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Abstract
When a periodicallymodulatedmany-body quantum system is weakly coupled to an environment,
the combined action of these temporalmodulations and dissipation steers the system towards a state
characterized by a time-periodic density operator. To resolve this asymptotic non-equilibrium state at
stroboscopic instants of time, we use the dissipative propagator over one period ofmodulations,
‘Floquetmap’, and evaluate the stroboscopic density operator as its invariant. Particle interactions
control properties of themap and thus the features of its invariant. In addition, the spectrumof the
map provides insight into the system relaxation towards the asymptotic state andmay help to
understandwhether it is possible (or not) to construct a stroboscopic time-independent Lindblad
generator whichmimics the action of the original time-dependent one.We illustrate the ideawith a
scalablemany-bodymodel, a periodicallymodulated Bose–Hubbard dimer.We contrast the relations
between the interaction-induced bifurcations in amean-field descriptionwith the numerically exact
stroboscopic evolution and discuss the characteristics of the genuine quantummany-body state vs the
characteristics of itsmean-field counterpart.

1. Introduction

Many-body effects in combinationwith a coupling to an environment give rise to a variety of phenomenawhich
are of beneficial use for quantum technologies. Interactions sculpt the spectrumof different collective states and
moderate transitions between them [1]. Effects of the system-environment coupling, howeverweak they are,
play a decisive role in out-shaping the system’s asymptotic state. Indeed, such effectsmay not necessarily present
a nuisance but can be aswell of practical use. Particularly, they can be exploited to steer the system towards
desired states, including pure and high-entangled ones [2, 3]. This recent idea of engineering by dissipation [4–8]
has promoted a dissipative time evolution of the systemdynamics to the same level of importance as that
obtainedwith a unitary evolution.

Time periodicmodulations can also stronglymodify the state of a quantum system. In the coherent limit,
time-periodicmodulations implicate an explicit time-periodicity of theHamiltonian, i.e.,

p w+ = + =( ) ( ) ( )H t T H t H t2 , whereT is the driving period andω is the frequency ofmodulations. The
systemdynamics is governed by the Floquet states [9–11]; i.e., the eigenstates of the unitary Floquet propagator


 ò t t= -⎡

⎣⎢
⎤
⎦⎥( )U Hexp dT

Ti

0
, where  is the time-ordering operator. The particular structure of the Floquet

propagator, and thus the properties of the Floquet states, depend onmodulation parameters. This allows to

OPEN ACCESS

RECEIVED

17March 2017

REVISED

29 June 2017

ACCEPTED FOR PUBLICATION

30 June 2017

PUBLISHED

14August 2017

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2017 IOPPublishing Ltd andDeutsche PhysikalischeGesellschaft

https://doi.org/10.1088/1367-2630/aa7ceb
mailto:sergey.denisov@physik.uni-augsburg.de
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/aa7ceb&domain=pdf&date_stamp=2017-08-14
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/aa7ceb&domain=pdf&date_stamp=2017-08-14
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


grasp effects [11–20]which are out of reach of experimentally available time-independentHamiltonians in atom
optics, optomechanics, and solid state physics.

Our key objective here is to investigate the combined effect of all three factors, namely (i)many-body
interactions, (ii) coupling to an environment, and (iii) periodically varying external driving.We start by
introducing the notion of Floquetmapswhich constitute an extension to the dissipative case [11] of the unitary
Floquet propagator [9, 10], and demonstrate how those can be used to obtain non-equilibrium asymptotic
states.We next study amany-bodymodel, a driven Bose–Hubbard dimer, and use both a full quantum
mechanical treatment and amean-field description, to gain insight into the properties of the time-periodic
asymptotic states.

2.Dissipative Floquetmaps

Weconsider the dynamics of a generalM-dimensional systemmodeledwith a quantummaster equationwhose
generator  is of Lindblad form [21–24]

    = = - +( ) [ ( ) ] ( ) ( )
t

H t
d

d
i , . 1t t

Thefirst termon the rhs describes the unitary evolution of the system’s density operator ñ, governed by the time-
periodicHamiltonianH(t). The dissipator

   å g= -
=

- ⎡
⎣⎢

⎤
⎦⎥( ) ( ) { } ( )† †t V V V V

1

2
, , 2t

l k

M

kl k l l k
, 1

12

is built from the set of operators { }Vk , which, together with the normalized identity, =V M0 , span the
Hilbert–Schmidt space M of the operators acting in theM-dimensional Hilbert space [25]. Note that all
parameters of the system are scaledwith respect to the Planck constant  .

Strictly speaking,modulations affect both the unitary and the dissipative part of the generator t , and in
general both theHamiltonianH(t) and the dissipativematrix gG =( ) ( )t tkl , become time-dependent
[11, 12, 23, 26]. The complete theoretical foundation of a time-dependentmaster equation of the type (1) still
remains an open problem [27, 28]. However, if thematrix G( )t is positive semi-definite at any instant of time,

the propagator   ò t= t( )exp ds t s

t
, is completely positive and trace-preserving. In this case amaster

equation in the formof (1) ismeaningful [23]. This in turn provides a set-upwhich is frequently employed to
model quantum systems operating far from equilibrium; see, e.g., [8, 29–31].

When the generator t is time dependent, the propagator s t, depends on both the starting time s and the
final time t. The closure of the set of propagators for different times is lost and they no longer form a semi-group.
It is stated by Lendi [28] that ‘the best chance tofind a solution to amaster equation (with a time-dependent
generator) is only offered by a possible existence of transformations which eliminate the time dependence’.
Consistently,most studies until nowhave focused on removing the time-dependence when dealingwith time-
periodic generators, either by (i)finding a proper gauge, whichmakes the original time-periodicHamiltonian
time-independent [23, 32] and then assuming that the dissipator remains time-independent in the new frame
(this is often a good approximation in quantumoptics, where frequencies ofmodulations aremuch higher than
the decay rates), or (ii) by changing to the Floquet basis of theHamiltonianH(t) and then performing an
additional secular approximation [8], or (iii) by constructingMagnus expansion-like approximations [33]. All
these strategies result in deriving an effective time-independent generator eff of the Lindblad form.Once the
time-dependence is removed, one has to calculate the kernel of eff tofind the asymptotic state ¥ of the
system, i.e., 0 =¥eff . Under fairly general conditions [23, 34], the time-homogeneous propagator
 = ( )texpt eff relaxes towards a unique attractor ¥ of the dissipative quantum evolution.However, the
above discussed approximations cannot always be justified away from the case of high frequency driving. Below
we propose an approachwhich does not demand the reduction to such a time-independent form and thus
avoids those corresponding approximation schemes. Note also that it is not necessary to switch to the Floquet
basis of the driven systemHamiltonian.

Because themaster equation (1) ismanifestly linear, we can in the case of a time-periodic generator t

readily resort to the Floquet theorem [11, 35, 36].We concentrate next on the one period propagator

   ò tº = t( )exp dT
T

F 0, 0
whichwe refer to as the Floquetmap. The Floquetmap possesses at least one

(possibly degenerate) eigenvalue 1 and all other eigenvalues lie inside the unit circle. Assuming that the Floquet
map is irreducible [2], the attractor ñ1 of themap is given by itsfixed point, i.e., the eigen-operator
corresponding to the eigenvalue 1,   =F 1 1.More generally, the number of different attractor solutions is
directly related to the symmetries of the generator t [37]. Particularly, in absence of such additional symmetries
the resulting asymptotic attractor assumes the unique fixed point solution. Therefore, after a sufficiently large

2
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time span any initial density operator  ( )t0 0 will converge to the time-periodic asymptotic state  ( )ta , i.e.,
  +( ) ( )t mT t0 0 a 0 for an integer m 1. The operator   = =( ) ( )T01 a a is the asymptotic density
operator of the system at the stroboscopic instants of time. Because  ( )ta is periodic in time,
 + =( ) ( )mT s sa a , the asymptotic densitymatrix for any instance of time t can be calculated via propagating
 ( )0a up to time s.

3.Model study: Bose–Hubbard dimer

To exemplify the ample physics expected to emerge from the interplay ofmany-body interactions, dissipation
and periodic driving, we consider a system composed ofN interacting bosonic atoms hopping over a dimer
which is subjected to periodic driving.We consider the systemHamiltonian

å e= - + + - + -
=

( ) ( ) ( ) ( )( ) ( )† †H t J b b b b
U

n n t n n
2

1 , 3
j

j j1 2 2 1
1,2

2 1

where J denotes the tunneling amplitude,U is the interaction strength, and e( )t represents themodulation of
the local potential. In particular we choose e e m m w= + = +( ) ( ) ( )t t T tsin0 1 , where m0 presents a static and
m1models a dynamic energy offset between the two sites. Here, bj and

†bj are the annihilation and creation

operators of an atomat site j, and = †n b bj j j. ThisHamiltonian has been previously studied theoretically in
[38–41] and has been implemented in several recent experimental studies [42, 43]. However, to the best of our
knowledge, the joint action of all three ingredients—interaction, dissipation and temporal driving—has not
been addressed before.

With the coupling constant γ taken to be time-independent, we use  =t with the single jump operator
[3, 44]

= + -( )( ) ( )† †V b b b b . 41 2 1 2

This dissipator tends to ‘synchronize’ the dynamics on the dimer sites by constantly recycling anti-symmetric
out-phasemodes into the symmetric in-phase ones. Note that our particular setup serves as an illustration only.
The Floquetmap approach applies equally well to other cases, e.g., when both parts of the generator, i.e., the
unitary and dissipative parts both are time-periodic orwhen there are several jump operators acting on the
system. Because the jumpoperator (4) is non-Hermitian, the propagators s t, are not unital and the attractor
solution is not themaximallymixed state,  ¹ Ma .

To gain additional insight into the physics of themodel, we derive a set ofmean-field equations and compare
its attractor solutions with those of the quantumFloquetmap F. For the dimer problem, it is convenient to
recast themaster equation (1) in terms of the spin operators

  = + = - - = -( ) ( ) ( ) ( )† † † †

N
b b b b

N
b b b b

N
n n

1

2
,

i

2
,

1

2
, 5x y z1 2 2 1 1 2 2 1 1 2

and then study their evolution in theHeisenberg picture [24]. For a large number of atoms N 1, the
commutator   =[ ] N, ix y z becomes negligibly small and similarly for other cyclic permutations. Replacing
operators with their expectation values,  á ñ = [ ]trk k , and denoting á ñk by Sk, we end upwith

e g= - + +( ) ( ) ( )S

t
t S UNS S N S S a

d

d
2 2 8 , 6x

y z y y z
2 2

e g= - + + -( ) ( )
S

t
t S UNS S JS NS S b

d

d
2 2 2 8 , 6

y
x x z z x y

g= - - ( )S

t
JS NS S c

d

d
2 8 , 6z

y x z

wherewe have neglected terms proportional to γ of lower order inN. The replacement of operators by their
expectation values is justified provided that á ñ » á ñ á ñAB A Bt t t . This is not guaranteed a priori, and, for a
dissipative system, the commutator behaves differently compared to the unitary setup. A necessary favorable
comparisonwith the results of the exact quantum analysis then justifies the validity of thismean-field
approximation.

The structure of themean-field equations in (6a)–(6c) implies that =S 0
t

d

d
2 . Therefore the quantity

= + +S S S Sx y z
2 2 2 2 is a constant ofmotion. This is consistent with the preservation of the total number of
bosonsN; see the definitions given by (5).We therefore can reduce themean-field evolutions to the surface of a
Bloch sphere; i.e.,

3
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j J j J J=( ) [ ( ) ( ) ( ) ( ) ( )] ( )S S S, ,
1

2
cos sin , sin sin , cos , 7x y z

yielding the equations ofmotion

J j g j J

j
J
J

j e J g
j
J

= +

= - + -

( ) ( ) ( )

( )
( )

( ) ( ) ( ) ( )
( )

( )

t
J N

t
J t UN N

d

d
2 sin 4 cos cos ,

d

d
2

cos

sin
cos 2 cos 4

sin

sin
. 8

Wenext analyze the quantumdynamics by using both the Floquetmap computed via (1)–(4) and contrast
the results with themean-field equations (8).

To construct the Floquetmap, we use the standard scheme of a vectorization of the densitymatrix, which
allows to transform (1) into a systemof linear differential equationswith time-periodic coefficients. The Floquet
map is obtained by propagating the δ-Kronecker basis [45] over the full periodT. Finally, the asymptotic density
matrix is given as the eigen-element of themap corresponding to the unique eigenvalue one.

To extract the classical attractor solution of themean-field system,we evolve (8) from randomly chosen
initial conditions, and, after a transient time T104 , record the value of Sz at the next 250 stroboscopic instants of
time. The so obtained bifurcation diagram is presented infigure 1(a). As the interactionUN varies, we detect
regions containing limit cycles of different periods, chaotic attractors, and transitions between them [46].We
anticipate that different dynamical regimes of themean-field description are characterized by significantly
different properties of the system in the quantum limit for N 1. To check this hypothesis, we calculate the
time-averaged purity

ò=¯ [ ( ) ] ( )P
T

t t
1

tr d 9
T

a
0

2

and also the time-averaged negativity,

 ò=¯ [ ( )] ( )
T

t t
1

d . 10
T

a
0

Here,  represents the negativity [47],

  å=
¹

[ ] ∣ ∣ ( )1

2
, 11

k l
k l,

which characterizes the degree of entanglement in a two-mode systemofN indistinguishable bosons.
Figures 1(c) and (d) show the dependence of the two quantities as functions of the interaction strength. It is
interesting that, as the number of bosons increases, changes of the time-averaged purity and negativity become
more pronounced in the vicinity of bifurcations of themean-field equations.

Figure 1. (a)Bifurcation diagram for the stroboscopicmean-field values of = á ñSz z as a function of the interaction strength of the
mean-field equations (6a)–(8). The arrows indicate the three regimes presented in figure 2. (b) Spectral gapΔ, (c) time averaged
negativity ̄ , and (d) time-averaged purity P̄ of the dissipative Floquetmap versus the interaction strength for different particle
numbersN. The time-averaged negativity ̄ , the time-averaged purity P̄ , and the spectral gapΔ are defined by (9), (10) and (12). The
inset in panel (b)depicts the eigenvalues lj of the Floquetmap F forN=100 and =UN J 1. The other parameters are
m m w g= = = =J J J N J1, 3.4, 1, 0.10 1 .
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The inverse tangent bifurcation [46]near =UN J 2 (the transition from chaos to a period-one limit cycle)
is striking: both the negativity and the purity of the asymptotic statemove to higher values at this point. This
relates to the concept of ‘dissipative engineering’used to shape a stationarymany-body system into a pure
highly-entangled equilibrium state with the help of specially designed dissipative operators [4]. Here, we observe
a trend towards a pure highly-entangled non-equilibrium state upon increasing the particle numberN. An
intriguing question arises as towhich values both characteristics saturate in the thermodynamic limit  ¥N .
Will, for example, the purity value approach unity? If ‘yes’ thenwewould have afirst example of dissipative
engineering of a time-periodic quantum state. Unfortunately, it was not possible for us to go beyond »N 300
by using the numerical spectralmethods.

Furthermore, spectral properties of a Floquetmapmay also provide insight into the relaxation towards the
corresponding quantumattractor. A typical spectrumof amap is shown in the inset of figure 1(b). It has a shape
inherent to the spectra of completely positive trace-preservingmaps [45]. Namely, it has the spectral radius 1,
includes the single eigenvalue l = 11 , and is invariant under complex conjugation. The spectral gap

lD = - ∣ ∣ ( )1 , 122

where l2 is the second largest eigenvalue by absolute value, can be used to estimate the inverse relaxation time
froma randomly chosen initial state [48–50]. The spectral gap also exhibits a strong dependence on the
interaction strength; see figure 1(b).

Differentmean-field regimes can be visualized by plotting stroboscopic Poincaré sections on the plane
J j{ }, . Infigure 2, classical Poincaré sections are comparedwith the Poincaré–Husimi distributions J j( )p , of
the quantumasymptotic state obtained by projecting the density operator  ( )0a on the set of the generalized
SU(2) coherent states [51]. For =UN J 0.2 (0.8), themean-fieldmodel predicts two (six) points on the
Poincaré section, corresponding to period-two (period-two plus period-four) attractor(s); see symbols in
figures 2(a, b). The Poincaré–Husimi distributions,figures 2(a) and (b), reveal a concentration of J j( )p , near
these points.We attribute theminormismatch tofinite-size effects. For =UN J 1, themean-field system (8)
exhibits a chaotic attractor, figure 2(d), and the Poincaré–Husimi distribution, figure 2(c),fits the structure of
this classical attractor forN=250. Figure 3 shows three-dimensional plots of the quantum attractors super-
imposed on the classical Poincaré sections both for the case inwhich themean-field equations predict two points
(from a period-two limit cycle) or a chaotic attractor, corresponding respectively tofigures 2(a) and (c), (d).

It is noteworthy that the inverse particle number N1 can be thought of as an effective Planck constant, thus
allowing for the comparisonwith the results obtained for single-particlemodels [52–55]; note in addition those
cited in themini-review [54].

4. Existence of an effective time-independent generator

The Floquetmap F is a completely-positive and trace-preservingmapwhich belongs, following the
nomenclature introduced in [56], to the class of time-dependentMarkovian channels. It is an interesting
questionwhether it is possible tofind an effective time-independent generator eff of Lindblad form (1) and (2)
that canmimic the action of the original generator at stroboscopic instants of time, such that  = ( )TexpF eff .
There are three necessary (and altogether sufficient) conditions which any Lindblad generator has to fulfill: (i)

Figure 2. (a)–(c)Poincaré–Husimi representation of the asymptotic operator r ( )0a for (a) =UN J 0.2, (b) =UN J 0.8 and (c)
=UN J 1. Symbols indicate attractors of themean-field system, (8), period-two (◯) and period-four (,) limit cycles. (d)Poincaré

section of themean-field attractor for =UN J 1. The other parameters are m m w g= = = =J J J N J1, 3.4, 1, 0.10 1 , and
N=250.
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trace preservation,  =[ ] [ ]Atr tr Aeff , (ii)Hermiticity preservation,  =( )†A Aeff eff , if =†A A, and (iii) so-
called ‘conditionally complete positivity’ [57].

This is in distinct contrast with the case of a unitary evolution [9, 14]. The effective time-independent
Hermitian operatorHeff can always be obtained as the logarithmof the unitary Floquet propagator


 ò t t= -⎡

⎣⎢
⎤
⎦⎥( )U Hexp dT

Ti

0
.Moreover, not only its prinicpal branch but any branch of the logarithm yields a

valid Heff . The non-unitary case ismuchmore restricted: only the branch of the logarithmof a dissipative
Floquetmapwhich produces an operator possessing properties (i–iii) yields a legitimate Lindblad generator
eff [57].

Condition (i) holds by default if one starts with a trace preservingmap (which is our case). Condition (iii) can
formally be checkedwith the algorithm given in [57]. However, it is hardly realizable in practice when >M 2
because it involves repeated solution of an( )M4 optimization problemwithin themixed-integer semidefinite
programming framework [58]. Condition (ii) ismuch easier to check.

Hermiticity preservation demands that the spectrumof eff is invariant under complex conjugation; in
otherwords, it should consist of real eigenvalues or/and of complex conjugated pairs of eigenvalues. If there are
negative real-valued eigenvalues (strictly speaking, of odd algebraicmultiplicity) in the spectrum l{ }j of themap
F, it is impossible to fulfill the condition of the invariance of the spectrumof eff (which is a logarithmic branch
of F) under complex conjugation. This is because any branch of the logarithmof a negative real-valued number
can neither produce a real number nor a complex conjugated pair. Figure 4 depicts the number of eigenvalues
l{ }j with l e< -( )Re j and l e e< = -∣ ( )∣Im , 10j

7, as a function of the driving frequencyω. The dependence
reveals that the condition is not fulfilled in themost interesting case of non-adiabatic and non-diabatic driving,
when the asymptotic state of the dimer is sculpted by themodulations. Apparently, an effective stroboscopic
time-independent Lindblad generator does not exist in this parameter region.

5. Conclusions

Wedemonstrated that the concept of dissipative Floquetmaps provides an operational way to identify ‘quantum
attractors’, i.e., asymptotic time-periodic states ofmodulated open quantum systems, and estimate the
relaxation time towards them. To illustrate this idea, we have applied the concept to a dissipative and
periodically drivenmany-bodymodel.We have studied themodel both numerically exactly and, in the limit of a
large particle number, within amean-field description. The latter predicts bifurcations from regular to chaotic
attractors as the interaction strength is varied. The analysis shows a strong dependence of quantum
characteristics of the asymptotic non-equilibriummany-body state, such as the purity and the negativity, on the
interaction strength, especially in proximity of bifurcations predicted by themean-field theory.

It is interesting to contrast the idea of Floquetmaps produced by time-periodic Lindblad generators, and an
approximate Bloch-Redfieldmaster, a well-known alternative to the Lindblad formalism [59]. Typically one
starts from a bilinear coupling of the system to a heat bath of harmonic oscillators. The bath is characterized by

Figure 3. 3D versions of the Poincaré–Husimi representation of the asymptotic states. Left panel corresponds tofigure 2(a)while right
panel corresponds to figures 2(c) and (d). Bottomplanes present the Poincaré sections (dots) of the corresponding classical attractors
(the line on the left plane shows full period-two cycle).
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its spectral properties.When themodelHamiltonian is time-periodic, it is possible, by assuming anOhmic heat
bath and following the Born–Markov ideology, to derive the so-called Floquet-Markov equation [11, 60]. This
linear equation, similar to (1), governs the evolution of the systemdensity operator; it is also local in timewith a
time-periodic generator. Formally it is thus possible to construct a corresponding Floquetmap in this case as
well. However, this so obtainedmap does not guarantee completely positivity for the evolution of the reduced
density operator [61]; evenmore problematic is that itmay even not necessarily assure the positivity of the
reduced density operator on theway to its asymptotic limit, see [62–64] for detailed comparisons.

We conclude by pointing out possible research directions whichmay benefit from the use of Floquetmaps
within the Lindblad framework. It has been proposed to use time-periodic driving to create, for the situation
with coherentHamiltonian systems, effective topologically protected states [15, 65]. The important problems of
the stability of these states against dissipation or their creationwith a synthetic dissipation [66] could be
investigated bymaking use of our concept. Another interesting question is whether the idea of ‘engineering by
dissipation’ [2, 6, 7, 25] can be extended to periodicallymodulated systems. Finally, recent progress in the field of
many-body localization (MBL) inaugurates yet another potential application; the effect of temporal driving on
the localization has been addressed in [67–69] and, very recently, the dynamics of openMBL systemswas
considered in [70–72].We expect that the idea to combine the two latter ingredientsmay soon invigorate the
MBL community in pursuing future research in this spirit; see also a very recent [73].
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