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Asymptotic Floquet states of a periodically driven spin-boson system in the
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Being an exemplary model of open quantum system, the spin-boson model is widely employed in theoretical
and experimental studies. Beyond the weak coupling limit, the spin-boson dynamics can be described by a
time-nonlocal generalized master equation with a memory kernel accounting for the dissipative effects induced
by the bosonic environment. When the spin is in addition modulated by an external time-periodic electromagnetic
field, the interplay between dissipation and forcing provides a spectrum of nontrivial asymptotic states, especially
so in the regime of nonlinear response. Here we implement the method for evaluating the dissipative Floquet
dynamics of non-Markovian systems introduced in Magazzù et al. [Phys. Rev. A 96, 042103 (2017)] to obtain
these nonequilibrium asymptotic states.
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I. INTRODUCTION

The spin-boson model [1] has been—and still remains—the
subject of extensive studies, as it constitutes an archetype of
open quantum system [2–7]. This model describes a single
spin (qubit) coupled to a dissipative environment consisting of
an infinite number of bosonic modes. The spin-boson model
is of relevance for a great many applications in physics and
chemistry, such as, for example, electron tunneling [2,3],
driving assisted transport in biological complexes [4,5], and
superconducting qubit technologies [6,7], to name but a few.

In the regime of weak coupling to a bosonic environment,
the dynamics of the spin can be described by a master equation
derived within the Born-Markov approximation [8] together
with various improvements over this approximation scheme;
see, for example, Refs. [9,10]. Different techniques have been
developed to deal with the more challenging strong coupling
regime, which goes beyond the perturbative limit. The current
toolbox includes stochastic Schrödinger [11] and Liouville
[12] equations, different variational approaches [13–16], nu-
merical renormalization group methods [17], sparse polyno-
mial approach [18], extended reaction coordinate schemes
[19–21], and combined thermofield/chain [22] mappings.

Within the path integral approach, the influence of the
environment on the evolution of an open system (described
with a reduced density matrix) is captured by the Feynman-
Vernon influence functional [23]. This formulation is suit-
able for numerically precise treatments, such as quantum
Monte Carlo methods [24–26], the quasiadiabatic propagator
path-integral method [4,27,28], or the hierarchical equations
of motion (HEOM) [29–32]. Furthermore, the path integral
approach allows for analytical schemes addressing the limits
of both weak [33] and strong coupling [1], together with
approximation schemes that bridge these two regimes [34,35].

In experiments, different coupling regimes, corresponding
to different spin dynamics (coherent or incoherent), have been

attained with superconducting qubits [6,7,36,37], constituting
one of the most popular platforms for quantum computing and
quantum simulations [38–41]. In particular, a setup based on a
flux qubit coupled to a transmission line has been proposed to
cover coupling strengths ranging from weak to ultrastrong [37].
The same setup has recently been employed to investigate the
impact of a monochromatic driving on the qubit dynamics in
different regimes of dissipation and driving [42]. Experimental
results have been appropriately accounted for by the path
integral approach within an approximation scheme that is
nonperturbative with respect to the coupling strength. In this
approach, the driven spin-boson dynamics is described by
means of a generalized master equation (GME) for the spin,
where a memory kernel constructed on a microscopical basis
accounts for both the driving and dissipation [43].

While this GME for the spin dynamics cannot be evaluated
within the standard Floquet formalism (because of the inherent
time-nonlocal character of the dynamics), the unitary evolution
of the spin-boson system in the full Hilbert space is governed by
a time-periodic Hamiltonian and consequently can be, though
only in principle, handled within standard Floquet theory. The
latter also applies to the reduced dynamics when the time
evolution can be approximated on physical grounds by time-
local equations. This occurs typically in the weak coupling
regime, as in the case of the Markovian Bloch-Redfield or
Lindblad master equations [43–47]. Further, in the limit of
a high frequency driving, the Floquet approach can also be
implemented beyond the weak coupling limit [48] by using the
inverse frequency of modulations as a perturbation parameter.

In the present work we apply to the GME for the periodically
driven spin-boson model the method presented in Ref. [49].
This method allows one to find the asymptotic Floquet states of
systems whose evolution is described by a generalized master
equation, i.e., an integrodifferential equation characterized
by a memory kernel. The method is based on a so-called
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“embedding” procedure. The embedding is performed by cou-
pling the system to a set of nonphysical auxiliary variables, so
that the resulting evolution equations governing the dynamics
in the enlarged space of variables are rendered time-local. This
system of equations has time-periodic coefficients and is there-
fore tractable with the standard Floquet theory. The projected
solution in the physical subspace assumes the form predicted
by a generalization of the Floquet theorem [50] for systems
with memory. We next demonstrate that the method allows
one to investigate the spin dynamics in different dissipation
regimes under periodical modulations with no restrictions on
their amplitude or frequency.

II. EMBEDDING AND THE GENERALIZED
FLOQUET THEORY

We outline a generalization of the Floquet theorem [51,52]
to systems exhibiting a memory dynamics [49]. Consider
a periodically driven physical system described by the n-
dimensional vector x(t ) and governed by the time-nonlocal
evolution equation,

ẋ(t ) =
∫ t

t0

dt ′K(t, t ′)x(t ′) + z(t ), (1)

with integrable memory kernel K(t, t ′). Assume that the inho-
mogeneous term vanishes asymptotically, i.e., limt→∞ z(t ) =
0, and that the kernel matrix is biperiodic, namely, K(t +
T , t ′ + T ) = K(t, t ′), where T is the period of the driving.
Under these conditions, in the limit t → ∞, the action of
L{x, t}, given by the right-hand side of Eq. (1), commutes with
that of the time-translation operator ST {x(t )} = x(t + T ).
Then, according to the generalized Floquet theory [50], the
solution x(t ) is formally expressed by

x(t ) = S(t, t0)e(t−t0 )Fv(t0) , (2)

with S(t, t0) a T -periodic n × p matrix, F a constant p × p

matrix, and v(t0) a p-dimensional constant vector, where p �
+∞.

In Ref. [49], we presented a method to find the asymptotic
solution of Eq. (1). The method is based on the enlargement of
the system state space obtained by coupling x to an auxiliary
nonphysical variable u. The resulting extended system is
described by the vector vT = (x1, . . . , xn, u1, u2, . . . ), which
obeys a time-local equation. This equation is then subjected to
the standard Floquet treatment [52]. By projecting the solution
v(t ) into the physical subspace, we find the solution for the
original vector x(t ).

We assume that the n × n kernel matrix in Eq. (1) can
be expressed as (or approximated by) the following sum of
complex matrices,

K(t, t ′) =
k∑

j=1

�j e
−γj (t−t ′ )Ej (t )Fj (t ′) , (3)

with �j , γj ∈ C and Ej (t ) = Ej (t + T ), Fj (t ) = Fj (t + T )
complex n × n matrices. This form is flexible enough to
reproduce—at lest approximatively, as we do below—a variety
of memory kernels, including oscillatory ones [53].

With the kernel in the form of Eq. (3), the time evolution of
the physical variable x, Eq. (1), can be obtained by solving the
following set of time-local equations [54]:

ẋ(t ) = −H(t )u(t ), (4)

u̇(t ) = −G(t )x(t ) − Au(t ), (5)

where the n-dimensional vector x is coupled to the auxiliary
variable u. Here we have introduced the matrices

H(t ) = (�1E1(t ) . . . �kEk (t )), G(t ) =

⎛
⎜⎝

F1(t )
...

Fk (t )

⎞
⎟⎠,

and A = diag(γ11n×n, . . . , γk1n×n) . (6)

These definitions entail that the vector of auxiliary variables
has dimension n · k.

Without loss of generality, we set t0 = 0 from now on. To
prove that Eqs. (4)-(5) are equivalent to Eq. (1), as far as the
physical variable is concerned, we define G(t )x(t ) ≡ w(t ).
Laplace transform of Eq. (5) yields u(λ) = [λ1 + A]−1u(0) −
[λ1 + A]−1w(λ). Transforming back to the time domain,
multiplying to the left by −H(t ), and using Eq. (4), we recover
Eq. (1) with

K(t, t ′) = H(t )e−A(t−t ′ )G(t ′), (7)

[this expression is equivalent to Eq. (3)] provided that

z(t ) = −H(t )e−Atu(0). (8)

This requirement fixes the initial condition for the auxiliary
vector u(t ).

Equations (4) and (5) can be cast in the compact form

v̇(t ) = M(t )v(t ), (9)

where vT = (x1, . . . , xn, u1, . . . , unk ) is the p-dimensional
state vector associated to the enlarged system, with p = n +
nk, and M(t ) is a p × p matrix with block structure

M(t ) =
(

0 −H(t )

−G(t ) −A

)
, (10)

where 0 ∈ Rn×n. Note that having T -periodic H(t ) and G(t )
entails T -periodicity of M(t ). Then, according to the Floquet
theorem, Eq. (9) with initial condition v(t0) has a formal
solution whose projection in the physical subspace yields the
form of Eq. (2) [49,50]. The asymptotic Floquet state of the
original system at stroboscopic instances of time t = sT , s ∈
Z, is then given by the x component of the extended vector
vas , which is an invariant of the Floquet propagator UT =
T̂ exp [

∫ T
0 dt M(t )], i.e., UT vas (sT ) = vas (sT ) [46,52]; here,

T̂ denotes the time-ordering operator.

III. THE PERIODICALLY DRIVEN SPIN-BOSON MODEL

Now we apply the method described in the previous section
to a periodically modulated spin-boson model. In this model
[1], a two-state system, the spin (or qubit), interacts with a
dissipative environment represented by a set of independent
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bosonic modes of frequencies ωi (“heat bath”). The strength
of the coupling between the ith mode and the two-state system
is quantified by the frequency λi . According to the Caldeira-
Leggett model [55], to which we include a time-dependent
driving term, the full Hamiltonian reads [43]

H (t ) = − h̄

2
[�σx + ε(t )σz]

− h̄

2
σz

∑
i

λi (a
†
i + ai ) +

∑
i

h̄ωia
†
i ai, (11)

where � is the bare transition amplitude per unit time between
the eigenstates | ± 1〉 of the spin operator σz, and ai (a†

i ) is the
annihilation (creation) operator of the ith bosonic mode.

Following Ref. [43], we consider a monochromatic driving
of amplitude εd and frequency �, resulting in a time-dependent
bias of the form

ε(t ) = ε0 + εd cos(�t ). (12)

This setting corresponds to the setup used in recent
experiments [42].

The bath and its coupling to the two-state system can be fully
specified by the spin-boson spectral density function G(ω) :=∑

i λ
2
i δ(ω − ωi ). For the bosonic heat bath, we assume the

continuous Ohmic spectral density with a Drude cutoff [23]

G(ω) = 2αω
(
1 + ω2/ω2

c

)−1
, (13)

where the dimensionless parameter α quantifies the overall
system-bath coupling and ωc is the cutoff frequency. In a
physical system where the spin dynamics occurs through
tunneling transitions between sites at distance q0, the spin
position operator is given by σzq0/2.

Let ρ(t ) denote the spin density matrix. For a factorized
system-bath initial condition at t = 0, with the heat bath in
the canonical thermal state, the exact dynamics of the pop-
ulation difference 〈σz(t )〉 = P+1(t ) − P−1(t ), where P±1 ≡
〈±1|ρ(t )| ± 1〉, is governed by the following GME:

d

dt
〈σz(t )〉 =

∫ t

0
dt ′[Ka (t, t ′) − Ks (t, t ′)〈σz(t ′)〉], (14)

where the symmetric (s) and antisymmetric (a) kernels—
with respect to ε(t )—have in general intricate path integral
expressions [23,43].

In the path integral picture, the Feynman-Vernon influence
functional for the reduced system dynamics displays bath-
induced, time-nonlocal interactions among the two-state tran-
sitions building-up the paths. These interactions are mediated
by the so-called pair interaction [23],

Q(t ) = Q′(t ) + iQ′′(t ) =
∫ ∞

0
dω

G(ω)

ω2

×
{

coth

(
βh̄ω

2

)
[1 − cos(ωt )] + i sin(ωt )

}
, (15)

which is proportional to the second time integral of the bath
correlation function. In terms of Matsubara frequencies νk =
2πk/βh̄ (with k = 1, 2, . . . ), we get for the real part of the

bath correlation function (see Ref. [31])

d2

dt2
Q′(t ) =

∫ ∞

0
dω G(ω) coth

(
βh̄ω

2

)
cos(ωt )

= c0e
−ωct +

∞∑
k=1

cke
−νkt , (16)

and thus

Q(t ) =
∞∑

k=0

ck

νk

[
t − 1 − e−νkt

νk

]
+ iπα(1 − e−ωct ), (17)

where ν0 ≡ ωc and where

ck

νk

= 4πα
ω2

c

ν2
k − ω2

c

(k � 1), (18)

and
c0

ν0
= παωc cot

(
βh̄ωc

2

)
. (19)

For the Ohmic case considered here, sufficiently large
values of temperature and cutoff frequency, kBT , h̄ωc � h̄�,
cause the real part Q′(t ) to become a linear function of time
and the imaginary part Q′′(t ) to become constant on a rather
small time scale. In the path integral picture, this entails the de-
coupling of transitions which are distant in time. In this regime
of temperatures and cutoff frequencies, the noninteracting blip
approximation (NIBA), an approximation scheme where only
local-in-time correlations are retained [1,23], well describes
the dynamics of the population difference 〈σz(t )〉 beyond the
weak coupling regime, as we demonstrate below. The NIBA is
nonperturbative with respect to the coupling α. It is also valid
down to low temperatures in the limit of strong coupling, when
the spin dynamics is fully incoherent. Finally, provided that the
bias is zero, ε(t ) = 0, this approximation scheme is accurate
for every α, again down to low temperatures [56].

Within the NIBA, the kernels Ks/a (t, t ′) in Eq. (14)
read [43]

Ks (t, t ′) = hs (t − t ′) cos[ζ (t, t ′)]

Ka (t, t ′) = ha (t − t ′) sin[ζ (t, t ′)], (20)

with

hs (t − t ′) := �2e−Q′(t−t ′ ) cos[Q′′(t − t ′)]

ha (t − t ′) := �2e−Q′(t−t ′ ) sin[Q′′(t − t ′)]. (21)

The function ζ (t, t ′) = ∫ t

t ′ dt ′′ε(t ′′) = ξ (t ) − ξ (t ′), where

ξ (t ) = ε0t + εd

�
sin(�t ), (22)

takes into account the modulations of the bias. Note that,
in the absence of a time-dependent driving, i.e., εd = 0, the
GME (14) with the NIBA kernels given by Eq. (20) acquires
the character of a convolution, namely the kernels depend
exclusively on the difference t − t ′.

The nonperturbative character of the NIBA with respect to
the coupling α, is apparent from Eqs. (20) and (21) by noting
that α is contained as a prefactor in the function Q(t ). However,
neglecting the time-nonlocal correlations of the spin paths, as
prescribed by the NIBA, entails automatically a truncation to
the second order in � of the exact formal expression for the
kernels. In general, the higher-order corrections in � become
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relevant in the presence of a nonzero bias when temperature or
coupling strength are not large enough [56].

By using the definition 〈σz(t )〉 = P+1(t ) − P−1(t ) and the
conservation of probability P+1(t ) + P−1(t ) = 1, we can cast
Eq. (14) into an equation describing the evolution of the
population vector pT = (P+1, P−1),

ṗ(t ) =
∫ t

0
dt ′K(t, t ′)p(t ′), (23)

which is of the form of Eq. (1) with dimension n = 2 and
z(t ) = 0. This form is suitable to be generalized to the case
of a multisite (tight-binding) [43,57] or multilevel systems
[35,58–60]. These generalizations fall under the domain of
applicability of the present treatment. The 2 × 2 kernel matrix
K(t, t ′) in Eq. (23) has elements,

K +1−1
−1+1

(t, t ′) = 1
2 [Ks (t, t ′) ± Ka (t, t ′)],

K +1+1
−1−1

(t, t ′) = −K −1+1
+1−1

(t, t ′), (24)

and can thus be written as

K(t, t ′) = 1

2

∑
j=s,a

hj (t − t ′)Ej (t )Fj (t ′). (25)

The effect of the driving is encapsulated in the time-dependent
matrices Ej (t ) and Fj (t ), reading

Es (t ) =
(

cos[ξ (t )] sin[ξ (t )]

− cos[ξ (t )] − sin[ξ (t )]

)

Ea (t ) =
(

sin[ξ (t )] cos[ξ (t )]

− sin[ξ (t )] − cos[ξ (t )]

)
(26)

Fs (t ) =
(− cos[ξ (t )] cos[ξ (t )]

− sin[ξ (t )] sin[ξ (t )]

)

Fa (t ) =
(

cos[ξ (t )] cos[ξ (t )]

− sin[ξ (t )] − sin[ξ (t )]

)
,

where the function ξ (t ) has been defined in Eq. (22).
To complete the embedding, we need to cast the kernel

matrix in the form prescribed by Eq. (3). To this aim, we
approximate the two functions hs/a (t ) introduced in Eq. (21)
as the following sums of oscillating exponentials:

hs (t ) 	 c1e
−c2t cos(c3t ) + c4e

−c5t ≡ 2
3∑

j=1

�j e
−γj t ,

ha (t ) 	 e−d1t sin(d2t ) + d3(e−d4t − e−d5t ) ≡ 2
7∑

j=4

�j e
−γj t .

(27)

This yields the complex coefficients �j and γj in Eq. (3).
Indeed, by comparing with Eq. (25) we find

K(t, t ′) 	
7∑

j=1

�j e
−γj (t−t ′ )Ej (t )Fj (t ′), (28)

with

�1 = �2 = c1/4, �3 = c4/2, �4 = −i/4,

�5 = +i/4, �6 = +d3/2, �7 = −d3/2,

γ1 = c2 − ic3, γ2 = c2 + ic3, γ3 = c5, γ4 = d1 − id2,

γ5 = d1 + id2, γ6 = d4, γ7 = d5, (29)

and

E1(t ) = E2(t ) = E3(t ) = Es (t ),

E4(t ) = E5(t ) = E6(t ) = E7(t ) = Ea (t ),

F1(t ) = F2(t ) = F3(t ) = Fs (t ),

F4(t ) = F5(t ) = F6(t ) = F7(t ) = Fa (t ). (30)

Once the physical parameters of the problem are fixed, the
coefficients cj , dj ∈ R can be obtained upon a fitting proce-
dure, see Appendix B, by using the approximated Eqs. (27) as
fitting functions. The coefficients, in turn, produce the complex
coefficients γj and �j through Eq. (29). Applying to the present
case the general rule, the dimension of the embedded system
is n + nk = 16 with n = 2, the dimension of the physical
variable p, and nk = 14 the dimension of the auxiliary variable
u, being k = 7 [see Eq. (28)]. The extended system is thus de-
scribed by vT = (P+1, P−1, u1, . . . , u14). Its asymptotic state
is invariant under the action of the Floquet propagator UT .
The latter is in practice constructed as follows. Its columns are
the one-period propagated elements of the canonical basis of
R16 (1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1). The prop-
agation is performed via the time-local matrix Eq. (9) by using
a fourth-order Runge-Kutta scheme with the rather small time
step δ = T /104, where T = 2π/�. The invariant vector vas

is the eigenvector of UT corresponding to eigenvalue 1. The
asymptotic Floquet state on a time span of one period is then
obtained by propagating for one period the extended system,
with vas as initial condition.

In concluding the present section we note that if the driving
period � is a multiple of the static bias ε0, then the extended
system has the period T = 2π/� of the driving. Moreover, if
the ratio �/ε0 is a rational number, then the periodicity of the
extended system is T = m2π/ε0, where m is the minimum
integer such that the ratio m�/ε0 is also an integer. However,
if the frequencies ε0 and � are not commensurate, then the
embedding procedure still yields a time-local system but with
nonperiodic coefficients; such systems do not allow for a
Floquet treatment. Note, however, that the above considera-
tions hold for the extended system: The physical degrees of
freedom have, asymptotically, the periodicity of the driving,
independently of the values of static bias and driving frequency.

IV. RESULTS

In the present section we evaluate numerically the asymp-
totic states of the driven spin-boson model for three values of
coupling strength, α = 0.05, 0.2, and 0.6, and for different
values of static bias ε0, driving amplitude εd , and frequency
�. All physical parameters are scaled with the frequency �,
the bare transition amplitude per unit time of the two-state
system; see Eq. (11). The results presented are obtained for
the temperature T = 0.7h̄�/kB and Drude cutoff frequency
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FIG. 1. Asymptotic Floquet states of the driven spin-boson model, Eq. (11), for different coupling strengths and modulation amplitudes.
Left panels—Asymptotic population difference 〈σz(t )〉 = P+1(t ) − P−1(t ) vs. time at fixed driving amplitude εd = 2�. The populations P±1(t )
are the physical components of the extended system obeying the time local Eq. (9) (solid lines). A comparison is made with the corresponding
propagated solutions of the GME (14) (dashed lines) and the converged numerically exact HEOM (diamonds), starting with P+1(0) = 1.
Right panels—Asymptotic Floquet states for different values of the drive amplitude εd evaluated for the same coupling strengths α as in the
corresponding left panels. The dotted lines depict the same asymptotic dynamics as the thick solid lines in the corresponding left panels. Note
that, for different values of the spin-boson coupling strength α, the maximum amplitude of the oscillations is reached at a different driving
amplitude εd . Fixed parameters are: Static bias ε0 = 0, driving frequency � = �, temperature T = 0.7h̄�/kB , and Drude cutoff ωc = 5�.
Time is in units of the driving period T = 2π/�.

ωc = 5�. For each value of α, the coefficients of the embed-
ding are determined by numerically optimizing the approxi-
mated expressions for hs/a (t ), Eq. (27), against the numerical
evaluations of the corresponding exact expressions in Eq. (21)
(see Appendix B).

In Fig. 1, we depict the physical part of the asymptotic
Floquet states of the extended system, namely the population
difference 〈σz(t )〉 of the two-state system, at zero static bias,
ε0 = 0, and at fixed driving frequency � = �. This is done
for the three values of coupling strength considered and by
changing the drive amplitude. In the left panels we show, for
εd = 2�, the asymptotic Floquet states over multiple driving
periods along with the transient dynamics, as obtained by
integrating the NIBA generalized master equation (14) (see
Appendix A for details) with initial condition 〈σz(0)〉 = 1.
This provides information on the time scales of relaxation to
the asymptotic, time-periodic dynamics at different dissipation
regimes and also certifies that the embedding procedure renders
correctly the dynamics obtained from the GME. We note
that, in the asymptotic limit, the results of the integration

of the GME and of the Floquet solutions coincide perfectly,
notwithstanding that the decomposition of the memory kernel
employed in the embedding is only approximate, thus con-
firming the flexibility of the embedding method described in
Sec. II. We benchmark the NIBA results with the numerically
exact approach of hierarchical equations of motion (HEOM)
(see Appendix A), obtaining reasonable agreement, even for
ε(t ) 
= 0, in all of the dissipation regimes.

The right panels of Fig. 1 depict the asymptotic Floquet
states over a single driving period for driving strengths εd in
the range [0.5�, 3.5�]. Note that the maximum amplitude of
the oscillations is reached at different strengths for different
values of α and that, in general, a large value of the coupling
tends to suppress the higher harmonics which are most clearly
visible for α = 0.05 in the nonlinear driving regime, i.e., when
the condition εd/� � 1 is not met [43].

The same behavior is displayed by the spin system also in
the presence of a finite bias, as depicted in the right panels of
Fig. 2, where the Floquet asymptotic states over a time span of
one diving period are shown with ε0 = �, for driving strengths
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FIG. 2. Asymptotic Floquet states of the driven spin-boson model, Eq. (11), with finite static bias. For each of the three values of the
coupling strength α, on the left panels the driving frequency � is varied at fixed driving strength εd = 2.5� and for ε0 = 0.5�, while the right
panels show the asymptotic states at fixed frequency and constant static bias � = ε0 = � for different driving amplitudes. Temperature and
Drude cutoff are T = 0.7h̄�/kB and ωc = 5�, respectively. Time is in units of the driving period T = 2π/� with � = �.

εd in the range [0.25�, 6.25�]. We note that, as εd dominates
over the static bias, the symmetry of the oscillations around
〈σz〉 = 0 tends to be restored. However, an increase of the
coupling α tends to localize the spin state in the energetically
more favorable state | + 1〉, thus counteracting the effect of the
time-periodic component of the driving.

Figure 2 also depicts the asymptotic states at finite static
bias (left panels), ε0 = 0.5�, for three values of the fre-
quency �. Note that, for α = 0.05, Fig. 2(a), even if the
bias is positive, at the intermediate value of frequency, � =
1.5�, the population difference mostly assumes negative
values. This can be accounted for in terms of a negative
effective bias εeff , implicitly defined by the detailed bal-
ance relation [42,43] Kf = Kb exp(βh̄εeff ), where Kf (b) =
(1/T )

∫ T
0 dt

∫ ∞
0 dτ K +1−1

(−1+1)
(t, t − τ ) are the static rates ob-

tained by averaging over the driving period the time-integrated
kernel matrix elements.

V. CONCLUSIONS AND OUTLOOK

In this work, we applied to the periodically driven spin-
boson model beyond the weak coupling regime the method

developed in Ref. [49] for calculating the asymptotic Floquet
states of systems governed by memory-kernel master equa-
tions.

The method rests on reshaping the memory kernel into
a specific form, suitable to model memory kernels which
decay monotonically or with oscillations. This representa-
tion allows us to embed the system’s dynamics into an
enlarged state space by coupling the actual physical vari-
ables to a set of auxiliary nonphysical variables. The dy-
namics of the so-obtained enlarged system is governed by a
time-local equation to which the standard Floquet formalism
applies.

We considered temperature and coupling regimes where
the noninteracting blip approximation of the path integral
expression for the reduced dynamics describes quite satisfac-
torily the driven spin-boson model, as we demonstrate upon
comparing the results of this approximation scheme with those
of converged hierarchical equations of motions. In particular,
the probabilities associated to the spin states are given by
a generalized master equation displaying a memory kernel
that accounts for the effects of the environment and of the
driving. By using an optimization procedure, we performed
an approximate embedding and found the asymptotic Floquet
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states of the spin dynamics as the projection of the Floquet
states of the enlarged system onto the physical subspace. The
idea was exemplified by applying the method in different
dissipation and driving regimes, both for the unbiased and
biased system.

Our results substantiate, see Fig. 1, that the proposed method
still performs well in the cases where the expression in Eq. (3)
is employed with a finite number of terms in approximating the
memory kernel. Finally, the study of the driven dynamics of the
spin-boson model performed in the present work can readily
be generalized to multisite or multilevel systems subjected to
time-periodic modulations [35,43,57,59,60].
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APPENDIX A: HEOM AND DETAILS
OF THE SIMULATIONS

Consider an open system of effective mass M coupled to a
heat bath with an Ohmic-Drude spectral density function and
cutoff frequency ωc,

J (ω) = ηω
(
1 + ω2/ω2

c

)−1
, (A1)

where η = Mγ is the viscosity parameter and γ the friction
parameter with dimensions of frequency. Specialization to
a two-state system characterized by tunneling between sites
separated by the distance q0 = 2d yields [23]

α = ηq2
0

2πh̄
= 2

π
η
d2

h̄
. (A2)

We set d = 1, in units of (M�/h̄)−1/2, so that the position
eigenvalues are identified with the eigenvalues of σz.

In the HEOM approach [29–31], the time evolution of an
open system interacting through the operator V (in the present
case V ≡ σz) with a harmonic heat bath is governed by a set
of coupled time-local evolution equations for a set of density
matrices {ρn, j(t )} of which only ρ0, 0(t ) describes the actual
physical system, while the others are auxiliary, nonphysical
density matrices. This approach exploits the fact that, for a
Ohmic spectral density with Drude cutoff, the bath correlation
function,

L(t ) = 1

π

∫ ∞

0
dω J (ω)

[
coth

(
βh̄ω

2

)
cos(ωt ) − i sin(ωt )

]
,

(A3)

can be expressed as a series over the Matsubara frequencies
νk = 2πk/(h̄β ), as done in Eq. (16). The Padé spectrum
decomposition allows for an efficient truncation of this series
to the first M terms [61], even when the temperature is not
much larger than the characteristic frequency � of the system,
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FIG. 3. Comparison between the results of the GME (14) (solid
lines) and the converged HEOM (small diamonds) in the unbiased,
static case ε(t ) = 0, for different values of the coupling strength α.
Temperature and cutoff frequency are T = 0.7h̄�/kB and ωc = 5�,
respectively.

as in our case where kBT < h̄�. The hierarchy of equations
reads

ρ̇n, j(t ) = −
[

i

h̄
H (t )× + nωc +

M∑
k=1

jkνk

+
(

g −
M∑

k=1

fk

)
V ×V ×

]
ρn, j(t )

− iV ×ρn+1, j(t ) − nωc(θV ◦ + iϕV ×)ρn−1, j(t )

− i

M∑
k=1

V ×ρn, jk+ (t ) − i

M∑
k=1

jkνkfkV
×ρn, jk− (t ),

(A4)

whereO×ρ := [O, ρ] andO◦ρ := {O, ρ}, for a given operator
O, and where the following quantities have been introduced:

θ = ηωc

2
, ϕ = θ cot

(
βh̄ωc

2

)
, g = η

h̄β
− ϕ,

and fk = η

h̄β

2ω2
c

ν2
k − ω2

c

. (A5)

It is understood that the contributing density matrices have
both n and all of the components of the vector index
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j = (j1, . . . , jk, . . . , jM ) nonnegative. Moreover jk± is a short-
hand notation for (j1, . . . , jk ± 1, . . . , jM ). The terminators
of the hierarchy of Eq. (A4) are identified by the condition
n + ∑M

k=1 jk = N , for some N  ω0/min(ωc, ν1), and read

ρ̇n, j(t ) 	 −
[

i

h̄
H (t )× +

(
g −

M∑
k=1

fk

)
V ×V ×

]
ρn, j(t ).

(A6)

In Figs. 1 and 3, NIBA results for the reduced dynamics are
compared with those from converged HEOM for the driven
and nondriven case, respectively. Simulations performed by
implementing the HEOM with Padé spectrum decomposition
of the bath correlation function are converged with M = 3 and
N = 10, for all the parameters considered. The propagation of
the HEOM is obtained by using a second order Runge-Kutta
scheme with time step δt = 5 × 10−4�−1. The GME (14) is
propagated by using the trapezoid rule for the integral and
the forward finite difference for the time derivative, according
to the simple implicit scheme described in Ref. [60] for a
multilevel generalization of the spin-boson model. The chosen
time step is δt = 5 × 10−3�−1.

APPENDIX B: FITS TO KERNELS

In Fig. 4 we show the optimized curves corresponding to the
approximate expressions in Eq. (27) with coefficients extracted
by fitting the numerically exact evaluations of the functions in
Eq. (21). Note that, as these functions do not depend on the
driving, the results shown in the present work required three
sets of coefficients, corresponding to the three panels in Fig. 4.
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FIG. 4. Numerical fits of the functions hs/a (t ) defined in Eq. (21)
performed by using the approximated expressions in Eq. (27). The
coefficients of these approximated expressions (solid lines) are deter-
mined by fitting the numerically exact evaluations (bullets). The latter
are performed by truncating the sum for Q′(t ) to the first 4000 terms
[see Eq. (17)]. Temperature and Drude-cutoff frequency are chosen
as T = 0.7h̄�/kB and ωc = 5�, respectively.
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