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We investigate the rate at which a particle decays out of a metastable potential well by 
quantum tunneling. We calculate the leading corrections to the exponent and the 
prefactor of the rate, due to coupling to the heat bath and finite temperatures. Since the 
results are essentially equivalent to those employing the transition state assumption, 
namely maintaining thermal equilibrium, we argue for the lower on the damping 
strength above which these results should be valid. These results are in good accord 
with recently reported experiments. 

I. Introduction 

The decay of a metastable state of a system to other 
states is a problem of considerable physical interest. 
Most of the conventional theories of decay invoke 
the notion that decay only occurs once spontaneous 
fluctuations of sufficiently large amplitude have ap- 
peared. The theories imply that once these fluc- 
tuations have occurred, the system will continuously 
evolve in time until a new state is reached. If these 
fluctuations are thermal in origin, they result in the 
familiar Arrhenius law of thermally activated decay 
[1]. 

At low temperatures, the Arrhenius factor does 
become extremely small, and other possible mecha- 
nisms of decay might be important in this tempera- 
ture regime. Bailin and Love [2], have investigated 
the possibility that quantum tunnelling may be re- 
sponsible for the decay of metastable states in super- 
fluid 3He. Caldeira and Leggett [3] have extended 
this notion to describe the decay of other macro- 
scopic states by quantum tunnelling. 

Most of the recent investigations of decay by 
quantum tunnelling use Feynman's functional inte- 
gral formulation of quantum mechanics, as applied by 
Langer [4] and Coleman [5]. 

Caldeira and Leggett [3] have investigated the 
decay rate of a metastable state at T=0,  in the two 

extreme limits of weak damping and infinitely large 
damping. The generalization of these results to finite 
temperatures has lead to many different and con- 
tradicting results, some of these results even do not 
reduce to those in Ref. 3 in the limit of zero temper- 
ature. 

We shall in this article, study the low damping 
limit in order to shed some light onto many of the 
results in the existing literature. We find results that 
do agree with the exact analytical results of Affleck 
[6], at finite temperatures and zero damping. The 
results for the zero temperature, small damping are 
in agreement with the results in Ref. 3, while for 
finite low temperatures and finite damping the lead- 
ing temperature dependence of the decay rate is in 
perfect agreement with the general results obtained 
by Grabert, Weiss and H~inggi [7]. 

This is in direct contrast to several other articles 
on the subject [10]. 

In Sect. II, we shall very briefly outline the gen- 
eral formalism of the approach. The decay rate is 
calculated to be of the form 

F =A exp [ - B ] .  (1.1) 

The exponential term will be calculated in Sect. III, 
and the prefactor A is calculated in Sect. IV. We 
discuss our results in Sect. V. 
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II. General Formulation 

We consider a system which consists of a particle of 
mass M, which is described by a coordinate q and 
moves in a potential field V(q). The particle is cou- 
pled to the normal modes of a thermal reservoir. 

The Lagrangian of the system is described by 

M N re~ 
S = ~  \~]  -V(q)+ 21= 

N VN 22 q2 (2.1) s 
n = l  =1  2 nO)n 

where the first two terms represent the Lagrangian 
of the particle moving in the effective potential V(q). 
The second two terms represent the Lagrangian of 
the normal modes of the thermal reservoir. The last 
two terms represent the coupling between the par- 
ticle and the thermal reservoir. The last term is 
included to ensure that the potential V(q) will coin- 
cide with the effective potential. This type of La- 
grangian was first considered by Ullersma [8]. 

The variables of the thermal reservoir can be 
eliminated by standard methods. The motion of the 
particle coupled to the heat bath can then be de- 
scribed by an effective action S~ff[q(t)] 

T 

Seff[q(t)]= ~dt [M \~]{~q~2 _ V ( q ) ]  

2 
T T 

1 iTdt ~ +~ ~dt'K(t-t')[q(t)-q(t')] 2. (2.2) 

2 2 

The first term represents the motion of the particle 
in an effective potential. The second term represents 
the dynamical aspects of coupling to the environ- 
ment. The function K(t) is given by 

K(t )=  ~ dco - ~o ~ J(co) {[1 + N(co)] e ~~ + N(co) e-~ot} 

where N(co) is the Bose-Einstein distribution func- 
tion. 

The properties of the particle-thermal reservoir 
coupling are contained entirely in the function 

J(co) =2- ,=1~ m, co, 6(co-co,) 

the spectral density. 
As Sethna [9] pointed out, considerable advan- 

tage may be gained by analytically continuing from 
real times to imaginary times t--,iz, since this elim- 
inates troublesome oscillating behavior in K(t). After 
analytic continuation to imaginary times, one finds 

0 

-iSeff[q(z)]= ~ d z  [ ~ - ( 0 q ]  2 V(q)] 
0 \~-~!  + 0 -~ -  

1 ~- 
+ 2 IodZ /~odz'k(z--z')[q(z)--q(z')]2 (2.3) 

2 

where 

_ ~  do) ~ 
k(z) -  o ~ J(co) e-  I I 

and 0 is related to the inverse temperature of the 
heat bath through 

h 
0 = - -  

K B T" 

The paths q(z) have been periodically continued out- 
0 0 

side the region - ~ < z < ~ .  Therefore, in the ex- 

pression for the effective action, only periodic paths 

q(~ + 0) =q(~) 

are to be considered. 
The decay rate is given in terms of the space 

diagonal, imaginary time Greens function. The 
Greens function is calculated using Feynman's func- 
tional integral formulation of quantum mechanics. 
The functional integrals are calculated by a general- 
ization of the method of steepest descents, as applied 
by Langer [4] and Coleman [5]. 

We shall specialize our considerations to the case 
considered by Caldeira and Leggett [3], that of a 
cubic potential (see Fig. 1) 

and ohmic dissipation 

J(co) =Mr/co. 

In the next section we shall examine the trajectories 
which extremize the action S[q(z)] and evaluate the 
exponential term in the decay rate. The discussion of 
the prefactor is delayed until Sect. IV. 

III. The Extremal Trajectories 

The action S[q(z)] is a functional of the trajectories 
q(z). The trajectories for which the action is ex- 
tremal, i.e. cSS[q(z)] =0, is determined by the Euler- 
Lagrange equation 

-MO'(O+c3V+ tlM ~ dz' Oq(z') 
Oq 2~z _~ Oz' 

" - - z ' + i b  -~ z - z '  =0.  (3.1) 



E. Freidkin et al.: Quantum Tunneling at Low Temperatures 239 

This equation has two trivial solutions. Only the 
solution q(z)=0, with the corresponding action S(0) 
=0, enters into the discussion of the low tempera- 

2 
ture decay rate. The other solution q(r)=(D6 which 

u 
corresponds to the top of the potential barrier has 

an action S (~U ~) =Vm~O which is intimately con- 

nected to the high temperature Arrhenius decay rate 
[7]. 

The non-trivial solution of the Euler-Lagrange 
Eq. (3.1) is well known for t/=0. This simplifies at T 
=0, to yield 

3 COo 2 sech 2 (Do r 
q~)(r) =~ ~ -  2 

and the corresponding action is 

We shall calculate the corrections to these results 
to first order in the dissipation t/. 

We shall decompose qB(r) into terms represent- 
ing the higher order corrections 

q (r) = 
n=0 

The linear term in t/is found from the equation 

+ ~  5 dr'aq~~ 1 1 
2= #z' r_r, +ia + =0.(3.2) 

The inhomogeneous term can be represented as 

f(r)=3(D02 ( ~ ) ( 2 @ 0 )  

o ~ -  ~ k ]" (3.3 a) 

The solution of the linear inhomogeneous equation 
can be found by standard methods since all the 
solutions of the homogeneous eigenvalue equation 
are known (cf. Appendix 1). In particular, one finds 
a solution of the homogeneous form of Eq. (3.2) is 
given by 

c~176 (D~ (3.3b) (pc(Z)=sech 2 ~ tanh 2 

A second solution of the homogeneous version of 
Eq. (3.2) can be found by integration as 

(w0, o ,) 
V(q)=H -~--q--T q 

t:T 
> 

0 

I ; q 
Fig. 1. The turning points 

;.--.. 

 l..z 
lg 

--I,,o 

1 f (D~ (pD(r )=g  2 c o s h 2 ~ - + 5  

(Do z r t a n h T - - 1 ) } .  (3.3c) 

(DO 
The Wronskian of these solutions is ~ - .  Hence the 
general solution of Eq. (3.2) is 

q" " "-~o-o [(PD(r)! dr '  (pc({)f(r') 

-Pc(z)  i dr '  pD({)f ({) ]  + C (pc(Z)+ D(pD(Z ) 
0 

where C and D are arbitrary constants. We fix C 
and D by the requirement that the bounce trajectory 
be an even function of z, and that it vanishes as 
z~ov.  Thus 

q~l)(z)=~o [(pD(r) fi~o(pc({) f (z') d{ 

- ~o c (r) S (PD({)  f ( { )  d r '  . 
0 

(3.3d) 

We shall now argue that this contribution q(01)(z) does 
not contribute to the action S B in first order in 
the damping. Nevertheless, we shall require q(B1)(Z) 
in Sect. IV when we evaluate the prefactor. 

The action S B for this trajectory, when evaluated 
to first order in t/, is given only by the dissipative 
part of the action. Since the undamped bounce tra- 
jectory extremizes the undamped action, the undam- 
ped action will remain unaltered, to first order in t/, 
if the damped bounce trajectory is substituted into 
the expression. Therefore, the first order corrections 
to the action are contained entirely within the dissi- 
pative part of the action, and since this explicitly 
contains a factor of t / i t  must be calculated using the 
undamped bounce. 



240 E. Freidkin et al.: Quantum Tunneling at Low Temperatures 

The first order corrections to the action originate 
entirely from the dissipative term. The most con- 
venient way of evaluating this is found by expressing 
the bounce trajectory in terms of its Fourier com- 
ponents. The dissipative part of the action is evalu- 
ated in the form 

~ Y, Inlq~~176 (3.4) 
n ~  - -oo  

This need only be calculated with the Fourier com- 
ponents of the undamped bounce, since it is already 
of order t/. These are found to be given by 

t2 q I 
q~~ C~ (m~00) sinh ~ n (  (m_70))/ 

(cf. Appendix 2). (3.5) 

The summation over n can be performed using the 
Euler-McLaurin summation formulae. 

We find that the total action can be written as 

36 m x[x+( t  
~45~(3) 5 (2r~ ]z ~z (2r~ ]4+ . . .~  1 + (3.6) 

"( rc 3 2re \~o0! - ~  \o~o0] J " J  

The zero temperature limit yields the action calcu- 
lated by Caldeira and Leggett [3]. This is in dis- 
agreement with the zero temperature limit calculated 
by Zwerger [10]. 

The effect of temperature is to decrease the ac- 
tion. The temperature dependence is intimately con- 
nected with the damping. In the absence of the 
damping, the action only depends on the tempera- 
ture exponentially. As seen in the work of Affleck 
[6], this is due mainly to thermal activation between 
the virtually bound levels of the metastable potential 
minima. The presence of the damping procedures a 
closely packed continuum of levels which can be 
thermally activated, and therefore results in power 
laws. We see that the first temperature dependence is 
of the form T 2. This and the numerical value of the 
coefficient is in agreement with the general calcu- 
lation of Grabert, Weiss and H~inggi [7]. By con- 
trast Zwerger [10] has performed quasi-phenomeno- 
logical calculations with the same model and found 
only a T 4 dependence. 

The exponential term of the decay rate is given 
by the formula 

where S B is the extremal action evaluated with the 
bounce trajectory and S o is the action evaluated 
with the trivial trajectory q(r)=0.  The prefactor A is 
given by the ratio of the eigenvalues of the second 
variation of the action evaluated about  these same 
trajectories. In the next section we shall evaluate the 
prefactor. 

IV. Fluctuations about the Extrema 

An arbitrary path, quite close to an extremal path 
~(~), can be represented in terms of a complete, 
orthogonal set of functions ~0,(z) through an expan- 
sion 

N 

q(v)=g/(z)+ ~ C,q~n(z ). (4.1) 
n = l  

The set of functions q~,(z) will be chosen, such that 
the action is diagonalized up to the terms quadratic 
in C,. 

L A"C2 S [q(z)] =S[0(~)] + ~ +  .... (4.2) 
n = ]  

The small fluctuations which diagonalize the action, 
as well as the eigenvalues A, are given by the so- 
lutions of the equation 

~2(p, t_~q)n__2Ug/(~)Cp,+2~ ~ dC Op,(z') Oz2 -0o Oz' 

" Z - C + i 6  t r _ r , _ i 6  =~-~o,  (4.3) 

with periodic boundary conditions. 
The solution of Eq. (4.3) with t/=0, is given in 

Appendix 1. 
The path integral can be approximated in terms 

of an integral around the extremal paths and the 
Gaussian fluctuations about those paths. The path 
integral in the neighborhood of an extremal trajecto- 
ry 0(z) can be written as 

exp [ SF~("c)]] l~] ~ d C n [_A nC~] (4.4) 
,=1 (2re h) ~ exp _0o L 2h J 

Thus the Gaussian fluctuations can be related to the 
product of eigenvalues. 

The prefactor of the decay rate is related to the ratio 
of the eigenvatues for the two extremal trajectories 

B = [S B -So]/h c~(z) = 0  
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and 

q(z) =q~(~). 

The product over the eigenvalues, which we need to 
calculate can be written as 

. : ,  \A.B! J 
This is rewritten in terms of a product over the 
bound state eigenvalues (b.s.) times a product over 
the continuum eigenvalues. 

=~ ~[Mcog~�89 [ 1 oo 1Oge An B 
( \ - ~ - ~  ! j exp --~ ,--~4 ,= 1 _ Mcu~ 

(b.s.} 

1 o 

,=I MoJoJ 

where the continuum eigenvalue spectrum starts at 
Mco~. This can be rewritten in terms of the Green's 
function as 

n=l  \A~ !J 
{b.s.} 

�9 exp [--~nMo~dA{GB(A)-G~ log~ M--~0 ] 

where G o is the unperturbed Green's function evalu- 
ated with q(z)=0. Finally, after expressing the G B in 
terms of the T matrix, we obtain the form 

, = 1 ( \  A~ ] J 
{b.s.} 

[ 7 d A g  ~----~o] �9 exp -M<~g 2n 0A {~$(A)} log e (4.6) 

1 0 
where - {6(A)} is just the change in the con- ~YX 
tinuum density of states expressed in terms of the 
phase shift ~$(A). 

The bound states produce problems, since one 
eigenvalue is negative while another is zero. The 
integration over the coefficient corresponding to the 
negative eigenvalue eigenfunction is analytically con- 
tinued to produce a factor of 

i (Mo}~]~ 
\ IAfI ] " (4.7) 

The zero eigenvalue eigenfunction represents a Go- 
ldstone like mode. It is related to the arbitrariness of 
the bounce. The zero eigenvalue is replaced by a 

factor of 
0 

(2~h)I s - -  2(M~2)I (4.8) 

by a standard method [4]. This corresponds to an 
integration over the initial phase of the bounce. 

In zeroth order in the dissipation strength (~ 
=0), one can evaluate the prefactor analytically. 

This was first done by Affleck [6], using a different 
method, and later reported by Caldeira and Leggett 
[3]. We shall reproduce the results here, since it 
provides the basis for further calculations with non- 
zero dissipation. 

The zeroth order expressions for the phase shift 
can be obtained by using the solutions 93n given in 
Appendix 1. The lowest order phase shift is given by 

~${~ tan-  ~ + t a n -  ~ + t a n  -1 

where 

This phase shift satisfies Levinson's theorem 
since there are only three bound states and 

~- {6{~  6(~ = 3. 
7C 

On evaluating the continuum contribution to the 
product in (4.6) we arrive at a factor of 15/2. 

1 co O A ] 15 
exp -~-n M&g dA ~ -  {6(~ l~ ~ J  =~-_" (4.9) 

The two non-zero bound state eigenvalues con- 
tribute a factor of 

i ( 1 6 ~  (4.10) 
2 \15! " 

While the Goldstone-like mode contributes the fac- 
tor (4.8), which is evaluated as 

~ /41 i (2~)-: O~o ~-LTo 

This results in the same T=0 ,  undamped prefactor 
found in the work of Affleck [6] and reported by 
Caldeira and Leggett [3]. Our main task in this 
section is to calculate the leading corrections to the 
prefactor, in powers of damping and temperature. 

The lowest order corrections to the undamped 
eigenvalues and eigenfunctions can be determined 
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from Eq. (4.3) together with the substitution 

g/(z) = q(a~ + q(B1)(Z) 

where q(B1)(r) is linearly proportional to t/. The first 
order corrections AA(~ 1} to the undamped bound 
state eigenvalues are given by standard perturbation 
theory as 

AA{~a) rl ~dzTdz,{o(O)(z)*~{o:O)(z '  
M 2re . . . .  

1 

"{~--z~+i (3' "c--~'--i6} 

- 2u ~ dz ep(~~ q~)(z) ~O(n~ ). (4.12) 
- o o  

The first term of Eq. (4.12) can be evaluated 
analytically, by expressing the bound state wavefunc- 
tions in terms of their Fourier transforms. The in- 
tegral over the linear correction to the bounce tra- 
jectory may be approximated, since we note that the 
bound states are localized and have a strong expo- 
nential fall off. We note that only the behavior of 
q(sl)(Z) near z = 0  is important, thus z can be set to 
zero in intermediate integrals. The final results are 

A1 = -M092 [ 5 +  1'16 (2+o) ] ,  

A3 =M092 [3 -4 .07  (~-09o) ] .  (4.13) 

The zero-mode normalization is calculated with the 
same approximation yielding a linear t /correction to 
(4.11). The factor (4.11) becomes 

(2Tc)~ 090 1 + 1.60 (4.14) 

where Vma x is the maximum height of the potential 
barrier. 

The continuum of eigenvalues is treated with the 
aid of the observation that the phase shift 6(k) for 
potential scattering is unchanged with respect to the 
k dependence, to leading order in the dissipation. 
However the eigenvalue is changed to 

A=M09 2 {1 k2 r/ 

To prove this, we consider the eigenvalue equation 

A (4.15) 

in which /~0 represents the scattering from a poten- 
tial -2uc~(z), in the absence of dissipation. The op- 

erator n o is the form of the left hand side of the Eq. 
(4.3) with t/=0. The term /11 represents the non- 
local dissipation term in (4.3) which is proportional 
to 17. 

The solutions of the undamped eigenvalue equa- 
tion are given by 

/lo (Pk = ~ -  (Pk" (4.16) 

The forward travelling components of the solutions 
of (4.16) have the asymptotic form 

ikcoO z 

Limit ~Ok(Z) = e 2 ,  
r - - +  - o o  

ik ~o~  + ih(k) 
Limitq~k(r)=e 2 

where 

Ak=M092 ( 1 + ~ ) .  (4.17) 

We shall look for solutions of the damped eigenval- 
ue Eq. (4.15) that are expressed in terms of the 
undamped solutions (4.17) in the form 

~p ('c) = exp [i V(z)] Ok(Z) 

where V is the linear or higher order in r/. 
On substituting this form of the eigenvalue equa- 

tion, and noting the large I~1 asymptotic behavior 
of ~0k(r ) we find that 

To linear order in ~/, the solution V(z)=const. satis- 
fies the equation 

A 
~9 = exp [i V(z)] 

{ 0 �9 a) 2 + ~ +  ~Ok(Z)--2iq)'k(Z ) V'(z) 

-- iq)k(Z ) V"(z) + q)k(Z) V'(v) 2} 

if 

 =092 1+u 
which proves our assertion, since V=const.  does not 
yield a phase shift. 

The remaining problem is therefore to determine 
the phase shift 3(k) for fluctuations about the total 
bounce trajectory. Since we can expand qB(Z) in 
powers of t/, as done in Eq. (3.2), the task can be 
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simplified to that of finding the extra phase shift 
introduced by the potential 

--2uq~)(z) 

since the phase shift due to q~ has already been 
determined. We again express the solution in the 
form 

~ok(z ) = qo(k~ (z) eiV(~) 

where qo(k~ are given in Appendix A. We find that 
if(r) must satisfy the equation 

2i V ( z ) ~  + i ? " ( z ) -  1?'2 (z)--- - 2 u  q(~l)(z). (4.18) 

Since !2'(z) 2 is at least of order ~]2 we may neglect it. 
We shall also assume that F'(z) is a slowly varying 
function of z, and therefore we shall also neglect the 
term I?"(r), in analogy with the W.K.B. approxima- 
tion. Thus we obtain, 

V'(z) = i u q(B1) (z) ~o(k~ (4.19) 

This introduces an extra contribution to the phase 
shift of 

~")(k) = ?(oo)-  ? ( -  oo). (4.20) 

We note that since the dissipation does not in- 
troduce any extra bound states then 6(1)(k) vanishes 
as k~0 ,  in accordance with Levinson's theorem. 

The continuum contribution to the prefactor, 
from the terms linear in order tl, thus stems from the 
change in the eigenvalues A k evaluated with 5(~ 
and a term from 6(1)(k) given by Eq. (4.20). The 
phase shifts are substituted into Eq. (4.6) and in- 
tegrated over k. The term proportional to ~5(~ is 

(? 
1 (?-k cS(~ 
rc (2~o)~  4 + k  2 kdk=0"922 ( 2 @  o) 

The term proportional to (~(1)(k) yields a contri- 
bution of 

0 00( ) 
Thus, the final result for the continuum contribution 
to the prefactor results in the factor 

V-t- 1.62 . (4.21) 

On combining the various contributions (4.13), (4.14) 
and (4.21) we obtain A, the prefactor of the decay 

rate, as 

{ 3  Vmax}~ { (2~mo) } A =120) o ~ h ~  ~ 1+5.47 t] . (4.22) 

This result has not been previously derived. 
The temperature dependence of the prefactor can 

be evaluated by using techniques similar to those 
employed by Grabert and Weiss [11] in their calcu- 
lation of the exponent. These authors show how the 
finite temperature bounce trajectory can be ex- 
pressed in terms of the zero temperature bounce 
trajectory using an asymptotic low temperature ex- 
pansion. Using this method, we find that the lowest 
order change in the bounce trajectory due to finite 
temperature is 

} 2~ ~ \0~oOo! q"(z)42 0r 

This is proportional to both q and T 2. The change 
in the boundary conditions only give rise to expo- 
nentially small temperature corrections which are 
neglected. We find that the finite temperature, linear 
r/corrections to the prefactor by essentially the same 
method as was for the T = 0  case. We shall merely 
present the results. 

The discrete eigenvalues contribute 

AI(T) =At(0) 

A 3 ( T ) = A 3 ( O ) 4  - -  

3Mco2o ( 2 ~  ]2, 

12~ ~ ~ 0 ~  o ! 

while the zero-mode normalization becomes 

Finally, the change in the continuous spectrum of 
eigenvalues results in the factor of 

[ 0.413 [ ~ ]  ( 2~ t 2 ] 
exp i _ - ~ - u  ~2COo ] \0-~mo! ] .  

On combining all these results, the full expression 
for the prefactor can be written as 

A(T,t/) = 12 co ~ t/ ) 

}+ l �9 ,0oo, (4.23) 

This is the main result of this section. 
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V. Discussion 

We have evaluated the lowest order corrections to 
the quantum decay rate, in powers of the dissipation 
strength. The decay rate is partitioned into an expo- 
nential part  and a perfactor. 

The exponent agrees precisely with that pre- 
viously obtained by Caldeira and Leggett [3], at T 
=0. The finite temperature corrections are in com- 
plete agreement with the general calculations per- 
formed by Grabert ,  Weiss and HSnggi [7]. The ex- 
tent to which these calculations are reasonable can 
be checked by comparison with numerical calcula- 
tions. Chang and Chakravarty  [12] have performed 
numerical calculations of the rate at T = 0 ,  and Gra-  
bert, Olschowski and Weiss [13] have extended 
these to finite temperatures. In Table 1, we present a 
comparison between the analytical expressions with 
the numerical work for various dissipation strengths 

r/ and various temperatures (20-~,n_) . We see 
e=2co0 
that the results for the exponent are in excellent 
agreement with the numerical values for T close to 
zero, and for values of e between zero and 0.1. The 
temperature dependence of the exponent is also 
quite good for T up to 0.6 of the cross over temper- 

h ~  o 
ature 2rck B. For temperatures above this the non 

power law dependence on temperature may no lon- 
ger be ignored. 

The prefactor can only be compared directly 

with the results of numerical calculations. The agree- 
ment is not as good as that obtained with the ex- 
ponent. The results are compared with the zero tem- 
perature values of Chang and Chakrarar ty  [12] as 
well as the finite temperature values of Grabert ,  
Olschowski and Weiss [ t3]  in Table 2. 

The results of these calculations can also be di- 
rectly compared with recent experiments. Devoret, 
Martinis and Clarke [14] have performed experi- 
ments on r.f. SQUIDS. Since the value of the dimen- 
sionless damping constant appropriate for these ex- 
periments is quite small, good agreement was found 
with the undamped tunneling rate, reported by Cal- 
deira and Leggett [3], This same result was pre- 
viously found by Affleck [6], by a different method. 
Since Affleck's [-6] treatment of the tunneling rate 
clearly employs the usual transition state assump- 
tion, namely that the system maintains thermal 
equilibrium, and yet neglects the coupling to the 
thermal reservoir, it is not obvious how this result is 
relevant to the experiments. As we shall argue, the 
quantal transition state theory should be reasonable 
even for extremely small values of the damping 
strengths. The argument is based on the expectation 
that, the transition state assumption is appropriate  
whenever the rate at which the particles redistributes 
themselves, within the quasi-quantum levels of the 
metastable well, is much larger than the rate at 
which the particles decay out from the metastable 
well. When this condition is satisfied, it seems rea- 
sonable to expect that thermal equilibrium will al- 

Vmax 17 
Table 1. The exponent, in units of ~mo , for various damping strengths c~ =--2me 

those of the numerical calculations of Grabert, Olschowski and Weiss [13] 

27~ and temperatures (o-~)" We compare our results with 

/~\2) 0.1 0.4 0.6 0.8 

c~ Ours Ref. 13 Ours Ref. 13 Ours Ref. 13 Ours Ref. 13 

0.00 7.20 7.20 7.20 7.20 7.20 7.189 7.20 7.036 
0.05 7.830 7.830 7.783 7.789 7.722 7.708 - 7.438 
0.10 8.458 8.491 8.363 8.390 8.248 8.242 - 7.870 

(Vm,x t~ Table 2. The prefactor, in units of co 0 for various coupling strengths and temperatures. We compare our results with those of 
Grabert, Olschowski and Weiss [13] \he~ 

2(~--@0 ) 0.1 0.4 0.6 0.8 

c~ Ours Ref. 13 Ours Ref. 13 Ours Ref. 13 Ours Ref. 13 

0.00 8.292 8.292 8.292 8.292 8.292 8.354 8.292 8.800 
0.05 10.56 9.55 10.39 9.45 10.19 9.42 9.90 9.72 
0.10 12.83 10.95 12.50 10.78 12.08 10.61 11.50 10.76 
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ways be maintained by the particles within the meta- 
stable well. 

A simple fermi golden-rule calculation, for a 
metastable well containing two quantum levels, in- 
dicates that the rate at which thermal eqzilibrium is 
established is governed by t/. The rate for the par- 
ticle to decay from one quantum level to a lower 
one, emitting the excess energy into the normal 
modes of the heat bath is directly proportional to ~/. 
Thus, the condition under which quantal transition 
state theory should be appropriate may be written 
as 

" 'V ' }  36 Vmax] 
~/ 12 (-SVmax] exp[  5 h ~ o J  (5.1) 

 hcoo I 

The assumption of at least two quantum levels 
are contained within the metastable potential mini- 
mum is such that 

3 Vmax > g h  co o (5.2) 

and is consistent with the W.K.B. condition. These 
conditions are well satisfied in the experiments of 
Devoret et al. 1-14]. Due to the largeness of the 
exponent in the right hand side of Eq. (5.1) we find 
that even when Vmax=3h  Coo, quantal transition state 
theory should be reasonable until 

~ < 2 . 1 0  -4 ' 
Coo 

For smaller values of q/Co0, one expects de- 
viations from the quantal transition state theory, due 
to the quantal non-equilibrium effects or preparation 
of the initial state. In other words, the rate may no 
longer be well defined. 

To summarise, we have found the finite damping 
and finite temperature corrections for both the ex- 
ponent and the prefactor of the quantum decay rate. 
The analytic forms are in reasonable agreement with 
numerical calculations. The basic assumption of 
weak damping and thermal equilibrium have been 
shown to be compatible with recently reported ex- 
periments. 

which satisfy the equation 

~'C 2 ~_CO2 l _ 3 s e c h  2 Ok=~_Ok" (A.1) 

This equation possesses three bound states with dis- 
crete eigenvalues, as well as a continuum of scatter- 
ing states. 

The bound state with negative eigenvalue A 1 = 
-5Mco2 o has an eigenfunction 

]/30co0 sech 3 coo ~ (A.2) 
~1(~) = 8 2 

The bound state with zero eigenvalue A 2 =0 is 

1 3o/Y6G    (-0027 , 1CO0 ~" 
~2(~ ) _ ,  v 4  sech2 ~ tann ~ . (A.3) 

The remaining bound state has a positive eigen- 
value A 3 3 2 =~MCO 0 and has the corresponding eigen- 
function 

~ (  t c o 0  "c 5 . 3  CO0 T'~ 4'3(~) = 2 ~ s e c n ~ - ~ s e c n  2 J '  (A.4) 

The continuum of scattering states has eigenval- 
ues  

(1+ t 
and normalized eigenfunctions 

= ~ [ik 3 --  6k 2 tanh coo z 
k 2 

- i k  (11 -15sech2 ~ )  

co~ ( 6 - 1 5  ~ ] j ,  + tanh ~ sech 2 coo r ] ] 

where the normalization ~ is given by 

2 = 4 ~ (  6C~ 2+(7k+k3)2). (1.5) 

Appendix 2 

The Undamped Bounce Trajectory 

This work was supported by the U.S. Department of Energy, 
Office of Basic Energy Sciences through grant no. DE-FG02- 
84ER45127 and the U.S. Office of Naval Research, 
ONR N00014-85-K-0372. 

Appendix 1 

The Fluctuations about the Bounce 

The second variation of the action ~2S with zero 
dissipation t/=0, has eigenvalues and eigenfunctions 

The undamped bounce trajectory satisfies the equa- 
tion 

- M il'(Z) + M (co 2 q(r) - u  q: (z)) =0 (B.1) 

with periodic boundary conditions 

q(~ + 0) = q(~). 

The first integral of the motion is 

42(~) /co~ 2 u ,~ e 
- T +  ( ~ - q  (z ) -  5 q3(z)] = ~ .  (B.2) 
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The turning points of the trajectory are found by 
solving the equation 

3 3 coo 2 2 3E 
q q 

for the three roots ql, qz and q3 (see Fig. 1) where 

q~ > qz > q 3 "  
The "energy" E is determined by requiring that 

the motion between the turning points qt and q2 is 
periodic, with period 0. 

Since, 

o q(~) dq =co o ~dz' (B.4) 
+1/2 ~ S 1/(qa_q)(q2_q)(q3_q) 

we find that the turning points must also satisfy the 
condition 

: 

l/ 2uu i/~l-=_q3 tV q l - - ~ / =  5 

where K(k) is the complete elliptic integral of the 
first kind [15]. Thus the solution of the bounce 
trajectory requires finding the value of E such that 
Eqs. (B.3) and (B.5) are satisfied simultaneously. 

The bounce trajectory is found directly from Eq. 
(B.4) as the solution of 

Vq~--q3 V ~u-u \ I/ qt--q3! 

where 

(P =s in-1  g qi - -~2 

and F(~0, k) is an elliptic integral of the first kind 
[15]. 

This may be formally inverted to yield 

q('c)=q2+(ql--q2) cn2 ~ - 1 / ~ ) .  (B.7) 

Here, cn(u) denotes the Jacobian elliptic function 
(page 569, 570 in Ref. 15). 

This equation was previously derived by Zwerger 
[I01, 

The Fourier transform of the bounce trajectory is 
obtained with the aid of the formula 

1 -  k 

pansion as 
�9 f nul sanl ; 

Hence, we find the result. 

cos 

. : ,  
sinh \ ~ - !  

1 E(k) ( 1 - k  z) 
q 

k z K(k) k 2 (B.8) 
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where k = q]/-.l-q2 and the functions E(k) and K(k) 

v q l  --q3 
are the complete elliptic integrals. The function 
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