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Living microorganisms are capable of a tactic response to external stimuli by swimming toward or away from
the stimulus source; they do so by adapting their tactic signal transduction pathways to the environment. Their
self-motility thus allows them to swim against a traveling tactic wave, whereas a simple fore-rear asymmetry
argument would suggest the opposite. Their biomimetic counterpart, the artificial microswimmers, also propel
themselves by harvesting kinetic energy from an active medium, but, in contrast, lack the adaptive capacity.
Here we investigate the transport of artificial swimmers subject to traveling active waves and show, by means
of analytical and numerical methods, that self-propelled particles can actually diffuse in either direction with
respect to the wave, depending on its speed and waveform. Moreover, chiral swimmers, which move along
spiraling trajectories, may diffuse preferably in a direction perpendicular to the active wave. Such a variety of
tactic responses is explained by the modulation of the swimmer’s diffusion inside traveling active pulses.
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I. INTRODUCTION

Taxis is the biased movement of bacteria, somatic cells, or
multicellular organisms in response to external stimuli such as
light, electric currents, gravity, and chemicals. Taxes are classi-
fied based on the type of activating stimulus and on whether the
organism’s resultant drift is oriented toward (positive) or away
from (negative) the stimulus source [1]. Tactic cell migration
plays a crucial role in biological pattern formation and the
organization of complex biological organisms. For instance,
bacteria find food (e.g., glucose) or flee from poison (e.g.,
phenol) by swimming, respectively, up (positive chemotaxis)
or down (negative chemotaxis) the concentration gradient of
the sensed chemical [2,3].

A biomimetic counterpart of cellular motility is the abil-
ity of specially designed synthetic microparticles to propel
themselves by harvesting kinetic energy from an active
environment [4,5]. Self-propulsion is fueled by stationary
nonequilibrium processes, like directional “power-strokes”
from catalytic chemical reactions or self-phoresis by short-
scale (electric, thermal, or chemical) gradients, produced by
the particle itself, in virtue of some built-in functional asym-
metry [4–6]. Similarly to bacteria, artificial microswimmers
are also known to diffuse up or down long-scale monotonic
gradients of the active medium [7–10]. However, bacteria
regulate their response to an external stimulus by adapting their
(complex) tactic signal transduction pathways [11], which thus
operate like sensor-actuator loops. In contrast, due to their
often submicron size and lack of an internal structure, synthetic
swimmers are unable to process the tactic signal [12,13], i.e.,
their response being strictly local.
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In most circumstances the tactic stimulus is modulated
in space and time in the form of single or entrained active
pulses that sweep through the suspended swimmer. Certain
microorganisms are able to locate the source of the pulses
and move towards it, no matter what the sign of their
response to a monotonic active gradient. A study case is
the chemotactic aggregation of the amoebae of the cellular
slime mold (Dictyostelium discoideum) [14]. This process
is directed by periodic sequences (or waves) of symmetric
concentration pulses of a chemoattractant, irradiating from
the aggregation center outwards. As amoebae exhibit positive
chemotaxis, one would expect a cell movement toward the
center in the wave-front and away from it in the wave-back.
As a consequence, amoebae would spend more time in the
back wave than in the front wave, thus undergoing a net
drift in the direction of the active wave propagation. Most
remarkably, the conclusion of this argument (first proposed
by Stokes in a more general fluidodynamics context [15,16])
does not change by reversing the sign of amoeba chemotaxis:
according to Stokes’s wave fore-rear asymmetry argument
and contrary to experimental observations, swimmers with
definite chemotaxis (positive or negative, alike) would always
surf active density waves (ADW), thus moving away from the
the wave source [17]. A proposed resolution of this apparent
paradox (termed “chemotactic wave paradox” in Ref. [18])
for cellular microorganisms requires the standard model for
cell chemotaxis to be modified so as to account for a finite
adaptation time of the chemotactic pathways to temporally
varying stimuli [18].

This approach cannot be extended to the case of artificial
swimmers diffusing across a traveling ADW because these
respond to the instantaneous activation properties of the
surrounding medium with no temporal memory [19]. However,
controlling the transport of synthetic submicron particles, self-
propelling in a spatiotemporally modulated active medium, is
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key to the success of nanorobotics in technological applica-
tions, like environmental monitoring, intelligent drug delivery,
or even more challenging biomedical tasks [6]. With this goal
in mind, we numerically investigated the diffusive dynamics of
artificial microswimmers at low Reynolds numbers, subjected
to traveling symmetric active pulses of different waveforms.
We observed that swimmers with positive taxis in a monotonic
active gradient, actually drift toward or away from the pulse
source, depending on the pulse sequence. Moreover, chiral
swimmers, which due to some configurational asymmetry tend
to move in circles [20], may also drift orthogonally to the
incoming active wave. The variability of swimmers’ tactic
response is proven to result more from the spatiotemporal
modulation of their active motion within a traveling pulse than
the pulse fore-rear gradient asymmetry.

The paper is organized as follows. In Sec. II we introduce
the model of the artificial microswimmer that is to be
considered. Already in this section, without resorting to the
finer technical details (given later), a qualitative presentation
of the key results will be given. Here the tactic responses of
the swimmer to single wave pulses and also to active density
waves are discussed. A more quantitative discussion of these
results is given in Sec. III, where, in addition, related analytical
results will be presented. Finally, in Sec. IV, the details of the
methods used to obtain the results will be explained, including
the numerical schemes applied to integrate the Langevin and
corresponding Fokker-Planck equations.

II. RESULTS

A. Model

Regardless of the details of the self-propulsion mechanism,
at low Reynolds numbers the diffusion of an artificial mi-
croswimmer on a surface is conveniently modeled by a set of
simple Langevin equations (LE):

ẋ = v(x,t) cos φ +
√

D0 ξx(t),

ẏ = v(x,t) sin φ +
√

D0 ξy(t), (1)

φ̇ = � + √
Dφ ξφ(t).

Three sources of fluctuations are explicitly incorporated in the
model: two translational of intensity D0, and one orientational
of intensity Dφ . All noises are Gaussian and stationary,
with zero-mean and autocorrelation functions 〈ξi(t)ξj (0)〉 =
2δij δ(t), with i,j = x,y,φ. As such noises result from a
combination of thermal fluctuations in the suspension fluid
and randomness of the propulsion mechanism, we treat the
intensities D0 and Dφ as independent parameters. Finally,
depending on their geometry, 2D swimmers often experience
an additional torque, �, which makes them rotate counter-
clockwise or clockwise. Positive and negative chiral effects
impact the transport properties of both biological and synthetic
active swimmers [20–23].

When the swimmer floats in a homogeneous active suspen-
sion, its propulsion speed is a constant, v(x) = v0. As detailed
in Sec. IV, it then undergoes an active Brownian motion with
finite persistence time, τφ = 1/Dφ , length, lφ = v0τφ , and bulk
diffusion constant limt→∞〈[x(t) − x(0)]2〉 = D0 + Ds , with
Ds = v2

0/2Dφ .

To model the effects of an active pulse sweeping through
the suspension fluid, we assume that the propulsion speed,
v(x,t), is a local function of the physiochemical properties of
the medium at the swimmer’s position. For pulses propagating
from left to right along the x axis, this amounts to inserting
in Eqs. (1) an appropriate function v(x,t) = v(x − ut), where
u is the pulse’s speed and the waveform v(x) is chosen so
as to describe single or entrained traveling pulses [4] with
amplitude v0. Like in Ref. [18], here we restrict our analysis
to spatially symmetric waveforms, v(x) = v(−x), in order to
avoid additional ratchet effects [12,17]. The exact mechanism
underlying the tactic stimulus modeled by the spatiotemporal
function v(x,t) does not, in principle, need to be specified;
it can, for instance, be of chemo-, diffusio-, electro-, or
thermophoretic nature.

A proof of concept of the tactic effects predicted in this
work is sketched in Fig. 1(a). In this ideal experiment a
thermophoretic swimmer, floating on a planar substrate, is
irradiated by a defocused laser beam [8]. A traveling train
of laser intensity pulses is created by inserting a slit screen
between the light source and the substrate and sliding it
at a constant speed. Since the self-propulsive speed of a
thermophoretic swimmer is approximately proportional to
the laser intensity [24], one can thus tailor at will the
spatiotemporal modulation of the velocity field, v(x,t).

For the sake of concreteness, in the following we adopt
the term positive or negative chemotaxis to mean the drift of
an active swimmer parallel or antiparallel to the direction of a
generic incoming active pulse or wave, regardless of its nature.
Moreover, we remind the reader that, like in the experimental
setup of Fig. 1(a), the propulsion speed of most artificial
chemotactic swimmers grows linearly with the concentration
of the chemoactivants in the active suspension, whereas, as
assumed in Eqs. (1), their angular diffusion stays almost the
same [6]. Such swimmers, when placed in a static velocity
field, that is for v(x,t) = v(x), are known to diffuse up the
velocity gradient [7,26]. Other authors [8,27] have detected
the dependence of the rotational diffusion on the active density
wave to be generally weaker than of the propulsion speed.
Extending our analysis to an x-dependent Dφ would not alter
the general conclusions of the present work, except for some
more laborious technical details [28].

Finally, we stress that in the ideal experiment of Fig. 1(a)
hydrodynamic effects can be largely suppressed, at least in
the absence of activant gradients. Indeed [3], (i) swimmers
freely diffuse in the bulk away from the container’s walls; (ii)
their density can be lowered so as to avoid clustering [29];
and (iii) they can be fabricated rounded in shape and so small
in size (i.e., pointlike) to minimize hydrodynamic backflow
effects. On the contrary, the activant gradients considered in the
present work surely cause additional hydrodynamic effects in
the form of a polarizing torque that tends to align the particle’s
velocity parallel or antiparallel to the gradient, depending
on the swimmer’s surface properties [30]. Our simulations
show that chemotaxis is enhanced for swimmers aligned
against the activant gradient and suppressed in the opposite
case, as also reported in Ref. [8]. However, we numerically
checked that the chemotactic effect persists even in the latter
case, solely its magnitude slightly diminishes. To keep our
discussion as simple as possible, polarization effects will be

012613-2



CHEMOTAXIS OF ARTIFICIAL MICROSWIMMERS IN . . . PHYSICAL REVIEW E 94, 012613 (2016)

FIG. 1. (a) Ideal experimental setup of a thermophoretic swimmer diffusing on a planar substrate irradiated by a laser beam [8,25]. By
pulling at constant speed a slit-screen sliding between the laser and the substrate, it is possible to modulate the laser intensity, I , hitting the
particle, thus realizing an effective ADW. (b, c) Chemotactic shift induced by a Gaussian active pulse, v(x) = v0 exp(−x2/2σ 2), traveling to
the right with constant speed u (see inset of (c), where a simple sketch of the model is depicted). The swimmer’s self-propulsion parameters,
v0 = 53 μm/s and Dφ = 165 s−1, were chosen to mimic the experimental setup of Ref. [25], and the pulse width, σ = 1 μm, was set three times
the swimmer’s propulsion length lφ = v0/Dφ . Translational noise D0 and chiral torque � were set to zero to focus on the basic mechanism
responsible for the emergence of the spatial shift, �(t) = 〈x(t) − x(0)〉. In panel (b) the particle displacement, �(t), is plotted vs. t in units of
the pulse crossing time tσ = σ/u for a slow and fast pulse. For the sake of comparison, we remind that the time the particle takes to diffuse
a length σ in the bulk is τσ = σ 2/2Ds . In panel (c) the final displacement �(∞) is plotted as a function of the pulse speed. The stochastic
integration of the model Eqs. (1) (crosses) are compared with the numerical solution the corresponding Fokker-Planck Eq. (7) (solid curves).
The contour plot in panel (d) illustrates the dependence of �(∞) on both pulse parameters σ and u. The white curve separates the regions with
positive and negative �(∞).

neglected here and fully investigated in a follow-up technical
report.

We now qualitatively discuss the numerical results of
Figs. 1–4, which were obtained by numerically integrating the
LEs Eq. (1) and the corresponding Fokker-Planck equation
(FPE) (see Sec. IV). A more technical analysis of these results
will be presented in Sec. III.

B. Chemotaxis by single active pulses

In Figs. 1(b)–1(d) and Supplemental Material movies 1
and 2 [31] we illustrate the effects of an active Gaussian
pulse of amplitude v0 traveling from left to right across
a swimmer at rest in the absence of translational fluctua-
tions, D0 = 0. The swimmer undergoes a net longitudinal
shift, �(∞) = limt→∞〈x(t) − x(0)〉: most notably, �(∞) is
markedly negative for slow pulses, u � v0, and positive for

fast pulses, u � v0; see Figs. 1(c) and 1(d). We explain the
existence of opposite chemotactic regimes by noticing that
a swimmer with D0 = 0 diffuses only across the width of
the incoming active pulse. Suspended inside a slow traveling
pulse with u � v0, the particle quickly diffuses either against
the front or the rear of the pulse. Upon reaching either pulse’s
edge, its diffusivity gets suppressed, that is its self-propulsive
velocity, v(x), grows smaller than the pulse speed, u. The
ensuing behavior at the two sides of the pulse is different. After
hitting the right-hand side, the particle is caught up again by the
advancing pulse and resumes diffusing, whereas upon hitting
the left-hand side, it is left behind and comes to rest. The two
pulse’s edges behave, respectively, like traveling reflecting and
adsorbing walls. As a result we expect, on average, a net shift of
the particle to the left. In the opposite regime of a fast traveling
pulse, u � v0, the particle comes almost immediately to rest
when hitting the left pulse wall, while it can travel a much
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FIG. 2. Chemotaxis of an achiral swimmer with � = 0 in a sinusoidal traveling ADW. Unless differently stated, all model parameters
were chosen consistently with reported experimental values [25]: v0 = 53 μm/s, Dφ = 165 s−1, and D0 = 2.2 μm2/s. The ADW waveform,
v(x) = w0 + (v0 − w0) sin2(πx/L), has fixed maxima, v0, and tunable minima w0, with w0 < v0. All results are from numerical integration
of the model Eqs. (1) or the corresponding FPE (7) (see Sec. IV). Lengths and velocities are given in units of lφ and v0, respectively. (a–c)
Contour plots of the longitudinal drift velocity, vx = limt→∞〈x(t) − x(0)〉/t in the plane (L,u); w0 = 0 and all other parameters are the same
except for D0 = 0 in panel (b) and w0 = 0.2 in panel (c). The maxima of positive, vx,max, and negative, vx,min, chemotaxis are marked by
black crosses; the separatrix curves, us(L), delimiting the regions of positive and negative chemotaxis are drawn in white; (d) Contour plot
of the diffusion constant Dx = limt→∞ [〈x2〉 − 〈x〉2]/2t for the model parameters of panel (a). The scaling factor, D̄x = D0 + v2

0/8Dφ , is the
swimmer’s diffusion constant in the average velocity field 〈v(x)〉 = v0/2. For animations of the swimmer’s diffusion under diverse dynamical
conditions, see Supplemental Material movies 3–6 [31].

longer distance to the right without bouncing against the right
pulse wall. In the optimal case, u � v0, such a distance is of
the order of the persistence length, lφ . Accordingly, for a fixed
pulse width, �(∞) attains a positive maximum around u � v0

and vanishes monotonically in the limit u/v0 → ∞.
Consistent with our interpretation, in Figs. 1(c) and 1(d)

the transition from negative to positive chemotaxis occurs
when the time the particle takes to diffuse a length of the
order of lφ grows longer than the corresponding pulse crossing
time, namely for u/v0 � 1/2. Of course, under realistic
experimental conditions, the apparent divergence of the shift,
�(∞) → −∞, at vanishingly slow pulse speeds, Fig. 1(c),
would be offset by the inevitable translational fluctuations
with D0 > 0, neglected in the simulations of Fig. 1. Moreover,
for narrow pulses, σ � lφ , the swimmer cannot diffuse much
inside the pulse, but crosses it ballistically. Consequently, as
illustrated in Fig. 1(d), its positive drift is more pronounced
than in the case σ � lφ . Viceversa, for large pulse widths
the particle’s dynamics is dominated by active diffusion and

its displacement grows increasingly negative at small u. Of
course, for σ → ∞ the activant gradient becomes negligible
and �(∞) vanishes. Thus, in the regime of negative �(∞),
for any chosen u there exists an optimal pulse width where the
negative particle displacement is maximum.

C. Chemotaxis by active density waves

More generally, active pulses are generated in random or
periodic sequences. For the sake of simplicity, we consider
here the case of periodic ADWs with waveform

v(x) = w0 + (v0 − w0) sin2(πx/L).

Like in most experimental setups, we assume that the param-
eters that regulate the swimmer’s dynamics, D0,v0, τφ , and
lφ , are fixed, whereas the ADW parameters, u,L, and w0/v0,
can be tuned at the experimenter’s convenience. We checked
that the swimmer’s chemotactic response is not appreciably
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modified by varying the sequence or waveform of the active
pulses.

In the stationary regime, chemotaxis of achiral swimmers
with � = 0 is characterized in terms of the drift velocity,
vx = 〈ẋ〉. This is plotted in Fig. 2 for different values of the
wave parameters. The regions of the plane (L,u) exhibiting
positive or negative chemotaxis are delimited by separatrix
curves, which depend also on D0 and w0 [Figs. 2(a)–2(c)
and 3(b)]. Like in the case of single active pulses, negative
chemotaxis is induced by slow ADWs only, with u < v0

(Supplemental Material movies 3–6 [31]). Indeed, for fast
ADWs, the distance a swimmer can travel without crossing
a minimum of v(x) is longer to the right than to the left.
Hence, one can expect that vx > 0. Moreover, the distance
the swimmer can surf a wave with u � v0 is limited solely
by its persistence time, τφ , so that here positive chemotaxis
is the most pronounced. Viceversa, for u � v0, the swimmer
crosses the ADW troughs, with reduced self-propulsion speed,
both left and right. As the ADW propagates to the right,
the time the swimmer takes to cross a trough to its left is
shorter than to its right, hence vx < 0 (Supplemental Material
movies 3 and 4 [31]). This argument certainly holds for
D0 = 0, where—provided w0 = 0—the particle can never
cross a trough to the right, see Fig. 2(b) and Supplemental
Material movies 4 and 6 [31].

The translational fluctuations, D0 > 0, help the swimmer
diffuse across the ADW troughs, suppressing the velocity
rectification mechanism described above. Thus, with increas-
ing D0, the negative rectification effect becomes smaller
compared to the positive surfing effect, until eventually vx

changes sign. As the same effect cannot only be achieved by
raising the noise strength D0, but also by lowering the pulse
periodicity L (translational noise can easily “kick” particles
out a narrow pulse), the separatrix bends downward, almost
vertically, at a critical value of L—see Fig. 2(a). The positive
chemotaxis observed in the bottom-left quadrant of Fig. 2(a) is
an unavoidable effect of the translational fluctuations D0 	= 0.

The dependence of the vertical branch of the separatrix on
the model parameters is illustrated by the curves of Figs. 3(b)
and 3(c). We observe that its position along the horizontal
axis is (i) shifted to the right proportional to D0; (ii) shifted
to the left proportional to w0; and (iii) independent of lφ (not
shown). This behavior points to the existence of a critical value
of D0/Lv0, (D0/Lv0)cr, above which negative chemotaxis is
suppressed. Moreover, Fig. 3(c) clearly shows that (D0/Lv0)cr

grows linearly with w0, independently of lφ . This implies that
the vertical branch of the separatrix can be shifted to lower
L either by lowering D0 or increasing w0. However, these
two options for enlarging the negative chemotaxis region of
the (L,u) plane have opposite impact on the modulus of vx—
chemotaxis is enhanced by lowering D0 and suppressed by
raising w0 at constant v0 [Fig. 3(c), inset].

The horizontal branch of the separatrix also depends on
w0, but is insensitive to the noise intensities D0 and Dφ . In the
limit D0 → 0, the separatrix is a smooth function of L, us(L),
with limits us(0) and us(∞) of the same order of magnitude,
both limits being functions of w0 and smaller than v0. In view
of these results we conclude that negative chemotaxis is a
robust property of the system, since it sets in under the most
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FIG. 3. Chemotaxis of an achiral swimmer in a sinusoidal
traveling ADW. Unless differently stated, all parameters were chosen
as in Fig. 2(a). Lengths and velocities are given in units of lφ and
v0, respectively. (a) vx vs. u in the ballistic regime, L/lφ = 1.6,
and diffusive regime, L/lφ = 6.4, for finite D0 and w0 = 0 (dashed
curves), D0 = 0 and w0 = 0.1 (dotted curves), and D0 = 0 and
w0 = 0 (solid curves). All curves decay asymptotically with power
laws, as indicated; (b) separatrix, us vs. L for different values of D0

and w0, where D
(0)
0 denotes the standard value of 2.2 μm2/s used

in the previous figures. The vertical branch of us shifts to lower
L proportional to the noise level, D0, and inversely proportional to
the ADW baseline, w0; (c) (D0/Lv0)cr vs. w0 from the numerical
integration of the exact Eq. (7) (blue crosses), and the approximated
FPE in the ballistic regime (red crosses); see Eq. (11). In the inset the
maxima and minima of vx , vx,max, and vx,min, are shown to increase
faster than linearly with the amplitude of the ADW, v0 − w0. Note,
however, that the modulus of vx,min increases with w0 for w0 � v0,
as also shown in panel (c).
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FIG. 4. Chemotaxis of a chiral swimmer with � 	= 0 in a sinusoidal traveling ADW. Unless differently stated, all model parameters were
chosen as in Fig. 2(a). All results are from numerical integration of the model Eqs. (1) or the corresponding FPE (7). The drift velocities and
chiral frequency are given in units of v0 and Dφ = τ−1

φ , respectively. For animations see Supplemental Material movies 7–10 [31]. In panel (a)
is a sketch of the upward spiraling trajectory of a swimmer bouncing against the left trough of an ADW, where the dotted black line indicates
the half-width. The longitudinal and transverse drift velocities, vx = limt→∞〈x(t) − x(0)〉/t and vy = limt→∞〈y(t) − y(0)〉/t are plotted vs.
�τφ for (b) L/lφ = 2, u/v0 = 1; and (c) L/lφ = 7, u/v0 = 0.2 (solid curves). The corresponding curves for D0 = 0 are also drawn for the
sake of comparison (dashed curves). The exponents of fitted power-laws coincide with those predicted in Sec. III.

affordable experimental conditions of ADWs traveling with
low speed, u � v0, and long wavelength, L � lφ .

D. Transverse chemotaxis of chiral swimmers

An intrinsic rotational torque of the swimmer can be either
the accidental result of fabrication defects or the desired effect
obtained, e.g., by bending an active nanorod [32]. In any case,
chirality strongly impacts swimmers’ chemotaxis. In Figs. 4(b)
and 4(c) the longitudinal and transversal drift velocities, vx =
〈ẋ〉 and vy = 〈ẏ〉, are plotted against the torque frequency,
�, for conditions of, respectively, the largest positive and
negative chemotaxis at � = 0 [marked by crosses in the
contour plot of Fig. 2(a)]. A few remarkable properties are
immediately apparent (see also Supplemental Material movies
7–10 [31]): (i) chirality induces a transverse chemotactic
drift, vy 	= 0. Such an effect is the strongest in the regime
of positive longitudinal chemotaxis of achiral particles; (ii)
vx(�) and vy(�) are, respectively, even and odd functions of
�, consistent with the symmetry of the model Eqs. (1) under
the transformation φ → −φ; (iii) chirality tends to suppress
longitudinal chemotaxis. This effect is best noticeable in
Fig. 4(b), where for �τφ ∼ π the longitudinal drift velocity, vx ,
drops to zero, while vy develops a peak of height comparable
with vx(0). Under these conditions, the chemotactic effect of
the incoming ADW is fully transverse and with the same sign
as �. At even higher frequencies, vx changes sign from positive
to negative; (iv) in the regime of negative chemotaxis of achiral
particles and zero translational noise [see Fig. 2(b)], the curves
vx(�) and vy(�) have the same sign and no zeros for � > 0.
On raising D0, without changing the sign of vx , transverse
chemotaxis is suppressed and its sign varies with increasing �.

The mechanism responsible for transverse chemotaxis is
illustrated in Fig. 4(a). An active particle subject to a positive
torque, � > 0, bounces against the ADW troughs, thus tracing
spiraling circles of radius rd ∼ v0/�, which go up (down) the
right-hand (left-hand) side of the trough. For fast-traveling
ADWs with u > v0, bouncing trajectories only take place on

the right-hand side of the wave troughs, so that vy > 0. Of
course, transverse chemotaxis is most pronounced when the
bouncing process is synchronized with the wave modulation,
namely, when the bouncing time, π/�, is of the order of
the wave period, L/u. Moreover, such a mechanism grows
more effective for swimmer persistence times larger than the
bouncing times, that is, for �τφ � π . Both conditions are
satisfied in Fig. 4(b), so that, in an appropriate �τφ range,
transverse chemotaxis supersedes longitudinal chemotaxis.

For slow ADWs, spiraling trajectories develop on both
sides of the wave minima. As noticed above, trough crossings
from right to left take a shorter time than from left to right;
accordingly, upward bouncing trajectory arcs have shorter
span than the downward ones. This observation explains why,
in Fig. 4(c) for u � v0 and D0 = 0, transverse chemotaxis
and chirality have opposite signs. Also, similar to achiral
chemotaxis, translational noise eases ADW trough crossings
in both directions, thus suppressing transverse chemotaxis and
eventually reversing its orientation. It is also suppressed by
reducing the ADW amplitude.

III. DISCUSSION

We next present a more quantitative analysis of our results
based on the approximation schemes detailed in Sec. IV.

A. Ballistic regime

The curves of the drift velocity, vx , versus the ADW
speed, u, in Fig. 3(a) exhibit a characteristic resonant behavior
for both positive and negative chemotaxis. In the ballistic
regime, i.e., for L � lφ , their decay is satisfactorily described
in the two-state approximation, where, for sufficiently long
persistence times (compared to the pulse crossing time), the
swimmer’s dynamics is modeled as the superposition of a
nonfluctuating, self-propelling drift to the right and to the left.
In the absence of translational noise, the predicted average drift
velocity, Eq. (5), decays like: (i) vx/v0 ∝ v0/u for u � v0

(to hold for any value of L/lφ); (ii) vx/v0 ∝ −u/v0 for
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u � v0 and w0 > 0; and (iii) vx/v0 ∝ −√
u/v0 for u � v0 and

w0 = 0. These predictions closely agree with the numerical
fits of Fig. 3(a). In addition, Eq. (5) suggests that the positive
chemotaxis maxima, vx,max, occur for u � v0, as expected,
and the negative minima, vx,max, for u � w0. The two-state
model also provides a close estimate of the horizontal branch
of the separatrix, us(L). The limit L/lφ → 0 for D0 = 0, us(0),
can be approximated analytically by setting vx = 0 in the
second line of Eq. (5) and solving for u. Hence, us(0)/v0 =
[(w0 + v0)/6v0][1 +

√
1 + 12v0w0/(v0 + w0)2], in quantita-

tive agreement with the numerical data of Fig. 3(b). The full
curves us(L) plotted there were obtained by locating the zeros
of the average current, Eq. (9), as a function of u and L.

As remarked in Sec. II, translational fluctuations tend to
suppress chemotaxis at large and negative chemotaxis in par-
ticular. In the two-state model notation, this is a consequence
of the noise-induced “creeping effect” mentioned in Sec. IV,
an effect more conveniently addressed in the FPE formalism.
For instance, upon expanding the ballistic approximation of the
average current, Eq. (11), in powers of u/v0, the chemotactic
speed is proven to grow proportionally to u (and not

√
u) even

at w0 = 0, with a sign that turns from negative to positive on
increasing D0 [Fig. 3(a)]. More interestingly, Eq. (11) allowed
us to locate the vertical separatrix branch of the contour plots
of Figs. 2(a)–2(c), namely the quantity (D0/Lv0)cr plotted in
Fig. 3(c). For an analytical estimate of the same quantity,
we notice that translational noise provides an additional
diffusion mechanism that competes with self-propulsion.
The self-propulsion mechanism eventually prevails when the
time the particle takes to diffuse a half ADW wavelength
due to translational noise, (L/2)2/2D0, is shorter than the
average time to cross the same distance with an average
speed (v0 + w0)/2 in the ballistic regime [see also Eq. (5)],
2L/(v0 + w0). This occurs for D0/Lv0 � (D0/Lv0)cr, with
(D0/Lv0)cr ∝ 1 + w0/v0, in agreement with the numerical
data in Fig. 3(c). We remarked in Sec. II that (D0/Lv0)cr is
independent of τφ ; therefore, this analytical estimate holds in
the ballistic and diffusive regimes, alike.

Contrary to the Stokes drift [16], vx at small u grows with
exponent clearly smaller than 2, irrespective of w0 and D0 (and,
therefore, of its own sign): this means that the chemotactic
effect studied here is not governed by the fore-rear ADW
gradients so much as by the swimmer’s diffusion across the
traveling ADW troughs.

B. Diffusive regime

In the diffusive regime, i.e., for L � lφ , the persistence
time τφ can be taken as vanishingly small. Accordingly, the
swimmer’s diffusion in the wave direction is closely described
by the multiplicative LE in Eq. (6). Standard Stratonovitch
calculus [33,34] yields the finite drift term,

vx = [(v0 − w0)2/4Dφ]〈(d/dx) sin2[π (x − ut)/L]〉, (2)

where 〈. . . 〉 denotes a stationary average over the stochastic
trajectories of x(t). This average was computed explicitly
by solving the corresponding FPE, Eq. (12): for u < v0

chemotaxis indeed turns out to be negative with vx ∝ −u for
D0 > 0 and u � v0, and vx ∝ −√

u for D0 = 0 and u � v0,
as in the fits of Fig. 3(a).

On the other hand, upon increasing u larger than the modu-
lus of the multiplicative term in Eq. (6), u > |〈v(x) cos φ〉| �
(w0 + v0)/2

√
2, the dynamical effect of the angular fluctu-

ations is suppressed with respect to the dragging action of
the ADW, so that chemotaxis changes sign from negative
to positive. The right-hand side of the above inequality
approximates the horizontal asymptote of us(L) in the limit
L/lφ → ∞. As displayed in Fig. 3(b), us(∞) is a function of
w0, only.

The role of the separatrix is further illustrated by the contour
plot of Fig. 2(d), where we plotted the diffusion constant
Dx = limt→∞ [〈x2〉 − 〈x〉2]/2t for the model parameters of
Fig. 2(a). The computed values of Dx have been compared
with the swimmer’s average diffusion constant, D̄x , defined
in the figure caption. One sees immediately that Dx/D̄x � 1
almost everywhere in the (L,u) plane, except across the
(hot) horizontal and (cold) vertical branches of the separatrix,
where Dx/D̄x > 1 and Dx/D̄x < 1, respectively. Indeed, the
chemotaxis sign inversion observed upon increasing the ADW
speed, u, signals a locked-running transition in the two-state
model Eqs. (3), a mechanism known to produce excess
diffusion [35–37]. On the other hand, the chemotaxis inversion
obtained by increasing the ADW wavelength is governed by
translational noise (it never occurs for D0 = 0), which acts
there as a sort of lubricant, thus suppressing the net swimmer
diffusivity. With a view to experimental demonstration, we
remark that for artificial swimmers, chemotaxis by traveling
ADWs is no more dispersive than regular transport in the bulk.

C. Chiral chemotaxis

The FPE formalism also allows a better characterization of
chiral chemotaxis. To shed light on the underlying irreducible
2D mechanism we considered the model Eqs. (1) in the
opposite adiabatic limits �τφ � 1 and �τφ � 1, both in the
ballistic and diffusive regimes introduced above. A systematic
perturbation approach (not reported here) led us to conclude
that vx = c1(v0 − w0) and vy = s1(v0 − w0), where c1 and s1

are, respectively, even and odd functions of �. In particular,
for �τφ � 1 we obtained c1 ∝ �0 and s1 ∝ � for any D0;
for �τφ � 1, c1 decays like �−2 at D0 = 0 and �−4 at
D0 	= 0, whereas s1 ∝ �−3, independent of the translational
noise strength D0.

We conclude by underscoring that chemotaxis of artificial
microswimmers is a robust phenomenon that lends itself to ac-
cessible laboratory demonstrations and promising applications
to nanotechnology and medical sciences. Our numerical results
and interpretation go beyond the earlier “chemotactic wave
paradox” debate, insofar as the swimmer’s tactic response
results from its ability of diffusing within a traveling active
pulse and not just the asymmetry of the fore-rear pulse
gradients. Moreover, the direction and magnitude of the
tactic response are extremely sensitive to the self-propulsion
mechanism, which suggests the design of tactic devices to
control the production and transport of artificial swimmers.

IV. METHODS

The model Eqs. (1) describe the spatial diffusion of an active
over-damped Brownian particle subject to a traveling field of
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force v(x,t). Contrary to the previous literature on Brownian
Stokes’ drift [16,17], here the particle’s motion is characterized
by a finite persistence time, τφ , and related length lφ = v0τφ .
A simple calculation [38] shows that the angular factors,
cos φ and sin φ, decay exponentially, 〈cos φ(t) cos φ(0)〉 =
〈sin φ(t) sin φ(0)〉 = (1/2) exp(−Dφ|t |), hence τφ = 1/Dφ .
Persistence (or memory effects) become appreciable when the
Brownian particle is confined to geometries with characteristic
size smaller than lφ . In our model, the standard distinction
between a ballistic regime with L � lφ and a diffusive regime
with L � lφ must be revised to account for the finite wave
period L/u, as discussed below.

A. The Langevin equations

The stochastic differential Eqs. (1) were numerically inte-
grated by means of a standard Euler-Maruyama scheme [39].
The stochastic averages were taken over an ensemble of
trajectories with random initial swimmer orientation, φ(0) ∈
[0,2π ].

1. The two-state model

In the ballistic regime, the analytic treatment of Eqs. (1)
with � = 0 is greatly simplified by assuming that an achiral
swimmer moves in the wave’s direction with equal probability
to the right, φ = 0, or to the left, φ = π , i.e., with velocity
±v(x,t), thus totally ignoring its transverse motion along
y. The ensuing swimmer dynamics is modeled through two
independent LEs,

ẋ = ±w0 ± (v0 − w0) sin2[π (x − ut)/L] +
√

D0ξx(t), (3)

obtained by setting cos φ = ±1 in Eq. (1). By introducing the
auxiliary variable x ′ = x − ut , Eqs. (3) can rewritten in the
form of two LEs for for a tilted potential with different tilting,

ẋ ′ = −u ± [(v0 + w0) − (v0 − w0) cos(2πx ′/L)]/2

+
√

D0ξx(t). (4)

The time a noiseless swimmer takes to cross a wavelength
L can be calculated analytically from Eqs. (4) with D0 = 0.
In the steady-state with φ = 0 (oriented to the right), we
obtained ẋ ′ > 0 for 0 � u � w0, ẋ ′ = 0 for w0 � u � v0, and
ẋ ′ < 0 for u � v0; in the steady-state with φ = π (oriented
to the left), ẋ ′ < 0 for all u. The coordinate x ′ is thus locked
for φ = 0 and w0 � u � v0, and running under all remain-
ing conditions, with |v(±)

x ′ | = L/t± for φ = 0 and φ = π ,
respectively, where t± = L/

√
(v0 ∓ u)(w0 ∓ u). Accordingly,

on transforming back to the coordinate x, we obtain two
distinct solutions for 〈ẋ〉, v(+)

x and v(−)
x . Finally, averaging

over the two φ states corresponds to taking the arithmetic
mean vx = [v(+)

x + v(−)
x ]/2, that is

vx =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u + 1
2 [

√
(v0 − u)(w0 − u) − √

(v0 + u)(w0 + u)]

0 � u � w0

u − 1
2

√
(v0 + u)(w0 + u) w0 � u � v0

u − 1
2 [

√
(u − v0)(u − w0) + √

(u + v0)(u + w0)]

u � v0

.

(5)

As shown in Sec. III, despite the rather rough assumptions de-
tailed above, this result proves to be an effective interpretation
tool.

Such a ballistic scheme holds in a strict sense under
the condition that τφ > max{t+,t−}, namely for u/v0 >

[
√

(2L/lφ)2 + (1 − w0/v0)2 + (1 + w0/v0)]/2. This implies
that Eq. (5) applies for u > v0 when L/lφ � 1, and for
u/v0 > L/lφ when L/lφ � 1. Moreover, since in the state
φ = 0 with w0 < u < v0 the particle is locked, i.e., t+ = ∞,
the solution for vx holds approximately under the weaker
condition τφ > t−. This is why in Sec. III we extended our
two-state model interpretation to u � v0 and L � lφ .

To solve the two-state model of Eqs. (3) in the presence of
translational noise we had recourse to the FPE formalism, as
discussed below. We anticipate that for D0 > 0 one obtains
v

(+)
x ′ > 0 also in the range w0 � u � v0 [34]: translational

noise smooths the locked-running transition, thus acting as
a dynamical lubricant (creeping effect).

2. 1D reduced model

Brownian motion can be treated as purely diffusive when
its persistence length is much shorter than all other length
scales of the system. For the swimmer of Eq. (1) this
condition amounts to requiring that the persistence time,
τφ , is shorter than both crossing times t+ and t−, namely
for u/v0 � [

√
(2L/lφ)2 − (1 − w0/v0)2 − (1 + w0/v0)]/2. In

the limit of vanishingly small τφ , the random orientation
factor in Eq. (1), cos φ(t), can be replaced by an effective
noise source with zero mean and autocorrelation function
〈cos φ(t) cos φ(0)〉 � 2δ(t)/(2Dφ) [38], so that the dynamics
of x ′ = x − ut is well described by the effective 1D LE,

ẋ ′ = −u + v(x ′) ξφ(t)/Dφ

√
2 +

√
D0 ξx(t), (6)

where the multiplicative stochastic term on the r.h.s. must be
interpreted in Stratonovitch sense [33,40].

B. The Fokker-Planck formalism

For a more detailed analysis of the swimmer’s stochastic
dynamics we turn to the Fokker-Planck equation (FPE)
associated with the model Eqs. (1) [33,34],

∂tP (r,φ,t) = −∇iJi(r,φ,t),

J(r,φ,t) =

⎛
⎜⎝

−D0∂x + v(x) cos φ − u

−D0∂y + v(x) sin φ

−Dφ∂φ + �

⎞
⎟⎠P (r,φ,t), (7)

and ∇ = (∂x,∂y,∂φ). Here, r = (x,y) denotes the particle’s
spatial coordinates in the ADW moving frame, x − ut → x

and y → y [the prime sign used in Eq. (4) has been dropped
for simplicity]. The 3D functions P and J denote, respectively,
the probability density and current of the particle in the state
(r,φ) at time t . The FPE (7) was numerically integrated
by combining the method of lines [41] with a second-
order backward-difference scheme [42]. Periodic boundary
conditions were assumed for all three variables x, y, and
φ, with relevant periods L, L, and 2π . This amounts to the
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one-zone reduced formulation of probability density [43],

P̂ (r,φ,t) =
∞∑

k,n,m=−∞
P (x + kL,y + nL,φ + 2πm,t). (8)

The particle’s drift velocities in the ADW frame are then
computed as the stationary currents in the x and y direction,

vx,y =
∫ L

0
dx

∫ L

0
dy

∫ 2π

0
dφ lim

t→∞ Jx,y(r,φ,t). (9)

The final result for vx is obtained by transforming it back
to the laboratory frame, vx → vx + u. For achiral particles,
� = 0, the transverse coordinate y is dispensable, so that,

upon integration over y, the FPE (7) is immediately reduced
to a partial differential equation for the 2D probability density
P (x,φ,t). In the following we shortly address two limiting
cases of such a reduced FPE, corresponding, respectively, to
the two-state model and the reduced 1D model approximations
of the LEs Eq. (1) with � = 0, as introduced above.

1. Ballistic approximation

In the ballistic regime, the particle’s orientation is almost
constant during its spatial relaxation. Accordingly, the FPE
can be further reduced to a 1D partial differential equation in
x for a fixed but arbitrary φ. The stationary reduced probability
current has a manageable expression as a function of φ [43],
i.e.,

Ĵ (φ) = D0

L2

{
1 − exp

[
−Lv0

D0

(
v0 + w0

2v0
cos φ − u

v0

)]}{∫ 1

0
dξ

∫ 1

0
dζ exp

[
−Lv0

D0

((
v0 + w0

2v0
cos φ − u

v0

)
ζ

− v0 − w0

4πv0
cos φ{sin[2π (ζ + ξ )] − sin(2πξ )}

)]}−1

, (10)

which, upon averaging over a uniform φ distribution with
φ ∈ [0,2π ] and transforming back to the laboratory frame,
yields the most accurate estimates of the drift velocity in the
ballistic regime,

vx = L

2π

∫ 2π

0
dφ Ĵ (φ) + u. (11)

2. Diffusive approximation

In the opposite limit of fast angular relaxation, the depen-
dence on the coordinate φ can be projected out by means
of a mapping procedure [44] to be detailed in an upcoming
technical report. In leading order of the perturbation parameter
lφ/L, we obtained a 1D partial differential equation,

∂tP (x,t) = ∂2
x a(x)P (x,t) − ∂xb(x)P (x,t), (12)

with a(x) = v2(x)/2Dφ + D0 and b(x) = (d/dx)v2(x)/
4Dφ − u. This is the FPE corresponding to the reduced
multiplicative process derived in Eq. (6). Upon computing

the stationary probability current,

Ĵ =
[

1 − exp

(
−

∫ L

0
dx

b(x)

a(x)

)]

×
[ ∫ L

0
dx

∫ L

0
dy

1

a(x)
exp

( ∫ y+x

x

dz
b(z)

a(z)

)]−1

,

(13)

the drift velocity is finally expressed as vx = LĴ + u.
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Bechinger, Microswimmers in patterned environments, Soft
Matter 7, 8810 (2013).

[26] P. K. Ghosh, Y. Li, F. Marchesoni, and F. Nori, Pseudochemotac-
tic drifts of artificial microswimmers, Phys. Rev. E 92, 012114
(2015).

[27] J. R. Howse, R. A. L. Jones, A. J. Ryan, T. Gough, R.
Vafabakhsh, and R. Golestanian, Self-Motile Colloidal Particles:

From Directed Propulsion to Random Walk, Phys. Rev. Lett. 99,
048102 (2007).

[28] M. J. Schnitzer, Theory of continuum random walks and
application to chemotaxis, Phys. Rev. E 48, 2553 (1993).

[29] R. M. Navarro and S. M. Fielding, Clustering and phase
behaviour of attractive active particles with hydrodynamics, Soft
Matter 11, 7525 (2015).

[30] T. Bickel, G. Zecua, and A. Würger, Polarization of active Janus
particles, Phys. Rev. E 89, 050303 (2014).

[31] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevE.94.012613 for typical trajectories of an
artificial microswimmer.

[32] D. Takagi, A. B. Braunschweig, J. Zhang, and M. J. Shelley,
Dispersion of Self-Propelled Rods Undergoing Fluctuation-
Driven Flips, Phys. Rev. Lett. 110, 038301 (2013).

[33] P. Hänggi and H. Thomas, Stochastic processes: Time evolution,
symmetries and linear response, Phys. Rep. 88, 207 (1982).
See Sect. 2.4 therein for the inter-relationships among various
stochastic calculus interpretations.

[34] H. Risken, The Fokker-Planck Equation (Springer, Berlin,
1984), Ch. 11.

[35] G. Costantini and F. Marchesoni, Threshold diffusion in a tilted
washboard potential, Europhys. Lett. 48, 491 (1999).

[36] P. Reimann, C. Van den Broeck, H. Linke, P. Hänggi, J. M. Rubi,
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