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Abstract

When a periodically modulated many-body quantum system is weakly coupled to an environment,
the combined action of these temporal modulations and dissipation steers the system towards a state
characterized by a time-periodic density operator. To resolve this asymptotic non-equilibrium state at
stroboscopic instants of time, we use the dissipative propagator over one period of modulations,
‘Floquet map’, and evaluate the stroboscopic density operator as its invariant. Particle interactions
control properties of the map and thus the features of its invariant. In addition, the spectrum of the
map provides insight into the system relaxation towards the asymptotic state and may help to
understand whether it is possible (or not) to construct a stroboscopic time-independent Lindblad
generator which mimics the action of the original time-dependent one. We illustrate the idea with a
scalable many-body model, a periodically modulated Bose—Hubbard dimer. We contrast the relations
between the interaction-induced bifurcations in a mean-field description with the numerically exact
stroboscopic evolution and discuss the characteristics of the genuine quantum many-body state vs the
characteristics of its mean-field counterpart.

1. Introduction

Many-body effects in combination with a coupling to an environment give rise to a variety of phenomena which
are of beneficial use for quantum technologies. Interactions sculpt the spectrum of different collective states and
moderate transitions between them [1]. Effects of the system-environment coupling, however weak they are,
play a decisive role in out-shaping the system’s asymptotic state. Indeed, such effects may not necessarily present
anuisance but can be as well of practical use. Particularly, they can be exploited to steer the system towards
desired states, including pure and high-entangled ones [2, 3]. This recent idea of engineering by dissipation [4—8]
has promoted a dissipative time evolution of the system dynamics to the same level of importance as that
obtained with a unitary evolution.

Time periodic modulations can also strongly modify the state of a quantum system. In the coherent limit,
time-periodic modulations implicate an explicit time-periodicity of the Hamiltonian, i.e.,
H@+ T) = H(t + 2w/w) = H(t), where T'is the driving period and w is the frequency of modulations. The
system dynamics is governed by the Floquet states [9—11]; i.e., the eigenstates of the unitary Floquet propagator

Ur = Texp [—i j(; "H (T) dT], where 7 is the time-ordering operator. The particular structure of the Floquet

propagator, and thus the properties of the Floquet states, depend on modulation parameters. This allows to
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grasp effects [11-20] which are out of reach of experimentally available time-independent Hamiltonians in atom
optics, optomechanics, and solid state physics.

Our key objective here is to investigate the combined effect of all three factors, namely (i) many-body
interactions, (ii) coupling to an environment, and (iii) periodically varying external driving. We start by
introducing the notion of Floquet maps which constitute an extension to the dissipative case [11] of the unitary
Floquet propagator [9, 10], and demonstrate how those can be used to obtain non-equilibrium asymptotic
states. We next study a many-body model, a driven Bose-Hubbard dimer, and use both a full quantum
mechanical treatment and a mean-field description, to gain insight into the properties of the time-periodic
asymptotic states.

2. Dissipative Floquet maps

We consider the dynamics of a general M-dimensional system modeled with a quantum master equation whose
generator L is of Lindblad form [21-24]

%Q = L(0) = —i[H(1), 0] + D(0). ey

The first term on the rhs describes the unitary evolution of the system’s density operator g, governed by the time-
periodic Hamiltonian H(¢). The dissipator

M?—1

Do) = ) ’Vkl(l‘)[VkQVzT - %{VFV/@ g}]y ©))
Lk=1

is built from the set of operators { i}, which, together with the normalized identity, V; = 1/M, span the
Hilbert—Schmidt space 3y, of the operators acting in the M-dimensional Hilbert space [25]. Note that all
parameters of the system are scaled with respect to the Planck constant /.

Strictly speaking, modulations affect both the unitary and the dissipative part of the generator £,, and in
general both the Hamiltonian H(#) and the dissipative matrix I'(t) = +,,(t), become time-dependent
[11,12,23,26]. The complete theoretical foundation of a time-dependent master equation of the type (1) still
remains an open problem [27, 28]. However, if the matrix I'(¢) is positive semi-definite at any instant of time,
the propagator P, = Texp( fs ' L.d7) is completely positive and trace-preserving. In this case a master
equation in the form of (1) is meaningful [23]. This in turn provides a set-up which is frequently employed to
model quantum systems operating far from equilibrium; see, e.g., [8, 29-31].

When the generator L; is time dependent, the propagator 7, , depends on both the starting time s and the
final time t. The closure of the set of propagators for different times is lost and they no longer form a semi-group.
Itis stated by Lendi [28] that ‘the best chance to find a solution to a master equation (with a time-dependent
generator) is only offered by a possible existence of transformations which eliminate the time dependence’.
Consistently, most studies until now have focused on removing the time-dependence when dealing with time-
periodic generators, either by (i) finding a proper gauge, which makes the original time-periodic Hamiltonian
time-independent [23, 32] and then assuming that the dissipator remains time-independent in the new frame
(this is often a good approximation in quantum optics, where frequencies of modulations are much higher than
the decay rates), or (ii) by changing to the Floquet basis of the Hamiltonian H(#) and then performing an
additional secular approximation [8], or (iii) by constructing Magnus expansion-like approximations [33]. All
these strategies result in deriving an effective time-independent generator L of the Lindblad form. Once the
time-dependence is removed, one has to calculate the kernel of L to find the asymptotic state g, of the
system, i.e., Lefr 050 = 0. Under fairly general conditions [23, 34], the time-homogeneous propagator
P = exp(Lgt) relaxes towards a unique attractor g, of the dissipative quantum evolution. However, the
above discussed approximations cannot always be justified away from the case of high frequency driving. Below
we propose an approach which does not demand the reduction to such a time-independent form and thus
avoids those corresponding approximation schemes. Note also that it is not necessary to switch to the Floquet
basis of the driven system Hamiltonian.

Because the master equation (1) is manifestly linear, we can in the case of a time-periodic generator £,
readily resort to the Floquet theorem [11, 35, 36]. We concentrate next on the one period propagator
Pe = Po,r = Texp( j(; ! L,d7) which we refer to as the Floquet map. The Floquet map possesses at least one
(possibly degenerate) eigenvalue 1 and all other eigenvalues lie inside the unit circle. Assuming that the Floquet
map is irreducible [2], the attractor g, of the map is given by its fixed point, i.e., the eigen-operator
corresponding to the eigenvalue 1, Prg; = ¢,. More generally, the number of different attractor solutions is
directly related to the symmetries of the generator £, [37]. Particularly, in absence of such additional symmetries
the resulting asymptotic attractor assumes the unique fixed point solution. Therefore, after a sufficiently large
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time span any initial density operator g () will converge to the time-periodic asymptotic state g, (¢), i.e.,
00(ty) — 0.(mT + t,) for aninteger m >> 1. The operator 0; = 9,(0) = g, (T) is the asymptotic density
operator of the system at the stroboscopic instants of time. Because g, (¢) is periodic in time,

0.(mT + s) = 0,(s), the asymptotic density matrix for any instance of time ¢ can be calculated via propagating
0.(0) up to timess.

3. Model study: Bose-Hubbard dimer

To exemplify the ample physics expected to emerge from the interplay of many-body interactions, dissipation
and periodic driving, we consider a system composed of N interacting bosonic atoms hopping over a dimer
which is subjected to periodic driving. We consider the system Hamiltonian

H(t) = —J (b by + bby) + % S ni(n — 1) + ety — m), 3)

j=1,2

where ] denotes the tunneling amplitude, Uis the interaction strength, and ¢ () represents the modulation of
thelocal potential. In particular we choose e (t) = €(t + T) = p, + p, sin(wt), where i, presents a static and
ft; models a dynamic energy offset between the two sites. Here, bjand b]'." are the annihilation and creation
operators of an atom at site j,and n; = b]T bj. This Hamiltonian has been previously studied theoretically in
[38—41] and has been implemented in several recent experimental studies [42, 43]. However, to the best of our
knowledge, the joint action of all three ingredients—interaction, dissipation and temporal driving—has not
been addressed before.

With the coupling constant y taken to be time-independent, we use D; = D with the single jump operator
[3,44]

V= (b + b))(b, — by). 4)

This dissipator tends to ‘synchronize’ the dynamics on the dimer sites by constantly recycling anti-symmetric
out-phase modes into the symmetric in-phase ones. Note that our particular setup serves as an illustration only.
The Floquet map approach applies equally well to other cases, e.g., when both parts of the generator, i.e., the
unitary and dissipative parts both are time-periodic or when there are several jump operators acting on the
system. Because the jump operator (4) is non-Hermitian, the propagators P, ; are not unital and the attractor
solution is not the maximally mixed state, g, = 1/M.

To gain additional insight into the physics of the model, we derive a set of mean-field equations and compare
its attractor solutions with those of the quantum Floquet map Pg. For the dimer problem, it is convenient to
recast the master equation (1) in terms of the spin operators

1 i 1
Sc=—(0b b, +blb), S,=——b,—bjb), S, =—m — m), 5
2N( 1 by + by by) y 2N( 1 by — byby) 2N(n1 1) (5)

and then study their evolution in the Heisenberg picture [24]. For alarge number of atoms N > 1, the
commutator [S;, §,] = iS,/N becomes negligibly small and similarly for other cyclic permutations. Replacing
operators with their expectation values, (Sy) = tr[0Sk], and denoting (Si) by Sy, we end up with

dst" = 2¢(1)S, — 2UNS.S, + 8N (S, + S2), (6a)
ds,
= = 2608 + 2UNS,S; + 2JS: — 8NS5, (6b)
CLSZ = —2JS, — 8yNS,S;, (6¢)
t

where we have neglected terms proportional to v of lower order in N. The replacement of operators by their
expectation values is justified provided that (AB), ~ (A), (B),. This is not guaranteed a priori, and, for a
dissipative system, the commutator behaves differently compared to the unitary setup. A necessary favorable
comparison with the results of the exact quantum analysis then justifies the validity of this mean-field
approximation.

The structure of the mean-field equations in (6a)—(6¢) implies that %SZ = 0. Therefore the quantity

$2 =82+ Sf + S$%isaconstant of motion. This is consistent with the preservation of the total number of
bosons N; see the definitions given by (5). We therefore can reduce the mean-field evolutions to the surface of a
Bloch sphere; i.e.,
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Figure 1. (a) Bifurcation diagram for the stroboscopic mean-field values of S, = (S,) as a function of the interaction strength of the
mean-field equations (64)—(8). The arrows indicate the three regimes presented in figure 2. (b) Spectral gap A, (c) time averaged
negativity V', and (d) time-averaged purity P of the dissipative Floquet map versus the interaction strength for different particle
numbers N. The time-averaged negativity /, the time-averaged purity P, and the spectral gap A are defined by (9), (10) and (12). The
inset in panel (b) depicts the eigenvalues \; of the Floquet map Pg for N = 100and UN /] = 1. The other parameters are

o/l =1, /] =34, w/J=1,vN/] = 0.1.

(Ser Sy S.) = %{cos(w)sinw), sin()sin(9), cos(¥)], %

yielding the equations of motion

iﬂ = 2] sin(y) + 4yN cos(p)cos(F),

dt
d _ cos(¥) _ P AL(D)
dtgp =2 () cos(p) — 2e(t) + UN cos(¥) — 4yN ()’ (8)

We next analyze the quantum dynamics by using both the Floquet map computed via (1)—(4) and contrast
the results with the mean-field equations (8).

To construct the Floquet map, we use the standard scheme of a vectorization of the density matrix, which
allows to transform (1) into a system of linear differential equations with time-periodic coefficients. The Floquet
map is obtained by propagating the 6-Kronecker basis [45] over the full period T. Finally, the asymptotic density
matrix is given as the eigen-element of the map corresponding to the unique eigenvalue one.

To extract the classical attractor solution of the mean-field system, we evolve (8) from randomly chosen
initial conditions, and, after a transient time 10*T, record the value of S, at the next 250 stroboscopic instants of
time. The so obtained bifurcation diagram is presented in figure 1(a). As the interaction UN varies, we detect
regions containing limit cycles of different periods, chaotic attractors, and transitions between them [46]. We
anticipate that different dynamical regimes of the mean-field description are characterized by significantly
different properties of the system in the quantum limit for N >> 1. To check this hypothesis, we calculate the
time-averaged purity

T
P = lf tr [0, ()] dt )
T Jo
and also the time-averaged negativity,
_ 1 T
N=— [ Maoat. (10)
T Jo
Here, N represents the negativity [47],
1
Nol = => 1okl (11)
2 k=1

which characterizes the degree of entanglement in a two-mode system of N indistinguishable bosons.

Figures 1(c) and (d) show the dependence of the two quantities as functions of the interaction strength. It is
interesting that, as the number of bosons increases, changes of the time-averaged purity and negativity become
more pronounced in the vicinity of bifurcations of the mean-field equations.
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Figure 2. (a)—(c) Poincaré-Husimi representation of the asymptotic operator p,(0) for (a) UN /] = 0.2, (b) UN /] = 0.8 and (c)
UN/J = 1.Symbols indicate attractors of the mean-field system, (8), period-two () and period-four () limit cycles. (d) Poincaré
section of the mean-field attractor for UN /J = 1. The other parameters are p1,/] = 1, pt,/J] = 3.4, w/J = 1, 7N /] = 0.1,and

N = 250.

The inverse tangent bifurcation [46] near UN /J = 2 (the transition from chaos to a period-one limit cycle)
is striking: both the negativity and the purity of the asymptotic state move to higher values at this point. This
relates to the concept of ‘dissipative engineering’ used to shape a stationary many-body system into a pure
highly-entangled equilibrium state with the help of specially designed dissipative operators [4]. Here, we observe
atrend towards a pure highly-entangled non-equilibrium state upon increasing the particle number N. An
intriguing question arises as to which values both characteristics saturate in the thermodynamiclimit N — cc.
Will, for example, the purity value approach unity? If ‘yes’ then we would have a first example of dissipative
engineering of a time-periodic quantum state. Unfortunately, it was not possible for us to go beyond N ~ 300
by using the numerical spectral methods.

Furthermore, spectral properties of a Floquet map may also provide insight into the relaxation towards the
corresponding quantum attractor. A typical spectrum of a map is shown in the inset of figure 1(b). It has a shape
inherent to the spectra of completely positive trace-preserving maps [45]. Namely, it has the spectral radius 1,
includes the single eigenvalue A; = 1, and is invariant under complex conjugation. The spectral gap

A=1—1X\l (12)

where ), is the second largest eigenvalue by absolute value, can be used to estimate the inverse relaxation time
from a randomly chosen initial state [48—50]. The spectral gap also exhibits a strong dependence on the
interaction strength; see figure 1(b).

Different mean-field regimes can be visualized by plotting stroboscopic Poincaré sections on the plane
{9, @}. In figure 2, classical Poincaré sections are compared with the Poincaré—Husimi distributions p(¢J, ¢) of
the quantum asymptotic state obtained by projecting the density operator g, (0) on the set of the generalized
SU(2) coherent states [51]. For UN /] = 0.2 (0.8), the mean-field model predicts two (six) points on the
Poincaré section, corresponding to period-two (period-two plus period-four) attractor(s); see symbols in
figures 2(a, b). The Poincaré—Husimi distributions, figures 2(a) and (b), reveal a concentration of p(¢J, ¢) near
these points. We attribute the minor mismatch to finite-size effects. For UN /] = 1, the mean-field system (8)
exhibits a chaotic attractor, figure 2(d), and the Poincaré—Husimi distribution, figure 2(¢), fits the structure of
this classical attractor for N = 250. Figure 3 shows three-dimensional plots of the quantum attractors super-
imposed on the classical Poincaré sections both for the case in which the mean-field equations predict two points
(from a period-two limit cycle) or a chaotic attractor, corresponding respectively to figures 2(a) and (c), (d).

It is noteworthy that the inverse particle number 1 /N can be thought of as an effective Planck constant, thus
allowing for the comparison with the results obtained for single-particle models [52—55]; note in addition those
cited in the mini-review [54].

4. Existence of an effective time-independent generator

The Floquet map Pk is a completely-positive and trace-preserving map which belongs, following the
nomenclature introduced in [56], to the class of time-dependent Markovian channels. It is an interesting
question whether it is possible to find an effective time-independent generator L. of Lindblad form (1) and (2)
that can mimic the action of the original generator at stroboscopic instants of time, such that Pz = exp(Leg T).
There are three necessary (and altogether sufficient) conditions which any Lindblad generator has to fulfill: (i)
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Figure 3. 3D versions of the Poincaré—Husimi representation of the asymptotic states. Left panel corresponds to figure 2(a) while right
panel corresponds to figures 2(c) and (d). Bottom planes present the Poincaré sections (dots) of the corresponding classical attractors
(the line on the left plane shows full period-two cycle).

trace preservation, tr[L.gA] = tr[Al], (i) Hermiticity preservation, (L.gA) = LA, if AT = A, and (iii) so-
called ‘conditionally complete positivity’ [57].

This is in distinct contrast with the case of a unitary evolution [9, 14]. The effective time-independent
Hermitian operator Hgcan always be obtained as the logarithm of the unitary Floquet propagator

Ur = Texp [—é J(; "H () dT]. Moreover, not only its prinicpal branch but any branch of the logarithm yields a

valid H¢. The non-unitary case is much more restricted: only the branch of the logarithm of a dissipative
Floquet map which produces an operator possessing properties (i—iii) yields a legitimate Lindblad generator
Eeff [57].

Condition (i) holds by default if one starts with a trace preserving map (which is our case). Condition (iii) can
formally be checked with the algorithm given in [57]. However, it is hardly realizable in practice when M > 2
because it involves repeated solution of an O(M*) optimization problem within the mixed-integer semidefinite
programming framework [58]. Condition (ii) is much easier to check.

Hermiticity preservation demands that the spectrum of L. is invariant under complex conjugation; in
other words, it should consist of real eigenvalues or/and of complex conjugated pairs of eigenvalues. If there are
negative real-valued eigenvalues (strictly speaking, of odd algebraic multiplicity) in the spectrum { A;} of the map
P, itis impossible to fulfill the condition of the invariance of the spectrum of L. (which is alogarithmic branch
of Pg) under complex conjugation. This is because any branch of the logarithm of a negative real-valued number
can neither produce a real number nor a complex conjugated pair. Figure 4 depicts the number of eigenvalues
{Aj}withRe(\) < —gand|[Im()\)| < ¢, e = 1077, as a function of the driving frequency w. The dependence
reveals that the condition is not fulfilled in the most interesting case of non-adiabatic and non-diabatic driving,
when the asymptotic state of the dimer is sculpted by the modulations. Apparently, an effective stroboscopic
time-independent Lindblad generator does not exist in this parameter region.

5. Conclusions

We demonstrated that the concept of dissipative Floquet maps provides an operational way to identify ‘quantum
attractors’, i.e., asymptotic time-periodic states of modulated open quantum systems, and estimate the
relaxation time towards them. To illustrate this idea, we have applied the concept to a dissipative and
periodically driven many-body model. We have studied the model both numerically exactly and, in the limit of a
large particle number, within a mean-field description. The latter predicts bifurcations from regular to chaotic
attractors as the interaction strength is varied. The analysis shows a strong dependence of quantum
characteristics of the asymptotic non-equilibrium many-body state, such as the purity and the negativity, on the
interaction strength, especially in proximity of bifurcations predicted by the mean-field theory.

Itis interesting to contrast the idea of Floquet maps produced by time-periodic Lindblad generators, and an
approximate Bloch-Redfield master, a well-known alternative to the Lindblad formalism [59]. Typically one
starts from a bilinear coupling of the system to a heat bath of harmonic oscillators. The bath is characterized by
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Figure 4. Number of negative real-valued eigenvalues in the spectrum of the Floquet map P as function of the driving frequency w
(see text for definition). Whenever there is at least one negative eigenvalue, the map does not allow for an effective time-independent
stroboscopic Lindblad generator L., such that Ps = exp(Leg T). The parametersare /] = 1, p, /] = 3.4, UN/] =1,
YN /] = 0.1,and N = 30.

its spectral properties. When the model Hamiltonian is time-periodic, it is possible, by assuming an Ohmic heat
bath and following the Born—Markov ideology, to derive the so-called Floquet-Markov equation [11, 60]. This
linear equation, similar to (1), governs the evolution of the system density operator; it is also local in time with a
time-periodic generator. Formally it is thus possible to construct a corresponding Floquet map in this case as
well. However, this so obtained map does not guarantee completely positivity for the evolution of the reduced
density operator [61]; even more problematic is that it may even not necessarily assure the positivity of the
reduced density operator on the way to its asymptotic limit, see [62—64] for detailed comparisons.

We conclude by pointing out possible research directions which may benefit from the use of Floquet maps
within the Lindblad framework. It has been proposed to use time-periodic driving to create, for the situation
with coherent Hamiltonian systems, effective topologically protected states [ 15, 65]. The important problems of
the stability of these states against dissipation or their creation with a synthetic dissipation [66] could be
investigated by making use of our concept. Another interesting question is whether the idea of ‘engineering by
dissipation’ [2, 6, 7, 25] can be extended to periodically modulated systems. Finally, recent progress in the field of
many-body localization (MBL) inaugurates yet another potential application; the effect of temporal driving on
the localization has been addressed in [67-69] and, very recently, the dynamics of open MBL systems was
considered in [70—72]. We expect that the idea to combine the two latter ingredients may soon invigorate the
MBL community in pursuing future research in this spirit; see also a very recent [73].
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