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Abstract. Various features of Markov processes describing statistical systems in cquilihrium and 
, nonequilibrium are discussed. We study the spectral properties of stochastic operators and the consc-

,, quences for the asymptotic behaviour of solutions of general master equations. In this context we introduce 
the concept of ergodic classes in state space and extremal probabilities. Furthermore, we investigate the 
symmetry properties of stochastic processes. We discuss the consequences for stochastic processes of both: 
symmetry transformations in state space and symmetry properties obtained by interchanging the time argu­
ments in the joint-probability (generalized detailed balance). Various symmetry relations for multivariate 
probabilities and multi-time correlation functions are obtained. In addition, a necessary and sufficient 
operator condition for the generalized detailed balance symmetry is derived, 

l. Introduction 

Our concern here will be to present a phenomenological theory of macroscopic 
systems whith are not necessarily in a thermodynamic equilibrium. For the descrip-

�,) tion of systems in terms of a finite set of degrees of freedom which do not behave in a 
deterministic way but display statistical fluctuations of the system variables, the 
theory of stochastic processes plays an important role. Statistical fluctuations always 
reflect a lack of knowledge about the exact state of the total system, either because of 
quantuin noise, or because of the impossibility of keeping track of the huge number of 
uncontrolled fine-grained variables. They may also be imposed on the system from 
the outside by random external forces, e.g. by coupling the system to reservoirs. The 
interactions betwee n all the degrees of freedom may lead to a cooperative behaviour 
of the system. Such cooperative systems can then usually be described in terms of a 
small number of collective state variables (macrovariables) obtained through a 
coarse-graining in phase space. The theory of continuous time-parameter stochastic 

' , processes has been applied with good success to the description of such cooperative 
phenomena in nonequilibrium systems [1-5]. Particularly, a treatment with in 
general multidimensional Markov processes turns out to be successful. 

The following work on real stochastic Markov processes is organized as follows: 
In the first part we derive some useful stochastic equations for Markov processes, 
needed for the description of the fluctuation dynamics in physical systems, and discuss 
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the main properties of those equations. Loosely spoken the Markov principle states 
that the future of the dynamics depends only on the present dynamics. We present the 
description of continuous Markov processes in tenns of stochastic differential 
equations. By introducing a generalization of the Stratonovitch stochastic integral 
we clear up some differences in recent physical works on continuous Markov pro­
cesses. In Section 3 we investigate the spectral properties of the stochastic operators 
and the consequences for the asymptotic behaviour of solutions of the stochastic 
equations. In this context we introduce the concept of ergodic classes in state space 
and extremal probabilities. In Section 4 we study the symmetry properties of stochastic 
processes. We discuss the consequences of both: symmetry transformations in state 
space and symmetry properties obtained by interchanging the time arguments in the 
joint-probability of stationary Markov processes (generalized detailed balance). 
Various symmetry relations for multivariate probabilities and multi-time correlation 
functions are given; in addition a necessary and sufficient operator condition for 
generalized detailed balance is derived. 

2. Stochastic equations for Markov processes 

The different dynamical behaviour of a set of macrovariables x = (xt, . . . , � .. ) 
forming the state space I: can be treated in a unified way in tenns of master equations. 
The stochastic properties of the system are then characterized by probability functions 
p(xl) defined in the state space I:. Next we study the differential equations governing 
the time evolution of, in general, real time-inhomogeneous strong Markov processes 
x(l) [5-9].3) 1n the following we use the notation: x(l) for the stochastic process 
itself, and x(l), for the random variables at time I or a single value in the configuration 
space I:. The specific interpretation of x(l) will be understood from the context. Using 
usual operator notation, the semi-group property of the conditional probability 
R(xl I ylt), I 2:: 11, reads [5-9] (Chapman-Kolmogorov equation) 

with 

R(t I 11) = R(t I s)R(s I It), I 2:: s 2:: It (2.1) 

R(t+ 1 t} = n. 

Note that the conditional probability where s < t t, 
p(ys)/p(xl1 ), will depend onp(xt1) so that 

(2.2) 

R(ys I Xl1) = R(x11 I ys) x 

but 

R(l I t1)p(tt) = R(tl s)R(s I t1)p(l1), s < 11 < t, Vp(l.}, (2.3a) 

(2.3b) 

Hence, the time ordering in the linear transition function operator R( 1 I 1 t ), 1 2:: t 1 , 
which coincides with the linear conditional probability R( I I 11 ), t 2:: t 1, plays an 
important role. The semigroup R can be generated from the infinitesimal propagator 

R(t + d1 1 t) = n + r(t) d1, dt > o, (2.4a) 

3) We always deal with non-terminating processes, where the parameter t is not a random variable but 
varies in t E (10, +co). 
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where (see also equation ( 2. 7a)) 

185 

. d I d I r(t ) = dr R(r I t) 
r=t+ 

-dt R(r I t) 
r=r+ 

(2. 4b) 
,..,f!�&-' .....-e...r 

is the generator of the semi-group acting on a Banach space n of beunEleiJ fnat&i aas 
[8-9]. A process for which the derivatives of R(t I s) with respect to the times t and s 
exist will be called stochastically differentiable, From the semi-group property we 
obtain the 'forward equation' [5-9] 

dR(t Is) 
dt = r(t)R(t I s), t � s, (2.5) 

which involves differentiation with respect to the later timet. In a similar way we get 
from 

R(t I s) = R(t I s + ds)R(s + ds I s), ds > 0 ,  

the 'backward equation' [5-9] 

dR(t Is) 
ds 

R(t I s)r(s), t � s, 

(2. 6) 

(2.7a) 

involving differentiation with respect to the former time s. In terms of the transpose 
operator R+ 

R+(xt I ys) = R(yt I xs), (2.8) 

the backward equation reads 

dR+� I s) - r+(s)R+(t Is), t � s. (2. 7b) 

The formal solution of the forward and backward equation can be written 

R(tlt1)=ffexpfr r(s)ds, t�t1, (2. 9) 
Jr. 

where ff is the time-ordering operator:. From a physical point of view, the interest in 
the forward and backward equation lies in the fact that they yield equations of 
motions for the single-event probabilities and for conditional expectations. Applying 
both sides of equation (2.5) to p(s) we obtain the 'master equation' 

dp(t) r(t)p(t). (2.10 )  dt 
This equation shows that the in general non-symmetric generator r(t) determines the 
dynamics of a Markov process in the same sense as the Hamiltonian determines the 
dynamics of a (Markovian) Hamiltonian system. With the solution of equation (2.1 0 )  
and the Markov property for the conditional probabilities 

R(x,t,jx,_1t,_1, • . •  ,x1t1) = R(x,t,.j x,_1t,._1), 
where 

(2.l l a) 

(2.12) 
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we have for the multivariate probability p!"1(x1t1, • . •  , x"t") the useful result .. 
i"1(xltl,. .. , x,.t,.) = n R(X;l; I "-i-lti-l)p(xltl). (2.13) i=2 

Moreover, equation (2.13) yields the 'inverse' Markovian property 
R(x1 11 I x2 12, . . .  , x,t,)' = R(x1 11 I x2 t2 ). (2.l lb)  
The conditional expectation <f(t) I y(s)) of a bounded state function f(x, t) is 

defined as the mean taken over the subset of sample functions passing through state 
y at times. 

<f(t) I y(s)) f f(xt)R(xt I ys) dx, 

or using opemtor notation 
<f(t) Is) = R+ (t I s)f(t), t � s. 

Hence, we obtain with equation (2.8) 

d<f(t) Is) - r+(s)<f(t) Is), ds 
- t � s. 

(2.14) 

(2.15) 

(2.16) 

The conditional averages are therefore solutions of the backward equation. With 
respect to the time t, they satisfy the averaged forward equation augmented by a term 
resulting from the explicit time-dependence of f(t) 

� <f(t) Is) = <r+(t)f(t) Is) + ( a��t) I s) , t � s. (2.17) 

All the equations (2.1 (}-2.17) are important in the derivation of master equations in 
the theory of stochastic differential equations. 

The properties of the in general non-symmetric opemtor r( t) defined on space I1 
ef bettB.tied measttf'ftWe fttsstieM are different depending on whether the sample 
functions are continuous (continuous processes) or discontinuous. For discontinuous 
Markov processes it is convenient to represent the stochastic kernel r(x, y; t) in terms 
of two other functions 

r(x, y;t) = W(x, y;t) cS(x - y)V(y, t), 
where 

V(y, t) = f W(x, y;t) dx � 0, 

(2.18) 

(2.19) 

yielding the stochastic property (preservation of normalization of probabilities) 

f r(x, y; t) dx = 0. (2.20) 

The function W(x, y; t) is the transition probability per unit time in which the process 
takes on a value in (x, x + dx) when it starts at state y. V(y, t) is the transition 
probability per unit time in which the process takes on a value different from y when 
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it starts at the value y. The mathematical conditions that there exists a unique solution 
for an honest conditional probability 

f R(xt I ys) dx = 1, for all t, s;t > s, (2.21) 

which satisfies both the forward and backward· equation, are discusSed for time­
homogeneous processes elsewhere [10 ] (conservative stochastic processes ) .  Using 
equation (2.18) the master equation can be written in its usual form [I, 5] 

op(xt) f --;s( = {W(x.' y;t)p(yt)- W(y, x;t)p(xt)} dy. 

Using the Kramers-Moyal expansion [11-12], where 

r(x, y; t) = Jr(z, y; t) b(z - x) dz 

GO } f 
= .Io n! 

"("l(y - x) (z y)"r(z, y; t) dz 

GO 1 
= L A,.(y, t) b("l(y - x); 

11=1 n 

(2.22) 

(2.23) 

(2.24) 

the master equation can be converted into a differential operator of infinite order if all 
the moments A,. in equation (2.24) exist. As a consequence of the truncation Lemma 
by Pawula [ 13], a stochastic kernel r(x, y; t), which consist's of a finite number of 
b-functions and their derivatives contains only. the distributions o0 1(x - y) and 
o<2l(x - y). The master equation obtained is of the following structure: 

. 

8p(xt) --;s( = - V · a(x, t)p(xt) + VV: D(x, t)p(x, t). (2. 25) 

This master equation is the Fokker-Planck-equation with a(xt) the drift vector and 
D(xt) the diffusion matrix. A continuous Markov process, i.e. all the sample functions 
are almost all continuous functions. satisfies the Hincin conditions [8-9] : V e > 0 

r R(xt I ys) dx = o(t - s), 
J,,._ y!>• 

(2.26) 

r (x - y)R(xt I ys) dx = (t - s)a(y, s) + o(t - s), j,,._ YIS• (2.27) 

I,,._ Yls• (x Y)2R(xt I ys) dx = (t s)b(y, s)b+(y, s) + o(t - s), (2.28) 
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between the integrals can be calculated, yielding 

. [' b(x(s), s) dw(s) = L.i.m. Lim L {b(x(t1);t;) + (z: L (�bu)b1,. J,o At-+0' i " t { Xt 
GSI 
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x [(A. - l)w,.(t1) + (I - A.)w,.(t1 + At)] + · · · )J 
x [w(t1 + At) - w(t1)] 

·= [' b(x(s);s) dw(s) + (1 - A.) [' F(x(s);s) ds, (2.35) 
J� J� 
Ito 

where 

(2.36) 

Hence, the Ito stochastic differential equation, equation (2.30), with the correspond­
ingly Fokker-Planck equation, equation (2.25), is equivalently described by the GSI 
stochastic differential equation: 

dx(t) = a(x(t), t) dt - (I - A.)F(x(t), t) dt + b(x(t), t) dw(t). (2.37) 

For A. #- I and x-dependent diffusion coefficients this description gives rise to a 
'spurious' drift term corresponding to the noise coupled to the random functions b1i 
on the right-hand side of equation (2.34). This fact clarifies the 'differences' in the 
formulation of stochastic properties in recent physical works with continuous 
Markov processes [1, 3, 19]. 

3. Spectral properties and asymptotic behaviour of probabilities 

In the following we restrict the discussion, if not stated otherwise, to time­
homogeneous Markov processes. All time-homogeneous Markov processes have the 
property that they do not improve the initial information. The time-independent 
generator r represents a dissipative operator [20], i.e. we have for the real part 

Re (f, rj) = Re f/(x)r(x,y)f(y)p�1(X) dxdy :s; 0, VfED(r). (3.1) 

According to the Phillips-Lumer theorem [20, 21], the stochastic generator r 
generates a contraction semi-group R(r), 1: � 0 in n: 

IIR('t)/11 :s; 11/ll:t' �.Jed �b./,6"7 /?()rh-7 / (3.2) 
The spectrum { A.v} of the dissipative generator may consist in general of both a dis­
crete and a continuous part with Re A.,. :s; 0. For a time-homogeneous Markov 
process with a finite discrete state space, r is an ordinary stochastic matrix with the 
following interesting properties: 
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(I) All the eigenvalues of r are real or complex. Complex eigenvalues occur in 
pairs and the corresponding eigenvectors may be chosen complex conjugates 
of each other [6, 7, 22]. 5) 

(2) The sum of the elements of any eigenvector corresponding to a non-zero 
eigenvalues is zero, and the sum of the elements of an eigenvector with a zero 
eigenvalue may be chosen to be I [7, 22]. If r is double stochastic [7] 

L: r,1 = L: r,1 = o. (3.3) 
i j 

a stationary solution exists which is uniform: p,1(l) = 1/N, 'Vi. 
(3) For a v.,-fold latent root zero the rank ofr is N - V0, indicating the existence 

of v 0 linear independent eigenvectors with eigenvalue zero [23]. N denotes 
the dimension ofr or the number of states. 

(4) For a birth and death process with N states and strictly positive transition 
rates all the eigenvalues are real and they are not degenerate [24]. Moreover, 
the eigenvalues of the stochastic matrix formed with the N - I residual 
States, r(N-1), separate those ofr = r(Nl, i.e. (24] 

0 ).�l = ;_�-1) > ;_lfl > A.lf-11 > ... > ).�� 1 > ).�_-/l > ).�l 
(3.3) 

Further, a minimal region for the relaxation spectra in the complex plane can be con­
structed using for the matrix r little known general theorems; which are due to 
Gerschgorin [25, 26]: 

(5) Every eigenvalue of the matrix r (Note that corresponding results may be 
obtained by working with the transpose, r+' instead of r. ) lies in at least 
one of the circular discs with centres r,, and radii r1 = :L1,., r1,. Notably, 
all the eigenvalues lie within the circle with centre at max, {ru} and radius 
R max,{ ru}· (See Fig. 1 .) Hence we obtain explicitly: 

(6) According to the preservation of normalization, equation (2.20), at least one 
eigenvalue is zero and the real part of a non-zero eigenvalue must be negative 
definite. So pure imaginary eigenvalues for rare impossibleand the possibility 
of recurring probability 'solutions is therefore ruled out! Hence, the dynamics 
of a time-homogeneous system with a finite number of states can never be 
governed by a writary one-parameter semi-group of transformations 
(Hamiltonian motion ). 

The second theorem of Gerschgorin yields even more detailed informa­
tion concerning the distribution of the eigenvalues among the discs which 
can be constructed from r or its transpose r+ : 

(7) If s of the circular discs of the theorem in (5) form a connected domain which 
is isolated from other discs, then there are precisely s eigenvalues of r within 
this connected domain. 

( 8) Detailed information about possible eigenvalues {A.v} of an irreducible 
stochastic matrix r which may lie on the border of maximum circle with 
radius Rand centre - R (see (5)) is obtained by studying the spectra of the 
non-negative matrix A r + RJ. Then, using the fact that Rn = (A. + R)" 
if A has n eigenvalues equal in modulus to R (Perron-Frobenius theorem 
[27]), the possible n eigenvalues on the border of the circle with radius R are 

5) Note that the statement in [22]; that IRe J.l > lim .A.I holds only for N 5 3. 
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cyclic with values at 

{ 2xik 
le - R  + Rexp-

n
-· k = 0, 1, 2, ... ,n - •}· 

19 1 

This case occurs, e.g. in a cyclic system with constant transition rates, 
r21 = r32 = • · · = rlN = }' > 0; where: 

lk = -y + y exp (2�k} k = 0, ... , N I. (3.5) 

The eigenvector components, Pt (/), are given by: 

I . 
Pt(/) = 

N
exp[(2mk)//N], (3.6) 

The results given here enable the study of the relaxation times in stochastic processes 
without solving the actual master equations. Particularly, one can estimate the long­
time behaviour of certain correlation functions and the relaxation of mean values. 
As a simple example for these theorems, we give in Figure I the minimal region.in the 
complex plane for the eigenvalues of the stochastic matrix r of the 3-state process 

c! r = 2 

t 

0 

-D - 3  

3 

The eigenvalues of r are: 

A0 = 0 ,  At;2 = 3 ± i. 

-·- .. 
,.,..... 

/ 
/ 

I 
I 

I 

\ 
\ 

' 
' 

......... - ·-· 

Figure I 

(3.7) 

(3.8) 
Im A 

ReA 

The shaded area gives the minimal region in the complex plane for the relaxation spectra of the 3-state 
process with generator r given in equation (3.7). The crosses denote the exact values for the relaxation 
constants and the dashed-dotted disc with radius R max;( !r.,l} determines the region in the complex 
plane independent of any special form of the dissipative generator r. 
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The spectral properties of the stochastic generator r also influence the ergodic 
properties of the process. One usually deals with two kinds of ergodic theorems: there 
are those which are time versions of laws such as the law of large numbers [6, 8, 14, 28] 
and also those stating the existence of a limiting probability function independent of 
the way of preparation [19, 29]. As a consequence of the time evolution equation 

p(t) = R(t)p( o), ( 3.8) 

all expectations and correlations will in general depend on the initial probability p(o). 
It is of interest to know the conditions under which the statistical properties of the 
system become asymptotically independent of preparation effects. We shall call a 
process ergodic, if 

Lim R(xt I yo) = P •• (x), 'r/y E 1: ( 3.9) 
, .... + 00 

exists and R( +co) represents a singular operator on n mapping the probabilities p(o) 
onto a unique asymptotic probability Pas En independent of p( o). Note that we may 
have in general the following situations: 

-an ergodic probability distribution which is unique. 
-no limiting probability, i.e. the system disperses to infinity as time increases 

(Pas= 0 ). 
. 

-several asymptotic probabilities whose number becomes infinite according to 
the line a rit y of the master equation. 

The asymptotic properties of a discrete time-homogeneous Markov process with 
a finite number of states can be investigated as follows: the state space 1: can be 
portioned into classes { C} by use of the equivalence relation "' : 

i - j: if R(it I j o) = R(i,j;t) > 0 and RU, i;t) > 0 for so me t > 0 .  
( 3.10 ) 

The symmetry and reflexivity relation are trivial and the transitivity relation follows 
from the Kolmogorov equation 

R(i,j, t + r) = L R(i, k;r)R(k,j;t) r > 0 ,  t > 0 .  ( 3.11) 
k 

and the semi-positivity of the conditional probabilities. Equation ( 3.10 )  must hold 
only for some fixed time t > 0 ,  because R(i, j: t) is either identically zero or always 
positive in (0 , + co) [30 ]. We call a class C1 erg odic, qrg, if in a given class every state 
is ergodic, i.e. Lim, .... 00 R(i, i; t) = p1 > 0 .  This definition makes sense because in a 
given class C1 every state is ergodic or none are. We already know that there exists an 
infinite set of stationary asymptotic probabilities if more than one ergodic class 
exists. But we will show that this infinite number of different asymptotic probabilities 
can be characterized in terms of a linear combination of a finite number of special 
asymptotic probabilities {pt:} ( extremal probabilities) 

Lim R(t)p(O) = Pas = L wltp: 1• ( 3.12) 

The generator r can always be brought into a Jordan canonical form [27] 
r = H-1JH. ( 3.13) 
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Because the rank of r is N- V0, where vo denotes the algebraic degeneracy of the 
eigenvalue A0 = 0 we obtain for the asymptotic probability, Pas• using well-known 
properties of the Jordan matrices [27]: 

Pas= u-1 e-�o �) �p(O). (3.14) 

The statistical properties are not affected if theN states are renumbered so that r 
becomes the following reducible matrix r' (r1 ·

. 
o 

rl • 
= r 

0 
Yo 

-B1 ) 
-� . Yo 

B 
(3.15) 

Here the stochastic submatrices r;, i = 1, ... , v0, with m; states represent the V0 
disjunct ergodic classes and the residue of the q states in B 

Yo 
q = N- L m;, (3.16) 

i= 1 
corresponds to all the states in the nonergodic classes. Each ergodic class has a positive 
definite ergodic probability p�? with 

Ill, 
I P���<k> = 1, ; = 1, ... , v0• 

k=1 
(3.17) 

The special set of linear independent probabilities {p:,} in equation (3.12) is then 
given by the 'extremal probabilities' {p�1} {p�(z) > 0, if i E c;rg, p:, (i) . 0, otherwise. 

(3.18) 

Let H be decomposed in rows of left eigenvectors, h;, and H- 1 into colurims of right 
eigenvectors, gi, of r' so that 

h;gj = bij; (3.19) 
then we get with equation (3.14) for the asymptotic probability the useful decomposi­
tion 

Yo 
Pas= L wl'p�, (3.20) 

p=1 
with Yo L WI'= l.  (3.21) 

p=1 
The eigenvectors h", J1. = 1, ... v0correspond to left eigenvectors ofr' with eigenvalue 
A." = 0. The form of equation (3.20) can be interpreted as follows. The term w" con­
sists of part of the initial probability p(O) of preparation which corresponds to the 
ergodic class c;•o plus the part ofp(O) which becomes scattered from the q nonergodic 
states into the ergodic class c:•g. (Note that from equation (3.19): hp(i) = 1, if 
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ie c;ro and h,.(i) = 0 ,  if ie {I:- c;ro- B}, p. = l ,  . .. , V0). If vo = l, Pas is the 
unique ergodic probability with m1 = L Further, different initial probabilities with 
the same weighting factors {co,.} for the ergodic classes {c;ro} approach each other 
in function of time. 

4. Symmetries of stochastic processes 

There are two kinds of symmetries for stochastic processes, the consequences of 
which are worthwhile to study in greater detail. They are symmetry transformations 
in the state space I: as well as symmetry conditions for the joint probability of a 
stationary Markov process by interchanging the time arguments (generalized detailed 
balance). Let us consider a transformationS: i = Sx in state space I:, e.g. a kind of 
a general coordinate transformation. All relations expressing physical properties 
(e.g., the probability flux or a thermodynamic potential) should be manifestly 
independent of the coordinates used. Covariant formulations of physical properties 
of continuous Markov processes have recently been given [31]. But stochastic 
equations, as the master equation, will change in general under such transformations. 
We consider a transformation S in state space which conserves state space volume, 
so that the Jacobian J(i, x) = lloi(oxll equals unity. Further we assume that the 
inverse transformation of S also exists. 6) The transformation induces then a trans­
formation in function space ll by a linear operator 08 (transformation operator) 
according to 

p(xt) = [08p(t)J" = p{S-1xt). (4.1) 

It must be emphasized that the operator acts upon the state space variables x 
and not on the argument ofp(xt). Thus wemeanOR[Oi 1p1 = p(SR-1x) # p(R-1Sx). 
Such a transformation yields with respect to the generator of a time-homogeneous 
Markov process the relation 

or 

t = 08rOi 1 (4.2) 

(4. 3) 

We define a sy mmetry transformationS to a given stochastic generator as such 
that the form of the generator is the same in the old and the new coordinate system. 
Hence we obtain 

ros = 08r, 

r(x, y) qs- 1x, s- 1y). 
(4. 4) 

(4.5) 

If { s4 is the set of all symmetry transformations of a stochastic generator r, the set 
{ 08} ) forms a group G, called the sy mmetry group G of the stochastic process. This 
follows trivially from the fact that s-t exists and ifr is invariant in x then obviously r 
is invariant under i' = s-1i = x. 

6) In this casey Sx has no multiple roots, so that fJ(y) = p(x)/1 !I fly/ex 111. In general we would have fJ(y) = !:��� p(x(ll)/IJ(y(i), x('l)l, where i = I .. . n stands for then real solutions of y(x) = Sx. 
7) Note that a representation for 05 cannot be chosen in general to be unitary. 

' 
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For stationary Markov processes the symmetry group G yields some important 
consequences. If we deal with an ergodic process, i.e. the stationary probability is 
ergodic, we obtain 

' Pas(x) = [OsPasJ,., VS Ed (4.6) 

This follows from the fact that Pas belongs to the eigenvector of the nondegenerate 
eigenvalue A. 0 of r and has to be nodeless. If we decompose the state space I: into 
ergodic classes { c;•u} and rest region B, by using the principles in Section 3, the 
following statement holds: the ergodic classes {C;'9} (or regions) can be grouped 
into stars { S;} of symmetry related classes which are transformed into each other 
under the elements of the symmetry group G of x(t). Each extremal probability, p�, 
in an ergodic class c;ru is invariant under the small group G,. transforming c;rg into 
itself. The detailed proof for this theorem is given elsewhere [5] . If the stochastic 
generator depends on external parameters J.., we always may assume that a change of 
J.. does not change the symmetry group. Therefore only the details of stochastic 
properties can depend on the parameters J.., but the global symmetry G.is retained. 
However the specific symmetries of the states in state space are not retained (sym­
metry breaking· instabilities) [I, 3). For example, in a laser system all states with zero 
amplitude have a complete phase angle rotation invariance, the finite amplitude has a 
fixed, though arbitrary, phase . 

. From equation (4.5) we get for finite times r, assuming a unique solution to the 
forward and backward equation for the stationary conditional probability, 

R(x, r I y, o) = R(Sx, :r I Sy, o), VS e G. (4.7) 

Hence, we have for the multivariate stationary probability of an ergodic process with 
equations (2.13, 4.6) 

p<">(x1t1, • . .  , x,.t,.) = p<"l(Sx1t�> ... , Sx,.t,.), VSe G. (4. 8) 

Moreover, the stationary correlation of a set of state functions {4>1 (x), ... , q,,.(x)} 
fulfills the symmetry relation 

(4>1(x(t1)) . • •  q,,.(x,.(t,.))) ((/),.(x1(t1)) • • •  (/),.(xit,.))), VSe G, (4.9) 

where 

(/)(x(t)) 4>(Sx(t)). (4.10 )  

Sometimes, the stationary Markov processes obey a certain symmetry which 
involves an interchanging of time-arguments in the joint-probabilities. Let T again 
denote a volume preserving state space transformation which is not necessarily a 
symmetry transformation. We define the generalized detailed balance symmetry by 
the following requirement for the stationary joint-probability p<2l of the process 
under consideration 

(4.l l )  

J.. = {A1 • . •  A,.} is a set of external parameters such as a magnetic field or an electric 
field. If T denotes the time-reversal operation S0, equation (4. 11) is the usual detailed 
balance symmetry [1, 3, 31-34] . The symmetry condition in equation (4.11) cannot 
be expected to hold in general for open systems, but there exists a number of interest­
ing cases of non-equilibrium systems where such a symmetry condition holds acci­
dently [1, 3). This may be due to the well chosen coarse-graining in state space and 
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time yielding a special structure of the generator r. Equation (4.11) is fulfilled further 
for T = TS, where S(or s-1) belongs to a symmetry transformation S e G of the 
stationary ergodic Markov process. We then obtain 

p<2>(xt; yo; A.) = p<2>(Sxt; Syo; S).) 
= p12>(Ty, t;fi:o;�) 
= p<2>(TSy, t;TSxo'fSA.) etc., (4.12) 

yielding a minimal region in the product space I: x I: from where the value for the 
joint-probability p12>(xt + t; yt) e 11(I: x I:) = 112 can be extended to the full space. 

Integrating equation (4.11) over x we obtain a symmetry condition for p81(y, A.) 
Pst(Y, A.) = P.t(Ty, T A.). (4.13) 

In contrast to equation (4.6) this symmetry condition holds for any volume preserving 
state space transformation T (not necessarily a symmetry transformation S) and 
non-ergodic stationary Markov processes. For the stationary n-time joint probability 
pi"> e 11", we obtain with use of the stationary condition: 

p12>(x1 t 1 ;x2 t2 ;A.) = P'2>(Tx2 t 1; fit t2; TI.) 
=p12>(Tx1 t1;Tx2 - t2;Ji..), (4.14) 

for the time set t 1 ::; • · · ::; t,. the important relation: 
p<">(x1t1, ... , x,.t,;A.) = R(Tx,_1 - t,_11 Tx, - t,;n.) 

P .. (IX,, TI.) (11-t)( ) X (Tx Ji..) p Xt11. · .X,-11,-1 Pst n-1• 
= pi">(Tx, - t,, ... , Tx1 - 11 ,  TI.). (4.15) 

Thereby we have made extensive use of the Markov property in equations (2.11-2.13). 
For the stationary correlation of n state functions { ¢1 • • •  ¢,} we have with equation 
( 4.15) the relationship 

(¢1(xtt) . . . ¢,(xt,.))._ = (¢,.(T-1x, t,.) ... ¢1(T-1x, -t1))n. (4.16) 
For the following we introduce the transformed generator r(A.) with the kernel 

r(x, y;A.) = p;112(x;A.)r(x, y;A.)p!/2(y;A.). (4.17) 
With p(t) = p; 112p(t), the operator r is the generator for the master equation 

d 
dt.P(t;A.) = r(A.).fi(t;A.). (4.18) 

Taking the derivative with respect to t on both sides of equation (4.11) and putting 
t = o+ we obtain with equation (2.4), a second version of the generalized detailed 
balance condition 

(4.19) 
Hence, a necessary and sufficient operator condition for the generalized detailed 
balance symmetry is then given by 

Ps1(X, A.) = p,,(Tx, TI.), (4.20) 
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(4.21) 
In equation (4.21) r+(n) denotes the transpose of the operator r with kernel 
f+(Tx, Ty;fi) = r(Ty, Tx;fi). 

For a general time-homogeneous Markov process the dissipative generator r().) 
may have 'right' eigenfunctions r/l.(x, A.) with eigenvalues A.. andRe A.. s 0 

[r(A.)r/1.(#..)],. = A..r/l.(x;A.), 

and 'left' eigenfunctions t/i.(x, A.) 

[r+(A.)t/i.(A.)J,. = A.�t/i.(x;A.). 

(4.22) 

(4.23) 

The notation(*) in equation (4.23) denotes the complex conjugation. Then the sets 
{ rjJ.} and { t/i.} form a biorthogonal set [35] 

f t/i!(x;A.)r/l.(x;A.) dx = �p.v· (4.24) 

Next we assume that the eigenfunctions { t/i.} and { rjJ.} form a co mplet e biorthogonal 
set 

f t/i�(y;A.)r/J.(x;A.) dv = �(x- y). (4.25) 

For the propagator R(r) of the general time-homogeneous Markov process we 
obtain with equations (2.9, 4.18, 4.25) the expression 

( I . _ (Ps1(X, #..))112# A* . . R xt yo,#.)- ( A.) r/l. (y ,A.)r/l.(x,A.)expA..rdv, r�O. 
Pst y, • 

(4.26) 

In presence of a generalized detailed balance symmetry the calculation of the left 
eigenfunction {t/i.} becomes rather simplified. From equation (4.21) we have 

[r(r-1A.)r/1.(11A.)h-�,. = A..r/1.(11x, r-1A.) = [r+(A.)r/J.(T-1#..)],., (4.27) 

so that 

t/i:{x, A.) = rjJ .(r-1x, r-1 A.). (4.28) 

If we decompose the generator r into a symmetric part r s = !(r + r +] and a skew­
symmetric part r A = ur - r+], the Calculation of the left eigenfunction t/i.(x).) 
Of r+ becomes even more Simplified in cases where rs and rA COmmute. Let "'· 
denote an eigenfunction of r, so that we have 

and 

r A r/Jv = i(Jm A..)r/J •. 

It follows then from equations (4.23) and (4.28), that 

r/J.(T-1x;T-1A.) = r/l:(x, A.). 

For the propagator, R(t), we find by use of equation (4.28) 

R(xr I yo, A.) = (Pst�x, ��)112 .J dvr/J.(T-1y, 11A.)r/J.(x, A.) exp A..!, 
Pst y, t. 

(4.29) 

(4.30) 

(4.31) 

! � 0, 
(4.32) 
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and·for the stationary joint-probability pl21 the relation 

pl2l(x, t;y;o;A) = (p.1(x, A)p.1(y, l-))112� dvi/I.,.(T-1y, T-1A)I/f .. (x, A) exp A..t, 
. 

.. 
't' � 0. (4.33) 

Fort < 0, we obtain, using the stationary condition (equation (4.14)): 

pl2l(x, t; y; o; A) = (p.1(x, l.)p •• (y, A))112 J dvl/l .,.(r 1x, T-1l.)l/l .,.(y, A) exp A..,. It I. t.. (4.34) 
Further, if y = r 1y, A = r 1l., i.e. we deal with a strong generalized detailed 
balance condition, the generator r becomes self-adjoint SUCh that 0 � A.,. E JR., and 
the left eigenfunctions can be chosen to be tli .. (x, A) = 1/t.,.(x, l.) E JR. As a consequence, 
equations (4.33-4.34) for pl2l read in closed form 

pl2l(xt, yo; A) = (p.1(X ,A)p.1(y, A))112 f dvl/f .,.(y, A)l/l .,.(x, A) exp A..,. It!. (4.35) 

All the relations discussed so far hold for general regular transformations T 
obeying equation (4.11 ). The property of volume preserving was only introduced for 
simplicity. It is easy to write all relations in terms of a general Jacobian IJ(y, x)l ::/= I. 
Also, it is self evident that in the special case of a strong detailed balance the symmetry 
group G can be advantageously studied in terms of the symmetric generator r. 

Finally, we consider operators T0 which fulfill equation (4.11) and further: 

TJ = n, 
T0A.1 = L a.1)i, 

j 
T0x1 = L riixi. 

j 

(4.36) 

(4.37) 

(4.38) 

By choosing the variables x and the external parameters appropriately we can always 
achieve el and r to be diagonal with eigenvalues ci = ±I ( see equation (4.36)). In 
the following we speak of the parity, e1, for the variable x1 under the transformation 
T0• As an example, in Table I we study the transformation behaviour of physical 
variables under the three different transformations T0: 

S0: time reversal symmetry 
R0 : inversion, or image symmetry 
/0: total inversion /0 = S0R0• 

Most relations discussed above then simplify considerably. For example, the corre­
lation function Sii(t) of two random variables fulfills ( equation (4.16)): 

Sii(t) = (x1(t)x1(0)) = t1tiSi1(t). (4.39) 

Note, if equation (4.11) is fulfilled for two transformations of the set {S0, R0, /0}, 
equation (4. l l) is fulfilled by use of equation (4.12) for all three transformations 
{ S0, R0, 10 }. In the case of the Fokker-Planck equation, equation (2.25), the operator 
condition in equation (4 .21) : 

P.1(X, A) = P.1(i, i), (4.40) 

r FP(x, A) = rt,.(t, i), (4.41) 
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- - 0 Q) 
E 

I -I 

-I I 

-I -I 

Transformation behaviour, e,, of physical quantities with respect to time reversal S0, inversion R0 and total 
inversion 10 S0R0• 

where 
(4.42) 

can be written in a more adequate form by introducing the following quantities: 

aNx, l.) = t[a;(x, l.) ± &;a;(�. i)], (4.43) 
so that 

a;±(x, l.) = ±e;aN�. i), 
and 

s-(x, l.) = .-(x, l.)p .. (x, l.), 

s+(x, l.) = a+(x, l.)p •• (x, l.) - V ·(D(x, l.)p .. (x, l.)). 

(4.44) 

(4.45) 
(4.46) 

Following the procedure of Risken, where T0 = S0 is considered [33], we obtain for 
any transformation T0 obeying equation (4.11) for the necessary and sufficient con­
ditions of detailed balance the so called potential conditions8) [1, 3, 31-34] 

Dij(x, l.) = e;eiDij(�. i), (4.47) 
s+(x,l.) = 0. (4.48) 
v .s-(x, l.) = o. (4.49) 

If the diffusion matrix D possesses an inverse, equation (4.48) requires 
_cln� •• (x,l.) 

= I D;t(x,l.)(I aD
�
(x,l.)- at(x,l.)) · 

X; k I ,x1 
(4.50) 

8) A covariant formulation of these potential conditions has been discussed recently by Graham [31]. 
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from whichp.,(x, A.) is obtained by quadratures. Furthermore, if static fields {A.} are 
applied, such that at (x, A.) = at (x) + A.;, Vi, and they restore the generalized 
detailed balance symmetry, we obtain in the case ofx-independent diffusion coefficients 
for the. stationary probability 

p01(X, A.) = const p.,(x, 1.. = 0) exp L D;j 1 xiA.i. 
i,j 

(4.51) 

Note that p.,(x, 1.. = 0) obtained from equation (4.50) is, in general, non-Gaussian. 
The result of equation (4.51) allows the calculation of the static response to all orders. 

Equation (4.50) shows that in the presence of a general detailed balance condition 
the stationary probability may be determined explicitly. The symmetry of the 
generalized detailed balance yields in equations (4.4 3-4.45) additional information 
not needed for the solution of the stationary probability. Hence, the study of potential 
conditions which yield the minimal necessary and sufficient information needed for 
the construction of the stationary probability is very desirable. Finally, we mention 
that the results obtained in this paper can be generalized to the case of functional 
master equations. 
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