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Occurrence of discontinuities in the performance of finite-time quantum Otto cycles
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We study a quantum Otto cycle in which the strokes are performed in finite time. The cycle involves energy
measurements at the end of each stroke to allow for the respective determination of work. We then optimize for
the work and efficiency of the cycle by varying the time spent in the different strokes and find that the optimal
value of the ratio of time spent on each stroke goes through sudden changes as the parameters of this cycle vary
continuously. The position of these discontinuities depends on the optimized quantity under consideration such
as the net work output or the efficiency.
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I. INTRODUCTION

Recent years have witnessed a rapid growth in the study of
heat engines operating at the nanoscale. More generally, this
area of research is increasingly progressing toward a multitude
of energy efficient nanotechnologies [1–5]. On the experimen-
tal front, there have been several realizations of mesoscopic
heat engines that employ a wide range of working fluids, albeit
operating almost exclusively in the classical domain. Typical
examples include piezoelectric materials [6], colloidal systems
[7], and even a single atom [8], to name but a few.

On the other hand, our theoretical understanding of
quantum thermodynamics has undergone considerable de-
velopment that has enhanced our ability to manipulate and
control thermal devices at the nanoscale. For example, with
the use of tailored driving protocols in various strategies
collectively termed shortcuts to adiabaticity, we are equipped
to generate adiabatic or adiabatic-like dynamics in systems that
are driven within a finite amount of time [9–21]. However,
their practical usefulness is conditional upon the relative
timescales of the cycle and the nature of the driving fields
[22]. More recently, studies of many-body working fluids in
thermodynamic cycles are providing guiding principles that
can enhance the performance of quantum heat engines. For
instance, quantum statistics has been shown to significantly
influence the work distribution of Hamiltonian processes
[23,24]. In particular, the interplay between quantum statistics
and other properties of the working fluid such as the trap
geometry [25] and/or many-body interactions [26] can result
in augmenting the performance of a heat engine operating in
the quantum regime. See Refs. [4,27–30] for recent reviews
on quantum thermodynamics and heat engines.

Furthermore, our understanding of heat engines at the
nanoscale has benefited from salient advances in statistical
physics, namely the area of fluctuation theorems [31–35].
Among the various fundamental relations, we mention in
particular the Jarzynski equality that has been validated ex-
perimentally in the classical regime; e.g., see Refs. [31,32,36].
Although presenting a formidable challenge for experiment,

the Jarzynski equality has also been verified also in the
quantum regime [37,38]. These fluctuation relations allow
us to explore various peculiarities in the thermodynamic
behavior of nonequilibrium heat engines [39,40]. Such pe-
culiarities may arise from (but are not limited to) squeezed
or nonthermal baths [41–45], irreversibility [46,47], finite-
time effects of the driving [48,49], and more recently from
the time-asymmetry used in the driving protocol [50,51].
Moreover, cycles that contain sudden changes in the Hamilto-
nian parameters have also been investigated [52–55], thereby
accounting for the role of noise in the cycles’ performance as
well [56,57].

In this study, we further develop the understanding of
nonequilibrium heat engines that operate during an overall
time span τ upon employing strokes that are individually
performed in finite time. In our analysis of the cycle, we
introduce an explicit projective energy measurement, which
is performed before and after each stroke of the cycle, so as
to determine the work via the two-time energy measurements
protocol [58]. We then explore the nonequilibrium behavior by
exploring the conditions for optimal work output and efficiency
of the cycle and find characteristic discontinuities as a function
of the system parameters.

In Sec. II we describe the Otto cycle setup [59] and detail
the relevant parameters and figure of merits of the quantum
engine. The Otto cycle is composed of four strokes: two
unitary strokes, of total time τu, intercalated by two strokes
in which the system is weakly coupled to baths, for a total
time τb. Hence, the total duration of the cycle is τ = τu + τb.
We consider a single ion in a harmonic trap as the working
substance of the system, while each bath consists of two
lasers weakly coupled to the system, which raise and lower
the occupation number of the quantum harmonic oscillator at
different rates. The overall effect of this weak system-bath
interaction is such that after sufficient time has elapsed, the
system becomes a thermal-like state at an effective temperature
determined by a ratio involving the raising and lowering
occupation number rates.
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In Sec. III we first analyze the limiting case of the ideal
bath couplings where the system relaxes to final states that
are effectively thermal-like at the end of the two dissipative
strokes.

In Sec. IV we generalize our study to the case of an engine
cycle in which the dissipative strokes are not coupled for long
enough times to bring the system to a thermal-like state. Last,
we summarize our main findings and present our conclusions
in Sec. V.

II. MODEL

We study as an idealized model for a quantum Otto
cycle a one-dimensional harmonic oscillator whose trapping
frequency can be controlled in time and which is weakly
coupled to external baths [61]; see Fig. 1. We focus on a
particular experimental realization made with a single ion in
a Paul trap, which can be cooled and heated via side-band
cooling by the use of two simultaneously acting lasers [62].
The evolution of the density operator ρ̂(t) of the system to the
external baths can thus be described by a master equation in
(Markovian) Lindblad form [63,64],

dρ̂

dt
= − i

�
[Ĥ (t),ρ̂] + D(ρ̂,t). (1)

The time-dependent system Hamiltonian is explicitly given by

Ĥ (t) = (
n̂ + 1

2

)
�ω(t). (2)

Here, n̂ = â†â is the number operator and â (â†) is the lowering
(raising) operator, while ω(t) denotes the time-dependent
frequency of the trap. The dissipator D(ρ,t) in Eq. (1) is given
by [65]

D(ρ̂,t) = λ+(t)(2â†ρ̂â − {ââ†,ρ̂})
+ λ−(t)(2âρ̂â† − {â†â,ρ̂}), (3)

where λ+ and λ− denote the raising and lowering occupation
rates, respectively. Note that as a consequence of the protocol
used for ω2(t) (see Fig. 1), the system Hamiltonian does not
change in time during the dissipative parts of the cycle when
the external baths are acting on the system. Given a fixed
trapping frequency ω, the dissipator tends to drive the system
toward the diagonal quantum state that assumes the form

ρ̂ =
∑

n

ρnn|n〉〈n| =
∑

n

e−(n+1/2)β�ω

Z(β,ω)
|n〉〈n|, (4)

where ρnn denotes the normalized occupation probability in
state |n〉, being the eigenstate of the Hamiltonian Eq. (2) and
the effective inverse temperature β of the steady state is such
that λ+/λ− = e−β�ω. Z(β,ω) is the partition function of a
1D harmonic oscillator at inverse temperature β and trapping
frequency ω and is given by

Z(β,ω) = e−β�ω/2

1 − e−β�ω
. (5)

The relative strengths of λ+ and λ− determine the effective
temperature for the system, provided that the steady state is
reached. We would like to emphasize that although the baths
considered can prepare a single ion in a thermal-like state, they
do not constitute actual thermal baths. Instead, they impose a

FIG. 1. (a) Schematics of a quantum Otto cycle of total time
duration τ = τu + τb. Mean energy 〈E〉 versus a time-dependent
manipulation of the trap frequency ω(t): 1 → 2. Compression:
Unitary (subscript u) time evolution using a linearly increasing ω2(t)
during the time span ruτu. 2 → 3: Isoparametric coupling to the hot
bath (subscript b) at effective temperature 1/β3 during time rbτb.
3 → 4: Expansion: Unitary time evolution with linearly decreasing
ω2(t) during time interval (1 − ru)τu. 4 → 1: Isoparametric coupling
to the cold bath at effective temperature 1/β1 in remaining time span
(1 − rb)τb. Projective energy measurements �[ρ̂(ti)] are executed at
the end of each stroke. (b) Time dependence of cycle parameters.
The square of the angular frequency variation ω2(t), depicted by the
blue continuous line, increases linearly between t1 and t2 = t1 + ruτu

while the bath coupling parameters λ±, given by the red dot-dashed
line (λ+) and the green dashed line (λ−), respectively, are held at
vanishing values (zero system-bath coupling). Subsequently, after
an instantaneous energy measurement and until time t3 = t2 + rbτb,
both λ± are abruptly adjusted to values that yield the hot effective
temperature, 1/β3, while ω2(t) is held fixed. After yet another energy
measurement and till time t4 = t3 + (1 − ru)τu, the angular frequency
ω2(t) is linearly reduced while the bath-coupling strengths λ± are
again switched to zero. In the last stroke between t4 and t1 + τ the
angular frequency is held fixed while the λ± are turned to their new
respective values corresponding to a lower effective temperature,
1/β1. Projective energy measurements are represented by vertical
black dotted lines. Note that the ratio λ+/λ− is different in the strokes,
indicating different effective temperatures in the two baths.

certain distribution of occupation of the energy levels that is
independent of the energy difference between the levels. Given
the nonthermal property of the baths we prefer to refer more
precisely to the specific steady state of the (time independent)
master equation as “thermal-like” and to β as an “effective”
inverse temperature.

Next we consider the operation of the quanutm Otto engine
in greater detail; see Fig. 1. The cycle consists of two unitary
strokes, each followed by a corresponding dissipative stroke in
which the system is weakly coupled to the environment while
the system parameters are held fixed (isoparametric processes)
[25,60]. We stress that the dissipative coupling is based on the
weak coupling assumption, where the raising and lowering
rates are much smaller than the internal electronic levels of
the ion. In complete analogy to the classical Otto cycle, no
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heat is thus being exchanged during the unitary strokes 1 → 2
and 3 → 4, while no work is done during the isoparametric
processes 2 → 3 and from 4 → 1 of the cycle (see below for
a more detailed explanation).

The evaluation of quantum work fluctuations [58,66,67]
requires nonselective, projective energy measurements on
the total combined system composed of the system, the
baths and the mutual system-bath interactions [67,68]. The
determination of work in a stroke operation thus mandates
(nonselective) energy measurements to be applied before and
after each stroke of the Otto cycle.

Typically, this presents a formidable challenge, both for
theory and even more so for experiments. This difficult task
persists even in the case in which the coupling among the
baths and the system of interest is weak [69]. Namely, with
all energetic contributions of the system-bath interactions
being neglected, the work fluctuations for the system are still
composed of both the changes in the internal energy of the
system and, in general, finite energy exchanges with the baths.

Both these contributions are typically nonvanishing. How-
ever, the difficult task becomes feasible if, for instance, the
average heat exchange is vanishing, yielding an average work
exchange 〈W 〉 that is equal to the change of the energy of
the system 〈�E〉; i.e., 〈W 〉 = 〈�E〉 [70]. Likewise, when the
work on the total system is vanishing, it implies that the change
of the energy of the system alone is determined solely by the
typically quite intricate heat exchange Q among the baths
and the system; i.e., 〈�E〉 = 〈Q〉. In this case the projective
measurement of the (nonselective) bare system energy alone is
sufficient [70]. It thus demands that the quantum state given by
the corresponding reduced density operator must be calculated.
This in turn allows the overall average exchanges of either
work or heat to be evaluated.

We next introduce a nonselective energy postmeasurement
following each stroke of the cycle. This can be formalized by
writing down the corresponding (postmeasurement) density
operators explicitly. The average energies are obtained in
terms of projective energy measurements of the corresponding
quantum state of the Otto engine. By introducing the projection
operator �n(t) = |n(t)〉〈n(t)|, where |n(t)〉 is the instantaneous
nth energy eigenstate of the corresponding time-frozen system
Hamiltonian at time t , the effect of the postmeasurement on
the state at time t is then given by a nonselective quantum state
and the reduced density operator ρ̂(t+) that reads

ρ̂(t+) = Mt [ρ̂(t)] =
∑

n

�n(t)ρ̂(t)�n(t). (6)

Since we are primarily interested in studying time-asymmetric
protocols, we consider cycles in which a total time span τu is
spent on the unitary strokes and a total time τb on the dissipative
strokes. We further parametrize the distribution of the time
intervals within the unitary and dissipative strokes to allow for
asymmetry in the driving protocol. For instance, the time spent
on the compression stroke 1 → 2 is given by t2 − t1 = ruτu,
where ru is a real number between 0 and 1, while the time
spent on the expansion stroke, 3 → 4, is given by t4 − t3 =
(1 − ru)τu. Similarly, for the dissipative strokes, coupling to
the hot bath 2 → 3 is performed in time t3 − t2 = rbτb and to
the cold bath 4 → 1, in time t1 + τ − t4 = (1 − rb)τb.

For the unitary strokes of the cycle, we consider a protocol
in which ω2(t) varies linearly between ω1 and ω2, such
that ω2(t) = ω2

1 + (ω2
2 − ω2

1)(t − t1)/ruτu for the compression
stroke and ω2(t) = ω2

2 + (ω2
1 − ω2

2)(t − t3)/[(1 − ru)τu] for
the expansion stroke. Here we have used t1 and t3, respectively,
for the times at which the system is at stages 1 and 3 of the
cycle. A plot of the time dependence of ω2(t) is given in
Fig. 1(b) (continuous blue line).

On the dissipative end of things, the coupling to the hot bath
is turned on instantaneously at time t+2 from zero to the values
λ±

3 and back to zero at time t3. Similarly, on the cold end, the
bath couplings are again instantaneously switched from zero
to λ±

1 for the time between t+4 and t1 + τ . A depiction of the
change of λ± is given in Fig. 1(b), where the green-dashed line
represents λ− and the dot-dashed red line depicts λ+. Note that
λ− > λ+ and that their ratio is different in the two dissipative
strokes, indicating that the system is driven toward different
Gibbs-like states.

In the following we use the notation Sa→b(ρ̂) for the map
corresponding to the stroke from a to b acting on the state
ρ̂. Explicitly, considering a postmeasurement density operator
ρ̂(t+1 ) for the system, just after an energy measurement, the
various strokes are given by

ρ̂(t+2 ) = S1→2[ρ̂(t+1 )]

= Mt2 [Kt1,t2 ρ̂(t+1 )], (7)

where Kt,t ′ [ρ̂(t)] = Ût,t ′ ρ̂(t)Û †
t,t ′ with Ût,t ′ = T exp[−

i
∫ t ′

t
Ĥ (s)ds] and T denotes time ordering. It then follows that

ρ̂(t+3 ) = S2→3[ρ̂(t+2 )]

= Mt3 [	t2,t3,ω2,λ
±
3
ρ̂(t+2 )], (8)

where 	t2,t3,ω2,λ
±
3

is a nonunitary map that evolves a density
operator ρ̂(t) from t+2 to t3 using the dissipative Lindblad
master equation [Eqs. (1)–(3)] with ω(t) = ω2 and λ±(t) =
λ±

3 , where the parameters are time independent. The cycle
closes upon applying the last two strokes, i.e.,

ρ̂(t+4 ) = S3→4[ρ̂(t+3 )]

= Mt4 [Kt3,t4 ρ̂(t+3 )], (9)

and back to the initial steady state, a fixed point of the cycle
composed of four strokes, i.e.,

ρ̂(t+1 + τ ) = ρ̂(t+1 ) = S4→1[ρ̂(t+4 )]

= Mt1 [	t4,t1+τ,ω1,λ
±
1
ρ̂(t+4 )]. (10)

The steady state of the map is thus used to characterize
the cycle given by the combination of the four strokes, which
in our case is unique, and is equivalent to the diagonal fixed
point, obeying

ρ̂(t+1 ) =S4→1[S3→4(S2→3{S1→2[ρ̂(t+1 )]})]. (11)

Because the compression and expansion strokes are unitary
the system is isolated from the baths; i.e., no heat can be
exchanged. In the presence of vanishing heat the mean work
output determines the average work via the sole difference of
average energies of the system. This implies that the average
work for the compression and expansion strokes are defined
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by the average of the two projectively measured energies of
the isolated system [58,67]; i.e.,

〈W1→2〉 = 〈E2〉 − 〈E1〉, (12)

〈W3→4〉 = 〈E4〉 − 〈E3〉, (13)

where the average energies are

〈Ei〉 = tr[Ĥ (ti)ρ̂(ti)]. (14)

Clearly the average energy can also be computed using the post
measurement density operator giving 〈Ei〉 = tr[Ĥ (ti)ρ̂(t+i )].

Keeping in mind that the baths are weakly coupled to the
system, heat exchange with any bath is solely given by the
negative of the corresponding bath energy changes. Moreover,
during the strokes 2 → 3 and 4 → 1 the system Hamiltonian
does not change; put differently, no work is applied on the
total system composed of system and baths including the
weak mutual interactions (energy conservation). Therefore,
the average work applied to the system with the control
parameter for Ĥ held constant is vanishing as well [32,69]. The
balance of energies exchanged thus implies that average heat
exchange follows from a corresponding change in bare system
energy alone, assuming here that the system Hamiltonian is
not dressed by its interaction with the environment [71]. The
average system energies are evaluated from the corresponding
quantum state reached at the corresponding times {ti}. These
mean values follow from the set of projective measurements of
the system Hamiltonian by use of the corresponding reduced
density operator for the system at time ρ̂(ti).

Accordingly, we hence find that the average values of heat
exchanged are determined by

〈Q2→3〉 = 〈E3〉 − 〈E2〉, (15)

〈Q4→1〉 = 〈E1〉 − 〈E4〉. (16)

The net work of the cycle is thus given by

〈W 〉 = 〈W1→2〉 + 〈W3→4〉. (17)

The efficiency of this cycle can be appropriately defined as
the ratio involving the net average work output 〈W 〉 divided
by the net heat transferred from the hot bath into the system,
Q2→3. Note that here we adopt a negative sign convention
for the net work, because we are primarily interested in a
thermodynamic engine, which does work on a load. The
efficiency η for this quantum Otto cycle is thus given by

η = − 〈W 〉
〈Q2→3〉 . (18)

III. OPTIMAL TIME DISTRIBUTION BETWEEN UNITARY
STROKES

Next, we numerically investigate different scenarios in
which the operations are performed in finite time. For details of
our numerical analysis, we refer the readers to the Appendix.
We begin by first considering the cases in which the time spans
of the processes 2 → 3 and 4 → 1 (i.e., rbτb and (1 − rb)τb)
are both sufficiently long, such that we can safely assume that
the quantum states 1 and 3, after the respective dissipative

strokes, are given by a thermal-like quantum state; i.e.,

ρ̂i =
∑

n

e−(n+1/2)βi�ωi

Z(βi,ωj )
|n〉〈n|, (19)

where i = 1, 3, ω3 = ω2. Upon combining Eqs. (7), (9), and
(12)–(14), it is possible to compute 〈W1→2〉 and 〈W3→4〉. Note
Refs. [74,75] for analytical expressions of the mean work for
various forms of ω(t).

We next search for the optimal distribution of the total time
spent on the unitary processes τu between the two strokes,
which is parametrized by ru. For instance, for ru = 0 the stroke
from 1 → 2 constitutes an abrupt quench, while a total of
time τu is spent in the stroke 3 → 4. For larger values of ru

the time spent in the stroke from 1 → 2 increases, while the
one from 3 → 4 decreases until ru = 1, i.e., when this last
stroke becomes an abrupt quench. The ratio ru for which the
net work is optimum is referred to as r∗

u,W
and we denote the

maximum work as 〈W 〉∗, given by

−〈W 〉∗ = max
ru

(−〈W 〉) (20)

(we remind the reader that the net work for an engine is
negative). We depict with Fig. 2(a) the value of r∗

u,W
as a

function of the total time spent on the unitary strokes τu. We
observe that at some critical values of τu, discontinuities in
the ratio r∗

u,W
occur. At the occurrence of these jumps, also

the derivative of the net work output changes abruptly; see
Fig. 2(c) and its inset.

FIG. 2. Optimal distribution of times between strokes. Optimal
values of the unitary parameter (a) r∗

u,W
and (b) r∗

u,η that optimize,
respectively, the work extracted 〈W 〉/�ω1 and efficiency η versus τu.
(c) The optimal work, 〈W 〉∗, corresponding to the values of r∗

u,W
in

(a) as a function of τu. (d) Maximal efficiency η∗ corresponding to the
values of r∗

u,b in (b) a function of τu. Hamiltonian and bath parameters
are ω2 = 2ω1, β1�ω1 = 0.5, β3�ω1 = 0.1 for all cycles. The insets in
(c, d) are closeups of the respective quantities at ω1τu ≈ 6.8, where
r∗
u,W

changes discontinuously, while r∗
u,η changes smoothly. We note

that the derivative of the optimal work 〈W 〉∗ changes abruptly, while
that of the maximum efficiency η∗ is smooth. The vertical dashed
black lines indicate the position of the jumps of r∗

u,W
and r∗

u,η.
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FIG. 3. Work transfer of a single compression and expansion
process. (a) 〈W1→2〉/�ω1 and (b) 〈W3→4〉/�ω1 as a function of ru

for the compression arm of an Otto cycle that operates between
ω1 and ω2 = 2ω1 with τuω1 = 2 (continuous blue line), τuω1 = 4
(dash-dotted red), τuω1 = 6 (dashed green). Inverse temperatures of
the bath are held at β1�ω1 = 0.5 and β3�ω1 = 0.1, respectively, for
the compression and for the expansion processes.

A similar result emerges when ru is chosen so as to
maximize the efficiency, denoted here as r∗

u,η; see Fig. 2(b).
The corresponding optimal efficiency is denoted as η∗ and it is

η∗ = max
ru

(η). (21)

The maximum efficiency η∗ as a function of τu is shown in
Fig. 2(d). In Fig. 2(b) we observe that the abrupt jumps are also
present in the values of r∗

u,η, although they occur at different
values of τu from the jumps in r∗

u,W . Moreover, in certain re-
gions of τu an abrupt jump of r∗

u,W
can occur while a continuous

variation of r∗
u,η occurs, as is the case for ω1τu ≈ 6.8; see the

insets of Figs. 2(c) and 2(d). Hence, given a total time τu for
the unitary strokes, the optimal distribution of times between
the strokes 1 → 2, e.g., ruτu, and 3 → 4, e.g., (1 − ru)τu, de-
pends on the quantity being optimized for; for instance, either
the net output work or the efficiency. Also note that values of
our numerically evaluated optimal efficiency are always below
that of the Carnot bound ηC = 1 − β3

β1
= 0.8 as they should be.

The nonlinear behavior in the optimal ratio r∗
u,W

and r∗
u,η

can be understood by analyzing the work output from a single
compression 〈W1→2〉 or expansion process 〈W3→4〉. As can be
seen from Fig. 3 (see also Ref. [18]), the work transferred in
a single unitary stroke becomes a nonmonotonic function of
the ratio ru when the value of τu becomes sufficiently large.
This behavior is ultimately responsible for the phenomenon
we observe. In fact, finding the optimal time spans between
the strokes stems from matching the optimal work output from
two nonmonotonic functions of time under the constraint of
a given total time spent on the two unitary strokes. In Fig. 3
we observe that the number of oscillations present in the work
output as a function of ru increases with the duration of total
time spent on the two unitaries τu

In Fig. 4, the value of average work (left) and efficiency
(right) as a function of the ratio ru are shown for different
values of τu. Since the work in each stroke is a nonmonotonic
function of the time spent, the net work, which is the sum
of work in the two unitary strokes becomes an oscillating

FIG. 4. Oscillations of the net work and efficiency. (Left panels)
Mean work extracted and (right panels) efficiency of cycles as
a function of ru for cycles with the parameters set at ω2 =
2ω1, β1�ω1 = 0.5, β3�ω1 = 0.1. Increasing number of oscillations
in both net work and efficiency with the unitary timescale τu results
in discontinuities in r∗

u,W
and r∗

u,η.

function. For larger τu values the number of local minima or
maxima of the net work output, or of the efficiency, increases as
the total time in the unitary strokes increases. The emergence
of a new global extremum can occur either via the increase
in magnitude of a local extremum, such that it becomes the
global one, or when the global extremum turns unstable and
in turn yields two extrema, with one of the two becoming
the new global extremum. The former route is reminiscent
of the behavior of the free energy as a function of the order
parameter as temperature changes in an ordinary first-order
phase transition, while the latter mimics the behavior of a
second-order phase transition.

IV. OPTIMAL TIME DISTRIBUTION WITHIN UNITARY
AND DISSIPATIVE STROKES

In the previous section, the state at the beginning of the
compression and expansion strokes, 1 and 3, respectively,
were assumed to be effectively thermal-like (because enough
operation time was spent on the two dissipative strokes 2 → 3
and 4 → 1). We now consider the case in which the time spans
of the dissipative strokes, rbτb and (1 − rb)τb, are too short for
thermalization to occur such that the quantum states in 1 and
3 are no longer thermal-like. Under such circumstances, as
detailed with Eq. (11), ρ̂(t+i ) is the (unique) fixed point of the
four strokes, which connects the quantum state 1 back to itself.
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Since after each energy measurement the density operator
is diagonal in the basis of instantaneous energy eigenstates,
computing ρ̂(t+1 ) amounts to finding the eigenvector associated
to the eigenvalue 1 of the corresponding Markovian map in
Eq. (11). In particular, we stress that the numerical evolution
of Eq. (1) in the strokes 2 → 3 and 4 → 1 is particularly
simple because after the measurements in 2 and 4 the density
operator is diagonal in the instantaneous eigenbasis of Ĥ (t+i ).
Moreover, our specific choice of dissipatorD, given by Eq. (3),
preserves the diagonal form when acting on a diagonal density
operator. This implies that the density operator, in the strokes
2 → 3 and 4 → 1 commutes with the Hamiltonian, and hence
its evolution only depends on the part involving the dissipation.

In order to stay in the weak coupling regime throughout
the evolution, we ensure that the ratio λ±

i /ω1 is always much
less than 1. However, given the stylized setup of our system,
keeping the products λ±

3 rbτb and λ±
1 (1 − rb)τb fixed while

varying λ±
i ,rb and τb individually, results in the same ρ̂(t+i )

obtained and hence leads to the same net work output and
efficiency for the cycle [76].

In Fig. 5 we depict the color-coded intensity for net average
work 〈W 〉, average heat input 〈Q2→3〉, and the efficiency η [cf.
in Figs. 5(a)–5(c)]. We choose τu = τb/10 = 5/ω1 because
this is a long enough time to obtain two extrema in the cycle
work output when the total time is distributed across the strokes
(there would be only one maximum for shorter timescales).
It should also be noted that in Fig. 5 some regions are
colored in white. These regions correspond to cases (similar to
Refs. [52–54]) for which the finite-time operation of the cycle
does not yield an overall negative net work output. Notably,
these regions occur when any one of the dissipative or unitary
strokes is performed in too short a time. In Fig. 5 we observe
a quantitative change of the mean work output, heat, and

FIG. 5. Cycle Performance at short bath coupling timescales.
(a) Average net work 〈W 〉, (b) average heat from the hot bath 〈Q2→3〉,
and (c) efficiency η of Otto cycles where ω1τu = ω1τb/10 = 5 as a
function of ru and rb. Regions that are shaded white are domains
in which the cycle is non physical as it is not doing work but
instead receiving it. Plots (d)–(f) show the horizontal cuts highlighted
by white lines in plots (a)–(c). In particular, in plots (d)–(f) the
blue continuous line corresponds to rb = 0.25, the red dashed line
to rb = 0.5, and the black dot-dashed line to rb = 0.75. We use
λ−

1,3 = ω1/10, λ+
3 = λ−

3 /e, and λ+
1 = λ−

1 /e10, which corresponds to
β1�ω1 = 10 and β3�ω1 = 0.5.

efficiency due to the finite time spent on the dissipative strokes,
but do not find any qualitative changes. This is highlighted in
Figs. 5(d)–5(f) by the horizontal cuts of the intensity maps in
Figs. 5(a)–5(c) for three different values of rb.

V. CONCLUSIONS

With this work we investigated the efficiency, net work
output, and input heat for a quantum Otto engine operated in a
finite time. The cycle we consider is composed of two unitary
strokes connected by two dissipative strokes. During the total
time τ = τu + τb of the cycle operation, a typically asymmetric
portion is spent on the two unitary strokes of total duration
τu and the remaining time span τb on the two dissipative
strokes. We numerically evaluated the optimal distribution of
time spans within the unitary and dissipative strokes while
optimizing either the net work output or the efficiency. The
distribution of times is parametrized by ru and rb such that
the time in the stroke 1 → 2 is ruτu and 2 → 3 is rbτb. In
Sec. III we elaborated on the case in which the time spent
in the dissipative strokes is long enough such that the baths
effectively thermalize the system at the end of the stroke.

We observed that optimizing for the work output results
in discontinuous jumps in r∗

u across values of τu. Likewise,
optimizing for the efficiency results in a similar jump behavior,
albeit in a different location along τu. This feature stems from
a nonmonotonic dependence of work output on the time spent
in each unitary stroke. This phenomenon is present as well
when the baths do not fully thermalize the system as shown in
Sec. IV.

We note that the engine cycle considered includes energy
measurements at the end of each stroke. Because in quantum
mechanics each measurement affects the system via a back
action, and since energy measurements are necessary to obtain
the net energy balance for work output and heat exchange, it
is essential to detail these measurements after each individual
stroke of the cycle. We also stress that in any of these strokes
we encounter nonequilibrium scenarios as the energy balance
is not between corresponding thermal equilibrium states. Put
differently, all our energy balance relations are manifestly
nonequilibrium relations that cannot be labeled “thermody-
namic first law” relations. The latter involves knowing the
difference between two internal energy state functions.

In contrast to the the quasistatic and reversible Otto cycle
in thermal equilibrium such features of abrupt jumps are
absent. Therefore, it would be of interest to see if the features
as depicted in our set of figures are indeed present in an
experiment of a quantum Otto cycle.

The study of finite-time quantum engine cycles is necessary
for the implementation of such systems. As exemplified by this
work, the dynamics involved in finite-time quantum engine
cycles is rich and should be studied thoroughly.
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APPENDIX: NUMERICAL COMPUTATIONS

After each stroke, inclusive of the energy measurement,
the density operator ρ̂ is diagonal in the instantaneous energy
eigenbasis and can thus be written as

ρ̂(t+i ) =
∑

n

ρD
n (t+i )�n(t), (A1)

where ρD
n is the nth element of the diagonal density operator.

For a unitary stroke from t+i to t+i+1 we get, using Eq. (7) or
Eq. (9),

ρD
n (t+i+1) =

∑

m

P n,m
ti ,ti+1

ρD
m (t+i ), (A2)

where

P n,m
ti ,ti+1

= |〈n(ti+1)|Ûti ,ti+1 |m(ti)〉|2. (A3)

The dissipative evolution for t ∈ [t+i , t+k ), due to Eqs. (1)–(3)
is instead given simply by

dρD
n (t)

dt
=2{nλ+

k ρD
n−1(t) + (n + 1)λ−

k ρD
n+1(t)

− [(n + 1)λ+
k + nλ−

k ]ρD
n (t)}, (A4)

where i = 2 or 4 and k = [(i + 1) mod (4)]. This simple form
of time evolution is due to the fact that the density operator
ρ̂ is diagonal in the instantaneous energy eigenbasis at all
instances of the dissipative strokes and hence it commutes with
Ĥ . In our implementation we have kept n = 50 eigenstates of
the harmonic oscillator, which is sufficient for the effective
temperatures and dynamics involved.

In our numerical simulations, we have rewritten Eqs. (1)–
(3) in terms of dimensionless parameters. Explicitly, by
dividing Eq. (1) by ω1, we obtain

dρ̂

dt̃
= −i[H̃ (t̃),ρ̂] + D̃(ρ̂,t̃), (A5)

where t̃ = ω1t ,

H̃ = Ĥ /�ω1 = (n̂ + 1/2)ω̃, (A6)

and

D(ρ̂,t̃) = λ̃+(t̃)(2â†ρ̂â − {ââ†,ρ̂})
+ λ̃−(t̃)(2âρ̂â† − {â†â,ρ̂}),

where ω̃ = ω/ω1 and λ̃± = λ±/ω1. As a consequence the
inverse temperature β can be written in dimensionless form
β̃ = β�ω1, because

β�ω = (β�ω1)(ω/ω1) = β̃ω̃. (A7)
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YUANJIAN ZHENG, PETER HÄNGGI, AND DARIO POLETTI PHYSICAL REVIEW E 94, 012137 (2016)

[32] M. Campisi, P. Hänggi, and P. Talkner, Rev. Mod. Phys. 83, 771
(2011).

[33] M. Campisi, P. Hänggi, and P. Talkner, Rev. Mod. Phys. 83,
1653 (2011).

[34] C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997).
[35] G. E. Crooks, Phys. Rev. E 60, 2721 (1999).
[36] F. Douarche, S. Ciliberto, A. Petrosyan, and I. Rabbiosi,

Europhys. Lett. 70, 593 (2005).
[37] T. B. Batalhao, A. M. Souza, L. Mazzola, R. Auccaise, R. S.

Sarthour, I. S. Oliveira, J. Goold, G. De Chiara, M. Paternostro,
and R. M. Serra, Phys. Rev. Lett. 113, 140601 (2014).

[38] S. An, J. N. Zhang, M. Um, D. Lv, Y. Lu, J. Zhang, Z. Q. Yin,
H. T. Quan, and K. Kim, Nature Phys. 11, 193 (2015).

[39] M. Campisi and R. Fazio, Nat. Commun. 7, 11895 (2016).
[40] M. Campisi and R. Fazio, arXiv:1603.05029 (2016).
[41] O. Abah, J. Roßnagel, G. Jacob, S. Deffner, F. Schmidt-Kaler,

K. Singer, and E. Lutz, Phys. Rev. Lett. 109, 203006 (2012).
[42] O. Abah and E. Lutz, Europhys. Lett. 106, 2 (2014).
[43] R. Alicki and D. Gelbwaser-Klimovsky, New J. Phys. 17,

115012 (2015).
[44] B. Leggio and M. Antezza, Phys. Rev. E 93, 022122 (2016).
[45] P. Mehta and A. Polkovnikov, Ann. Phys. (NY) 332, 110 (2013).
[46] J. H. Jiang, B. K. Agarwalla, and D. Segal, Phys. Rev. Lett. 115,

040601 (2015).
[47] Y. Rezek and R. Kosloff, New J. Phys. 8, 83 (2006).
[48] T. Feldmann and R. Kosloff, Phys. Rev. E 61, 4774 (2000).
[49] E. Geva and R. Kosloff, J. Chem. Phys. 96, 3054 (1992).
[50] T. R. Gingrich, G. M. Rotskoff, S. Vaikuntanathan, and P.

Geissler, New J. Phys. 16, 102003 (2014).
[51] P. S. Pal, A. Saha, and A. M. Jayannavar, arXiv:1601.00854

(2016).
[52] T. Feldmann and R. Kosloff, Phys. Rev. E 68, 016101 (2003).
[53] T. Feldmann and R. Kosloff, Phys. Rev. E 85, 051114 (2012).
[54] T. Feldmann and R. Kosloff, Phys. Rev. E 93, 052150 (2016).
[55] R. Uzdin and R. Kosloff, New J. Phys. 16, 095003 (2014).
[56] T. Feldmann and R. Kosloff, Phys. Rev. E 73, 025107(R) (2006).
[57] A. Alecce, F. Galve, N. Lo Gullo, L. DellAnna, F. Plastina, and

R. Zambrini, New J. Phys. 17, 075007 (2015).
[58] P. Talkner, E. Lutz, and P. Hänggi, Phys. Rev. E 75, 050102

(2007).
[59] H. T. Quan, Y.-X. Liu, C. P. Sun, and F. Nori, Phys. Rev. E 76,

031105 (2007).
[60] Y. Zheng and D. Poletti, Phys. Rev. E 90, 012145 (2014).
[61] R. Alicki, J. Phys. A 12, 5 (1979).
[62] D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, Rev. Mod.

Phys. 75, 281 (2003).

[63] V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, J. Math.
Phys. 17, 821 (1976).

[64] G. Lindblad, Commun. Math. Phys. 48, 119 (1976).
[65] J. I. Cirac, R. Blatt, P. Zoller, and W. D. Phillips, Phys. Rev. A

46, 2668 (1992).
[66] P. Talkner, P. Hänggi, and M. Morillo, Phys. Rev. E 77, 051131

(2008).
[67] P. Talkner and P. Hänggi, Phys. Rev. E 93, 022131 (2016).
[68] G. Watanabe, B. P. Venkatesh, P. Talkner, M. Campisi, and P.

Hänggi, Phys. Rev. A 89, 032114 (2014).
[69] P. Talkner, M. Campisi, and P. Hänggi, J. Stat. Mech.: Theor.

Exp. (2009) P02025.
[70] For this to hold true the weak system-bath coupling assumption

is most essential. Generally, a nonvanishing interaction will
lead to a Hamiltonian operator of mean force Ĥ ∗(t) [71–73].
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