sin2 θ

− DXY (x, y, θ ) sin 2θ〉y,θ . (3)

Figure 3(a) displays the function Dave(x) for three different
rod lengths. While for the shortest rod (lX = 1.0 μm) Dave(x)
exhibits minor variability along the channel, for the longest
rod (lX = 1.6 μm) Dave(x) is about 30% larger in the neck re-
gions than at the center of the channel cells. This surprising re-
sult can be explained by inspecting the corresponding angular
distributions in Fig. 3(b). While around the center of the chan-
nel cell the rods can assume any angle, θ , in the necks their
orientation is predominantly constrained around θ = 0, more
effectively as the rod length increases. In Eq. (3) for Dave(x),
contributions of DXX and DYY are weighted, respectively,
by cos2 θ and sin2 θ , implying that for angular distributions
peaked around θ = 0 the weight of DXX becomes dominant.
Moreover, Figs. S1 and S3 confirm that DXX /DYY ≈ 2 in
most of the configuration space [41], so that Dave(x) in the
neck regions is larger for longer rods. In addition to spatial
variation, the hydrodynamic effects also cause a decrease of
the local diffusivity of up to 25%, as compared to bulk values
(see Supplemental Material Sec. II A [36]).

We next address the entropic corrections to the local dif-
fusivity, Dave(x), which in the FJ scheme follow from the
adiabatic elimination of the transverse coordinates [19,20,42].
Reguera and Rubí proposed heuristic expressions to relate
D(x) to Dave(x) in narrow 2D and 3D axisymmetric channels
[20]. Unfortunately, such expressions do not apply to nonax-
isymmetric “reconstructed” channels [see Fig. 2(b)], where
one or more d.o.f.’s are represented by orientation angles. For
this reason we approximated the reconstructed 3D channel
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FIG. 3. (a) Average local diffusivity, Dave(x), plotted along the
channel for three rods with lX = 1, 1.2, and 1.6 μm [see correspond-
ing numerical results in Fig. S3(c)]. (b) Tilting angle distributions
in the neck regions (x = ±L/2, symbols), and at the center of the
channel cell (x = 0, dashed lines), for the same lX as in (a). Data
were taken in a tall channel (H = 2.0 μm, α = 1) with hn = 1.4 μm.

of Fig. 2(b) to a quasi-2D channel with half-width G(x),
adopted Reguera-Rubí expression [19,20,42], and arrived at
the following estimate for D(x):

D(x) = Dave(x)

[1 + G′(x)2]1/3
. (4)

The validity and corresponding implications of Eq. (4) are
discussed in Supplemental Material Sec. II A [36].

Mean first-passage times. With both the entropic poten-
tial, − ln G(x)/G(0), and the effective logitudinal diffusiv-
ity, D(x), as extracted from the experimental data, one can
next apply the FJ equation to analytically study the diffusive
dynamics of confined rods. For example, we focus on the
time duration, T (±�x|0), of the unconditional first-passage
events that start at x = 0 and end up at x = ±�x [see inset
of Fig. 4(a)], regardless of the fast-relaxing coordinates y
and θ . The corresponding MFPT, 〈T (±�x|0)〉, can then be
used to estimate the asymptotic channel diffusivity in narrow-
neck cases, i.e., Dch = limt→∞〈[x(t ) − x(0)]2〉/2t , that is,
Dch = L2/2〈T (±L|0)〉 [5]. Taking advantage of the symmetry
properties of the system, Eq. (3) returns an explicit integral
expression for the MFPT [19,43], reading

〈TFJ (±�x|0)〉 =
∫ �x

0

dη

G(η)D(η)

∫ η

0
G(ξ )dξ . (5)

In Fig. 4(a) we compare the predictions of Eq. (5) with the
experimental measurements of 〈T (±�x|0)〉 for six combina-
tions of hn and lX . Without any adjustable parameters, Eq. (5)
yields predictions in excellent agreement with the experimen-
tal data and captures the fast increase of the MFPT in the neck

FIG. 4. (a) MFPT 〈T (±�x|0)〉 vs �x from experiments (sym-
bols) and theory (curves) in thin channels (H = 1.0 μm, α = 7

8 ) for
different values of the pair (hn, lX ). Inset: vertical dashed segments
mark the starting (x = 0, red) and ending (x = ±�x, blue) positions
of the recorded first-passage events. (b) MFPT at �x = L/2 vs
hn/lX , measured in tall channels (H = 2.0 μm, α = 1) for different
hn and lX . Results from experiments and theory are represented by
circles and crosses, respectively; symbols are color-coded according
to the actual value of lX . The local diffusivity, Dave(x), used in the
theoretical computations was obtained via finite-element analysis
(see Supplemental Material Sec. II A [36]). The dashed line is a guide
to the eye.

region. In addition, the validity of our generalized FJ equa-
tion has been systematically explored by extensive Brownian
dynamics simulations in Supplemental Material Sec. I D [36].

Our experiments were controlled by two geometric pa-
rameters: the half-width of the channel’s necks, hn, and the
rod half-length, lX . Numerical and experimental results in
Fig. 4 clearly reveal that the MFPT increases as the ratio
hn/lX decreases. Moreover, provided that the rods are not too
short, lX > 0.8 μm, results for different choices of hn and lX ,
when plotted versus hn/lX , collapse onto a universal curve, as
illustrated in Fig. 4(b). This means that, in the experimental
regime investigated here, proportional increases of hn and lX
do not change the MFPT. For a qualitative explanation of such
a property, we notice that increasing lX reduces the available
configuration space and, simultaneously, raises the relevant
entropic barriers [Fig. 2(d)]. As a consequence, longer rods,
which also possess smaller diffusivity, D(x) [Fig. 3(a)], tend
to diffuse with longer MFPT’s. On the other hand, increasing
hn lowers the entropic barrier, thus decreasing the MFPT. As
quantitatively discussed in Supplemental Material Sec. II C
[36], these two opposite effects tend to compensate each other,
in our experimental regime, as long as the ratio hn/lX is kept
constant.
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In conclusion, we experimentally measured diffusive trans-
port of colloidal rods through corrugated planar channels,
upon systematically varying the geometric parameters of the
rods and the channel. Anisotropic shape significantly impacts
particle transport by altering free-energy barriers and parti-
cle diffusivity. Experimental observations were successfully
modeled by generalizing the FJ theory for spherical particles
in terms of an effective longitudinal diffusivity, with hydro-
dynamic and entropic adjustments, and an FJ free energy
including the rotational d.o.f.

Our method to quantify particle-shape-induced entropic
effect [cf. Fig. (2)] is also applicable to model the con-
fined diffusion of even more complex particles, like patchy
colloids [28] or polymers [29,30]. Such particles possess
additional d.o.f.’s, other than the pure translational ones,

and, similarly to the colloidal rods in our experiments, their
description would generally require higher dimensional con-
figuration spaces. However, as in our work, fast relaxing
d.o.f.’s (“perpendicular” to the channel direction) may be
adiabatically eliminated and replaced by a reduced free-
energy potential [Fig. 2(d)] together with an effective diffu-
sivity function [Eq. (4) and Fig. 3(a)]. Such a generalization
of the FJ approach consequently may serve as a powerful
phenomenological tool to accurately describe the diffusive
transport of real-life particles in directed corrugated narrow
channels.
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I. MATERIAL AND METHOD

A. Colloidal rod fabrication

Gold microrods were synthesized by electrodeposition in alumina templates following a

procedure adapted from an earlier study [1]. Porous AAO membranes (Whatman) with a

nominal pore diameter of 200 nm were used. Before electrodeposition, a 200 - 300 nm layer

of silver was thermally evaporated on one side of the membrane as the working electrode.

The membrane was then assembled into an electrochemical cell with the pore openings

immersed in the metal plating solution. Silver plating solution (Alfa Aesar) and homemade

gold solution (gold content 28.7 g/L) were used. In a typical experiment, a 5 - 10 µm

layer of silver was �rst electro-deposited into the pores at -5 mA/cm2, followed by gold

at -0.2 mA/cm2, the amount of which was controlled by monitoring the charge �ow. The

pores' silver �lling and the membrane were then dissolved, respectively in HNO3 and NaOH

solutions, and the released gold rods were cleaned in distilled water. In the �nal step of the

fabrication process, a thin layer (50 nm) of iron was then thermally evaporated by electron

beam in a vacuum onto the sides of the gold rods (e-beam evaporator HHV TF500). Rod

width is about 300 nm and we selected straight rods with length from 1.6 µm to 3.2 µm for

our experiment.

B. Local di�usivity measurements

Con�ning boundaries cause the normal di�usivity of the rods to spatially vary inside

the channel. We measured the local di�usivity in the rod body frame DIJ(x, y, θ) (I, J =

X, Y, θ) via the displacement covariance matrix. As illustrated in Fig. S1(a) the elements of

the covariance matrix at a given sample point [marked by a cross in Fig. S1(c)] can be �tted

by linear functions of the elapsed time, δt, with slope proportional to the relevant di�usivity

element, 〈δIδJ〉 = 2DIJ(x, y, θ)δt (normal di�usion). All non-diagonal cross-covariances,

such as 〈δX (δt) δY (δt)〉 shown in Fig. S1(a), are much smaller than the variances, which

means that the di�usivity matrix DIJ(x, y, θ) is dominated by its diagonal elements. In

Fig. S1(b) all displacements after a time interval δt =0.2 s exhibit a normal Gaussian

distribution, which suggests that our choice of δt was appropriate. We carried out local

di�usivity measurements at 200 points uniformly distributed in the con�guration space
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x, y, θ; then used such measurements to interpolate the di�usivity matrix DIJ(x, y, θ) over

the entire parameter space. Measured DXX , DY Y , Dθθ for three tilting angles are depicted

in Figs. S1(c)-(e) � see Fig. S3(a)-(b) for the corresponding numerical results.

C. Finite-element simulations

We complemented our experimental data for the local di�usivity with �nite-element cal-

culations. COMSOL Multiphysics v5.2 was used to compute the drag force on a moving

rod in a channel. The Stokes equations were solved. In doing so, no-slip boundary condi-

tions were imposed on the side walls, �oor and ceiling, while open boundary conditions were

adopted for the channel openings. The geometry of the channel was set to reproduce the

inner channel boundary in the experiments. We used about half a million elements in the

simulation to ensure convergence. The same numerical method was followed to solve the

problem of a sphere moving in a long cylinder; the computed drag force on the sphere devi-

ates less than 3% from the analytical predictions [2], which can be regarded as an estimate

of the achieved numerical accuracy.

The rod dwells at di�erent locations and orientations, (x, y, θ), in a horizontal plane at

about Hrod =0.4 µm above the �oor. We estimated Hrod by balancing the rod gravity (about

0.025 pN), buoyancy and the electrostatic repulsion between the rod and the channel walls,

for which we assume a Debye length of 60 nm and surface potentials of 40 mV [3, 4]. As

shown in Supporting Movie S1.mp4, the rods exhibit little out-of-plane motion; therefore,

in our simulations and experimental data analysis we assumed that they stay in the same

horizontal plane at all times.

For each (x, y, θ), we dragged the rod with constant velocity v = 1µm/s in the x or y

direction, and measured the corresponding drag force fx and fy in each case. We calculated

the hydrodynamic friction coe�cient matrix γ = {γij}, (i, j = x, y) through the relation

~f = γ~v. Then, the di�usion matrix was derived from the γ matrix via the �uctuation-

dissipation theorem[5].
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Figure S1. (a) Covariances of linear and angular displacements,
〈
δX2

〉
,
〈
δY 2

〉
, 〈δXδY 〉 and

〈
δθ2
〉

, versus elapsed time δt at coordinates: (x=-2.5 µm, y=1.6 µm, θ=π/4), marked by a cross in the

middle panel of (e). Linear �ts were used to extract the corresponding di�usivity matrix element.

(b) Probability distributions of δX, δY , and δθ at δt = 0.2 s �tted by Gaussian functions (dashed

curves) with corresponding variance from panel (a). (c)-(e) Diagonal terms of the local di�usivity

in the body frame (c) DXX(x, y, θ), (d) DY Y (x, y, θ) and (e) Dθθ(x, y, θ) are measured at θ = 0, π/4

and π/2. Data were taken in a tall channel with hn = 1.4µm and lX = 1µm; the channel's inner

boundaries ±h(x) are marked by solid lines.
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D. Brownian Dynamics (BD) simulations

Because the inertial forces are negligible with respect to the viscous forces, we used

overdamped Langevin equations to describe the evolution of rod coordinates and orientation,

denoted by the vector ~s = (x, y, θ):

d~s

dt
= −RD(~s)

kBT
~F (~s) + R~ξ(t), (S1)

where R =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 is the transformation matrix from the body to the laboratory

frame. The di�usion matrix D(~s) in the body frame contains diagonal elements only, DXX(~s),

DY Y (~s), Dθθ(~s), which are provided either by experimental measurements or �nite-element

simulations. Interaction force and torque between rod and boundary, ~F (~s), are computed in

the body frame (see below). Fluctuations in the body frame are independent Gaussian white

noises ~ξ(t), with 〈ξI(t)〉 = 0 and 〈ξI(t+ τ)ξJ(t)〉 = 2DIJ(~s)δ(τ)δIJ , where I(J) represents

X, Y or θ, as appropriate.

We computed the rod-wall interaction in the following way. As illustrated in Fig. S2, the

channel boundary and the rod are represented by a string of particles: the l-th boundary

particle is denoted by ~rl = (xl, yl) and the k-th rod particle by ~rk. These particles interact

with each other via the truncated Lennard-Jones(LJ) potential U(|~rl − ~rk|),

U(r) =

 ULJ(r)− ULJ(1.12σ), r ≤ 1.12σ

0, r > 1.12σ
(S2)

ULJ(r) = 4ε[(
σ

r
)12 − (

σ

r
)6], (S3)

where ε and σ are the strength and characteristic length of the potential respectively. Total

force and torque acting on the rod are combined in the vector

~F (~s) =


−
∑
k,l

∇XU(|~rl − ~rk|)

−
∑
k,l

∇YU(|~rl − ~rk|)

−
∑
k,l

|~rl − ~r|∇YU(|~rl − ~rk|)

 ,
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where ~r = (x, y) denotes the center of the rod.

We had recourse to Euler's method to discretize the Langevin equations with time step dt.

For thermodynamic consistency, we used the transport (also known as kinetic or isothermal)

convention [6�8], and a predictor-corrector scheme [9] to compute the post-point value,

~s(t+ dt). We �rst predict the post-point value from the information at ~s(t)

~s∗(t+ dt) = ~s(t) + R
D(~s(t))

kBT
~F (~s(t))dt+ R

√
2D(~s(t))dt~η(t), (S4)

and then improve it in a corrector step

~s(t+ dt) = ~s(t) + R
D(~s∗(t+ dt))

kBT
~F (~s∗(t+ dt))dt+ R

√
2D(~s∗(t+ dt))dt~η(t) (S5)

where the vector ~η(t) consists of three independent Gaussian random numbers with zero

mean and unit variance. Our numerical scheme produces uniformly distributed rods in the

accessible space as in the experiments, which validates the scheme itself.

In our simulations we used the time step dt = 0.2 ms, potential parameters σ = 0.1µm

and ε = 2kBT , and located the wall particles ~rk, so that the space accessible to the dif-

fusing rod was the same as in the experiments. Upon rescaling length, time, and energy

respectively by L, L2/Dave(x = 0) [see Eq. (3) in the main text], and kBT , the dimensionless

simulation parameters became σ = 8× 10−3, dt = 4× 10−7, and ε = 2. Particle trajectories

from simulation can be analyzed by the same technique (see main text) adopted for their

experimental counterparts to determine the relevant MFPTs.

II. DISCUSSION

A. Local di�usivity measurements for �nite-element simulations

Typical �nite-element calculation results for DXX(x, y, θ) and DY Y (x, y, θ) are plotted in

Fig. S3(a)-(b). Upon integrating DXX and DY Y , as prescribed in Eq. (3), we obtained the

local di�usivity along the channel direction, Dave(x), plotted in Fig. S3(c). These numerical

results agree with their experimental counterpart of Fig. S1. For example, both experiments

and �nite-element calculations suggest that for long rods Dave (x) is largest at the center of

the neck. We systematically investigated this phenomenon in Fig. S3(d) over a wide range
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Figure S2. Schematic diagram of the channel and rod model used to compute the rod-wall inter-

actions in BD simulations. Fixed particles (located at ~rk, separated by 0.25σ) mimicking the walls

are shown in blue and those mimicking the di�using rod (located at ~rl, separated by 0.8σ) in or-

ange. The quantity σ is the characteristic length of the LJ potential (see text). Periodic boundary

conditions are imposed at the left and right openings.

of the channel width, hn, and rod length, lX . For rods with lX > 1.2µm, Dave (x = L/2) is

greater than Dave (x = 0). As a comparison, we calculate the rod translational di�usivity at

the center of the channel cells with θ = 0; namely, D0 = [DXX(0, 0, 0) + DY Y (0, 0, 0)]/2 and

in the unbounded space, Dbulk = (DXX +DY Y )/2. Numerical values for these quantities are

shown in the caption of Fig. S3.

B. Di�usion time scales and the generalized FJ approach

With the typical geometric parameters (lX =1 µm, hn =1.4 µm, hw =4.2 µm and L =12

µm) adopted in our experiments, we estimated the characteristic di�usion times in the x

(channel) direction, τx = L2/2D0 ' 200 s; in the y direction, τy = h2/2D0 ' 23 s (cell

center) and 3 s(neck); and for the rod's rotation τθ = (π/2)2/2Dθθ ' 1.5 s. Therefore,

relaxation in the y and θ directions are much faster than in the channel direction, which

justi�es implementing the FJ approach. We also note that τθ � τy in most space except in

the neck region.
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Figure S3. Numerical di�usivity results from �nite-element calculation. Local di�usivity in the

body frame (a) DXX (x, y, θ) and (b) DY Y (x, y, θ) computed for θ = 0, π/4, π/2. (c) Average local

di�usivity Dave(x) vs. x for three rods of di�erent length, for which the di�usivity at the center

of the channel was D0 = 0.36,0.34 and 0.24 µm2/s, to be compared with the di�usivity in the

unbounded space, Dbulk = 0.47, 0.42 and 0.34 µm2/s (see supporting text for de�nitions). (d)

Values of [Dave(0) − Dave(L/2)]/D0 in the hn-lX plane. Data were taken in a tall channel (H =

2.0 µm, α = 1) with hn =1.4 µm, see Figs. S1(c)-(d) and 3(a) for the corresponding experimental

results.

C. Reguera-Rubì approximation for e�ective di�usivity

According to the FJ approach, the adiabatic elimination of the transverse coordinates

leads to entropic corrections to the e�ective local di�usivity. For a 2D channel with con�ning

boundaries at ±g(x), Reguera and Rubí (RR) proposed the following expression for the

e�ective di�usivity: D(x) = D0[1 + g′(x)2]−
1
3 , if g′(x) < 1 [10]. RR also provided a formula

for 3D axisymmetric channels with spatial d.o.f.'s only. However, their formula does not

apply to a generic 3D channel. We approximated the reconstructed 3D channel [Fig. 2(b)] to

a quasi-2D one with half-width G(x) and applied the improved RR approximation, D(x) =

Dave (x) [1 + G′(x)2]−
1
3 . As shown in Figs. S4(a)-(b), such an approximation raises the

8



Figure S4. MFPT from experiments (�lled symbols), BD simulations (open symbols) and FJ

predictions with (solid curves) or without the improved RR correction (dashed curves). Data were

taken in tall channels (H =2 µm, α = 1) with hn =1.4 µm for two di�erent rod half-lengths, (a)

lX = 1.0 and (b) 1.6µm. In the BD simulations we made use of the experimentally measured

di�usivity matrix.

theoretical estimates by some 5% (solid versus dashed curves). For a short rod, lX =1 µm,

theoretical predictions are consistent with both experimental and simulation results. For a

long rod, lX =1.6 µm, however, the RR formula underestimates both the experimental and

simulation results by ∼15% � note that the experimental and numerical data sets agree with

each other for all values of lX . This may be understood by noticing that the reconstructed

3D channel for a long rod, see Figs. 2 (b)-(c), exhibits large variations along the θ axis and,

therefore, cannot be accurately represented by an averaged quasi-2D channel.

D. Dependence of the MFPT on channel neck width and rod length

The width of the channel's neck, hn, and the length of the rod, lX , a�ect the MFPT by

changing both the entropic barrier and the e�ective di�usivity in Eq. (5). To clarify their

combined e�ect, we denote 〈TFJ(±∆x|0)〉 by T (ω; ∆x), where ω represents either hn or lX ,

as appropriate, and rewrite Eq. (5) as

T (ω; ∆x) =

∆xˆ

0

λ(ω; η)
1

Dave(ω; η)
dη, (S6)
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where

λ(ω;x) =
[1 +G′(ω;x)2]

1
3

G(ω;x)

xˆ

0

G(ω; ξ)dξ

depends only on the geometric properties of the system. To further advance our analysis, we

assume a weak x dependence of the local di�usivity Dave(ω;x). This assumption allows us

to replace Dave(ω; η) in Eq. (S6) with its average, D̄(ω) ≡ 1
L

´ L
0
Dave(ω; η)dη. Accordingly,

T (ω; ∆x) is approximated by

T0(ω; ∆x) =
1

D̄(ω)

∆xˆ

0

λ(ω; η)dη.

We now take the partial derivative of the MFPT at ∆x = L/2 [see Fig. 4(b)], that is

∂T0(ω;L/2)

∂ω
=

1

D̄(ω)

L/2ˆ

0

∂λ(ω; η)

∂ω
dη +

∂

∂ω
D̄(ω)−1

L/2ˆ

0

λ(ω; η)dη (S7)

= T0(ω; L/2)

( ´ L/2
0

∂λ(ω;η)
∂ω

dη´ L/2
0

λ(ω; η)dη
+ D̄(ω)

∂

∂ω
D̄(ω)−1

)
.

From this equation we immediately realize that a change in the system parameter ω generates

two contributions, an entropic term, eω(ω) =
´ L/2

0
∂λ(ω;η)
∂ω

dη/
´ L/2

0
λ(ω; η)dη, and a di�usion

term, uω(ω) = D̄(ω) ∂
∂ω
D̄(ω)−1.

As hn and lX change proportionally by the amounts dlX and dhn, i.e. dlX/dhn = lX/hn,

the total change of T0 reads

dT0 = T0[ulX + elX +
hn
lX

(uhn + ehn)]dlX . (S8)

We computed each of these terms numerically in a tall channel with di�erent lX and hn.

For the di�usive terms we used di�usivity matrices from �nite-element calculations. All four

terms of Eq.(S8) and their sum are plotted in Fig. S5. An increase of the rod length lX leads

to less available con�guration space and higher entropic barriers [see Fig. 2 (c)], that causes

the MFPT to increase. Vice versa, increasing hn reduces the height of the entropic barrier

and thus decreases the MFPT. This corresponds to positive elX and negative ehn values in

Fig. S5(a). A longer rod is naturally characterized by smaller di�usivity [see Fig. 3(a)] and

longer MFPT, which is consistent with a positive value of ulX in Fig. S5(b). Changes in

the neck width, hn, has a weak impact on the e�ective di�usivity, as proven by the small
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uhn values in Fig. S5(b). Adding up all four terms yields a vanishing MFPT increment,

dT0 ∼ 0, for all data points in Fig. S5(c), except the two points encircled by a dashed

ellipse. These two outliers represent the case of two short rods, lX = 0.6, and 0.5µm in an

extremely narrow channel with hn =0.6 µm (i.e., comparable with the rod width 2lY =0.3

µm). Under these conditions, a change in hn can lead to large values of ehn and uhn , also

marked by dashed ellipses in Figs. S5(a)-(b).

III. DESCRIPTION OF SUPPORTING VIDEO

Supporting video (S1.mp4) shows a typical rod trajectory plotted on an optical image of

the channel. Rod orientation is reported according to a color-code. Some of these data have

been plotted in Fig. 1(b).
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Figure S5. Illustration of Eq. (S8): (a) entropic terms elX and (hn/lX)ehn , (b) di�usive terms ulX

and (hn/lX)uhn , and (c) sum of all four terms plotted vs. hn/lX . Data points from the two shortest

rods are encircled by dashed ellipses (see text). All data points are color coded according to the

rod half-length, lX .
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