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Abstract
Aperiodically driven quantum system,when coupled to a heat bath, relaxes to a non-equilibrium
asymptotic state. In the general situation, the retrieval of this asymptotic state presents a rather non-
trivial task. It was recently shown that in the limit of an infinitesimal coupling, using the so-called
rotatingwave approximation (RWA), and under strict conditions imposed on the time-dependent
systemHamiltonian, the asymptotic state can attain theGibbs form.A Floquet–Gibbs state is
characterized by a densitymatrix which is diagonal in the Floquet basis of the systemHamiltonian
with the diagonal elements obeying aGibbs distribution, being parametrized by the corresponding
Floquet quasi-energies. Addressing the non-adiabatic driving regime, upon using theMagnus
expansion, we employ the concept of a corresponding effective FloquetHamiltonian. In doing sowe
go beyond the conventionally usedRWAand demonstrate that the idea of Floquet–Gibbs states can be
extended to the realistic case of aweak, although finite system-bath coupling, herein termed effective
Floquet–Gibbs states.

1. Introduction

When coupled to a heat bath, a quantum systemwith a time-independentHamiltonian typically relaxes to an
overall thermal equilibrium state [1–3]. In the infinitesimal coupling limit, this thermal state is specified by the
canonical Gibbs densitymatrix  ; i.e., µ b- e HS, where HS is the systemHamiltonian andβ denotes the inverse
temperature of the heat bath [4]. Although this result is quite intuitive, themechanism behind its universal form
and its emergence from the system-specific quantum evolution remains the focus of active studies and debates
up to this date [5–9].

The case of a periodicallymodulated quantum system coupled to a bath is evenmore challenging. No
universal closed-form expression for the asymptotic state is known and hence one has to analyze the specific
dynamics of the systemof interest, analytically or numerically.When isolated, i.e. when the system is not
coupled to a heat bath, periodically driven quantum systems have been extensively studied and a variety of
intriguing phenomena have been discovered. On the single-particle level, prominent effects [10, 11] such as
dynamical localization [12] and the coherent destruction of tunneling phenomenon [13, 14] have been
discovered theoretically and have become validated in experiments.Moreover, the use of periodic driving fields
has found applications recently to create newphases or topological band structures which otherwise are absent
in equilibrium [15–18].

Floquet states ofmany-body systems are presently actively explored by using the idea of a time-independent
effectiveHamiltonian (sometimes also termed ‘FloquetHamiltonian’), whose eigenstates approximately
coincidewith the Floquet states of the original time-dependentHamiltonian at stroboscopic instants ofmultiple
periods of the underlying high-frequency periodic drive; see the recent review by Bukov et al [19].
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Clearly, the universal Gibbs formof the densitymatrix comprises a strong appeal, so it is not surprising that
several attempts have beenmade to generalize the idea to the case of periodically driven open quantum systems.
For example, such aGibbs form arises in themodel of a single particle subjected to amodulated harmonic
potential [20, 21] and systems inwhich the time dependence of theHamiltonian can be eliminated through a
unitary transformation [10, 22]. In case of non-integrable quantum systems, it is very tempting to use Floquet
states as the eigenbasis towrite down the densitymatrix and then search for the limit where the latter acquires
theGibbs form. But before doing so, one shouldmake a guess as towhat quantity should take the place for the
energy Ẽi in the diagonal elements, µ b- ˜ eii

Ei. A very natural idea that this role could be played by the average
energy of the ith Floquet state; i.e., the expectation value of theHamiltonian averaged over one period of the
driving, has been tested in Refs. [20, 23]. The results demonstrated that although the densitymatrices have
diagonal elements reasonably close to the Boltzmann factors (thoughwith an ‘effective temperature’ different
from the actual temperature of the heat bath), there is also a tangible deviation from theGibbs form. This
difference was related to the coexistence of (semi-classically) chaotic and regular Floquet states [23].

Recently, some of the authors presented an alternative idea, upon introducing the notion of the Floquet–
Gibbs states [24], i.e. the states whose densitymatrices haveGibbs form in the Floquet basis of the system
Hamiltonian, with Ẽi being the quasi-energy of the corresponding Floquet state.

Themain problemof using quasi-energies as effective energies Ẽi is that they aremere phase factors and thus
are defined up tomultiples of W , whereΩ is the driving frequency [10]. Because of this ambiguity, quasi-
energies have little to dowith the actual energies of the corresponding Floquet states. For example, two states of
very different energies can come close to each other inside the first Brillouin zone - W W[ ) 2, 2 and
produce an avoided crossing which leads to resonance effects [25, 26]. In order to illustrate the conditions
required tomeet a Floquet–Gibbs state let us consider a time-dependentHamiltonian of the type

x= +( ) ( )H t H H tS 0 ex with a time-periodicHermitian operator + =( ) ( )H t T H tex ex , p= WT 2 , and ξ
being the control parameter to tune the strength of themodulation. Then, the ambiguity related to the quasi-
energies disappears when the condition:

(i) the angular driving frequency Ω has to be much larger than the spectral width of the system Hamiltonian
H0

—is obeyed. This condition implies that the energy spectrumof the system fits into the first Brillouin zone and
the natural way of ordering the quasi-energies exists. Technically, this condition then requires fast driving.

In order to have the asymptotic densitymatrix diagonal in the Floquet basis, it also has to be guaranteed that
all dissipative effects are relevant on a time scale larger than any intrinsic characteristic timescale of the isolated
system (including the period of the drivingT). Under this condition the evolution of the off-diagonal elements of
the systemdensitymatrix becomes decoupled from the evolution of the diagonal elements so that the former
decay exponentially fast in time. This amounts to a so-called ‘rotating-wave approximation’ (RWA)
[20, 21, 23, 27–32]. Because the relaxation time is inversely proportional to the square of the system-bath
couplingλ, t lµ -

relax
2, the RWA is only validwhen the system-bath coupling becomes infinitesimal.

Finally, there are two further specific conditions that ensure the asymptotic states to be the Floquet–Gibbs
state [24]:

(ii) the time-dependent part of the systemHamiltonian, ( )H tex , should commutewith itself at different
instants of time, =[ ( ) ( )]H t H t, 0;ex 1 ex 2

(iii) the time-dependent part of the systemHamiltonian, ( )H tex , and the system-bath interactionHamiltonian
should commute.

The three conditions, (i)–(iii), therefore limit the class of suitable physicalmodels. Namely, condition (i)
either restricts the systemHilbert space to relatively small sizes or confines allowedmodulations to the high-
frequency limit (where their effect is reduced to amere re-normalization of the stationaryHamiltonian). In
contrast, condition (ii) is less serious; it is fulfilledwith the choice =( ) ( )H t f t Hex 1, where f(t) is a time-periodic
scalar function andH1 is a systemHermitian operator.Most of the currently usedmodels belong to this class
[19, 33–36]. Condition (iii) requires fine-tuning of system-bath coupling operators, which is difficult to control.

With this workwe address the following two questions:

• Can the concept of Floquet–Gibbs states be extended to the case of a weak but finite system-bath coupling?

• Can some of the conditions (i)–(iii) be relaxed?
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Assume that condition (i) is broken, but the system is subjected to high frequency periodicmodulation. In
this case the heating rate of the system, theat (i.e., the speedwithwhich themodulations pump energy into the
system [37]), is extremely large [38–41]. Thus, when the system couples to the heat bath at weak but finite
strength, the relaxation rate t-relax

1 might be larger than the heating rate t-heat
1 , i.e., t t>heat relax, which

substantially changes the asymptotic state (see section 4 formore details). Also in this case the RWA is no longer
applicable (since trelax is not the longest timescale) and there is no guarantee that it will describe an
approximately valid asymptotic state.

In order to go beyond the limit imposed by the condition (i)we need to avoid the ambiguity in the definition
of effective energies andfind a suitable candidate to test the hypothesis of effective Floquet–Gibbs states. The
quasi-energies are not suitable for this purpose because there is no uniqueway to extract the ‘correct’ effective
Hamiltonian. This is because the logarithmof the Floquet unitary operator possessesmany branches. Thefirst
intuitive candidate for a time-independent FloquetHamiltonian is obtained by summing up theMagnus
expansion of the original systemHamiltonian ( )H tS [19]. However, when it comes to a technical realization of
this idea, one faces a problem: the expansion simply does not converge [42]. This recently became an issue of
active research in thefield ofmany-body quantumphysics [38–41]. Therewas a proposal to circumvent this
obstacle by truncating theMagnus series and it was claimed that such an approximation could accurately
describe the long-lived transient states [38–41, 43]. In this situation one not only obtains uniquely defined
‘effective energies’, that are eigenvalues of the truncated FloquetHamiltonian, but also the eigenbasis ismore
preferable than the Floquet basis to express the asymptotic non-equilibrium state.

Condition (iii) becomes irrelevant when the response of the bath to the high frequency driving field is weak,
e.g., the frequency of the driving field ismuch larger than the cutoff frequency of the bath spectral density wc.
Here wc represents a characteristic energy scale of the system-bath coupling (see section 4 formore details). In
conclusion, by relaxing conditions (i) and (iii)we can broaden the subclass of systems forwhich an analog of the
Gibbs distribution can indeed be introduced.We illustrate this conjecture by using a non-integrable spin chain
model driven by a time-periodicmagnetic field.

Thework is organized as follows. In section 2we present an overview of the Redfield formalism and outline
the theoretical basis of the problem. In section 3we define the effective Floquet–Gibbs state, and in section 4we
explain our conjectures for its emergence. Section 5 introduces the non-integrable spin chainmodel. In
section 6, by using the spin chainmodel as a testbed, we demonstrate how condition (i) can be lifted via afinite
system-bath coupling. In section 7, we show that the condition (iii) is not necessary when w Wc  .We conclude
with a discussion of open issues in section 8.

2. Periodic asymptotic states via the Redfield equation

We start with the totalHamiltonian,

ål= + + = Ä
a

a a( ) ( ) ( )H t H t H H H X Y, , 1S B I I

where ( )H tS and HB denote theHamiltonian of the system and the bath. HI is the interactionHamiltonian, and
λ is a dimensionless parameter indicating the strength of system-bath coupling.We set aX and aY to be
Hermitian operators in theHilbert space of the system and bath respectively. The systemHamiltonian is time-
periodic, = +( ) ( )H t H t TS S , whereT is the period of the driving.Within the Born–Markov approximation,
the reduced densitymatrix of the system r ( )t obeys the Redfield equation [44, 45]:
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where ¢ = ¢ ¢a a( ) ( ) ( )†X t t U t t X U t t, , , with ¢ = ò t t-
¢

( ) ( ) U t t, e H d
t

ti
S , and =a a -( )  Y t Ye eH t H ti

B
i

B . Here 
is the time-ordering operator. á ñ denotes the average over the canonical state of the bath at the inverse
temperatureβ.We assume that there is no correlation between aY and gY when a g¹ , i.e., á ñ =a g

b( )Y t Y 0.
The canonical correlation function of the isolated bath, á ña a

b( )Y t Y , is characterized by a decay time, tbath, which
has to be shorter than the timescale of the system relaxation to the asymptotic state t t( )bath relax [46]. This
means that themaster equation, equation (2), is valid under the condition of aweak, butfinite system-bath
coupling. It is noted here that tbath is not identical to w-

c
1.
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An intuitively good choice of basis for the densitymatrix of the system is the Floquet basis [47],

år r= ñá( ) ( )∣ ( ) ( )∣ ( )t t u t u t . 3
i j

ij i j
,

The Floquet states ñ∣ ( )u 0i and quasi-energies i are defined as the eigensystem of the one-period propagator
( )U T , 0 ,

ñ = ñ-( )∣ ( ) ∣ ( ) ( )U T u u, 0 0 e 0 , 4i
T

i
i

i

where- W < W  2 2i , pW = T2 . The Floquet state at any time t can then be obtained by propagating
the initial state ∣ui(0) 〉with the propagatorU(t,0) and the appropriate phase factor [10]

ñ = ñ∣ ( ) ( )∣ ( ) ( )u t U t ue , 0 0 . 5i
t

i
i

i

Rewritten in the Floquet basis, the quantummaster equation (2) reads [10]
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where frequencies w = - + W( )   slm
s

l m , and the Fourier components of bath correlation functions are
defined as

òw t t= á ña a a
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i

and Fourier coefficients of thematrix elements of the operator aX read

ò= á ña a - W( )∣ ∣ ( ) ( )X
T

u t X u t t
1

e d . 8lms

T

l m
s t

0

i

Because of the linearity of themaster equation and time-periodicity of its right-hand side, its asymptotic
solution, r r= +¥( ) ( )t t NTlimN

A , becomes explicitly time-periodic, r r+ =( ) ( )t T tA A . Belowweaddress
the asymptotic solutiononly (we arenot considering the transients) andhence the label ‘A’ is dropped fromhereon.

The asymptotic state can be expressed by using the Fourier expansion of the elements of the densitymatrix
r ( )t , reading

år r rº =
=-¥

¥
W( ) ( ) ( )t t e . 9ij ij

s
ij
s s tA i

Upon substituting this expansion into equation (6)wefind the identity:
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The second termon the r.h.s. of equation (10) is of the order l2, so in order to fulfill the equality, the element rij
s

has to be small (by absolute value)when wij
s is large [46]. Thus, we use the approximation that for the set w ¹ 0ij

s ,

w w r" > =∣ ∣ ( ), 0, 11ij
s

ij
s

trunc

where wtrunc is a truncation frequency. Put differently, this approximationmeans that we set to zero those
Fourier components of the densitymatrix element r ( )tij for which the absolute value of wij

s is larger than wtrunc.
The approximation in equation (11) allows us to go beyond the RWA (withinwhich all rij

s are zero except when

w = 0ij
s ). The RWA is justified in the limit of infinitesimal coupling l  0 and, evidently, the corresponding

asymptotic state does not depend on the coupling strengthλ [23, 27, 46]. In contrast, our scheme shows the
dependence onλ for the asymptotic state. It also allows us to go beyond the so-called ‘moderate RWA’ [10],
where only the s=0mode is kept [28–30, 48].

3. Effective Floquet–Gibbs states

In this sectionwe define the notion of effective Floquet–Gibbs states. In Ref. [24] Floquet–Gibbs states were
introducedwithin the RWA framework—under the assumption that all three conditions (i)–(iii) (see section 1)
hold—by using the FloquetHamiltonian [ ]H t

F ,
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ò t t- -
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The corresponding Floquet–Gibbs state is given by

r =
b

b

-

-
( )

[ ]
( )

[ ]

[ ]t
e

Tr e
. 13

H

H

t

t

F

F

The FloquetHamiltonian (12) is however not suitable when condition (i) is violated, as discussed in the
introduction.

Here, we assume that the system is subjected to a fast and strong driving field,

òx= + =( ) ( ) ( ) ( )H t H H t H t t, d 0, 14
T

S 0 ex
0

ex

where W and ξ aremuch larger than a single site energy, e.g., the energy forflipping the spin at one site of the
spin chainmodel, but is smaller than thewidth of the energy spectrumofH0. This leads to the violation of
condition (i). Throughout this paper, we assume that condition (ii), i.e., =[ ( ) ( )]H t H t, 0ex 1 ex 2 , is satisfied (see
equation (29)). Hence it is convenient to transform to a rotating frame. The states in the rotating frame, y ñ∣ ( )tR ,
are related to the states in the original frame, y ñ∣ ( )t , through a unitary transformation

òy y yñ = ñ = ñt t- x

∣ ( ) ∣ ( ) ( )∣ ( ) ( )( ) t t V t te . 15Hi d R R
t

0
ex

Thus, the systemHamiltonian ( )H tS in the rotating frame is transformed to

= -
¶
¶

=( ) ( ) ( ) ( ) ( ) ( ) ( )† †⎜ ⎟⎛
⎝

⎞
⎠H t V t H t

t
V t V t H V ti . 16S

R
S 0

It is noted here that the condition (ii) ensures the time periodicity ofV(t), and hence ( )H tS
R is time periodic.

While the amplitude of the driving field in ( )H tS is given by ξ, which is very large, the amplitude of the
oscillating term in ( )H tS

R is not strong. To illustrate this point, we present a driven single spin-1/2 system as an
example, whoseHamiltonian is given by x= + W( )H t h S tScosz

z x
S . TheHamiltonian in the rotating frame

reads

x x
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The oscillating strength of the rotatedHamiltonian is bounded by hz (and not ξ as in the original frame). Thus,
since xhz  , one could expect that in the rotating frame theMagnus expansion, which is a high frequency
expansion of the FloquetHamiltonian [42], provides an accurate descriptionwith fewer terms in the expansion
as compared to the expansion in the original frame.

In order to uniquely define the effective energies we introduce an nth order effective (truncated) Floquet
Hamiltonian,

å= W
=

( ) ( )[ ]( ) [ ]H
T

T
1

, 18t n

k

n

k
t

F
1

with the summands defined by

ò t tW = ¢ ¢
+

( ) ( ) ( )[ ] T H d , 19t

t

t T

1 S
R

ò

å å åd

t t t t

W =
-

´ W ¢ W ¢ ¢ ¢ "

å=

-

=

¥

=

¥

-

+
=

( )
( )

!

[ ( ) [ ( ) ( )] ] ( )

[ ]

[ ] [ ]





T
B

j

H k

i

, d , 2, 20

k
t

j

k j
j

j
s s

s k

t

t T

s
t

s
t

1

1

1 1
, 1

S
R

j i

j

i

j

1 1

1



 

whereBj is the jth Bernoulli number and δ is the Kronecker delta [42]. The term W ( )[ ] Tk
t is of the order ofTk.

First of all, the ambiguity in definition of effective energies is gone: energies of the effective FloquetHamiltonian,
equation (18), are uniquely defined. In addition, this step provides an efficient basis to express the asymptotic
densitymatrix. It is noteworthy thatMagnus expansion is continuously bridging two extremes.When used in
the complete form, it yields the basis of Floquet states. The truncation right after the first term corresponds to the
diabatic basis [46].

When a periodicallymodulated system is coupled to a dissipative environment, the interactionwith the
environment suppresses the heating to infinite temperature, which usually takes place in isolated systems [33–
35]. Under the high-frequency driving the heating rate is low. Thus, when the coupling is weak but finite, the
dissipation ratemay become larger than the heating rate. This will cause the system to equilibrate and not heat to
infinite temperature. In this situation the eigenbasis of the effective (truncated) FloquetHamiltonian is
preferable over the Floquet basis. It is therefore reasonable to probe the idea of the asymptotic densitymatrix
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having theGibbs form in the basis of the effective FloquetHamiltonian, with some—not yet known—value of
truncation ≔n neff . The so defined effective Floquet–Gibbs densitymatrix has the form:

r =
b

b

-

-
( )

[ ]
( )

[ ]( )

[ ]( )t
e

Tr e
, 21

H

HEFG

t n

t n

F
eff

F
eff

whereβ is the inverse temperature of the heat bath.
The sufficient condition for the convergence of theMagnus expansion is < WH2 0  [42]. It is notmet in

our case and hence theMagnus expansion does not converge in general. Recently, a definition for the optimal
value neff was proposed in Ref. [38]. This valueminimizes the deviation of the eigenspectrumof the Floquet
Hamiltonian from that of its truncated version,

yD = - ñ
y

y y
ñ

á ñ=

- -( ) ∣ ( )
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( ∣ )

[ ] [ ]( )
 max e e . 22H T H T

1

ni
F

0 i
F

0

This deviation can be evaluated by diagonalizing the operator in parenthesis and then taking themaximal
eigenvalue from the eigenspectrum.

It has been shown [38] that the smallness ofΔ ensures a good description of the long-time transient
dynamics by an effective FloquetHamiltonian for any initial state.We adapted this idea and use neff to construct
the effective FloquetHamiltonian. Its eigenvectors should be used then to obtain the effective Floquet–Gibbs
state.When condition (i) is satisfied, e.g., in the limit of fastmodulations,  ¥neff and =[ ]( ) [ ]H Ht n t

F F
eff , the

standard Floquet–Gibbs state, equation (13), is recovered, since theMagnus expansion is convergent in this case.
So farwe have introduced two truncation parameters, wtrunc and neff . The cutoff frequency wtrunc is

necessary to deal with the situationwith a large systemHilbert space. The second truncation parameter neff , for
theMagnus expansion, is needed to obtain an effectiveHamiltonian and hence to construct an effective
Floquet–Gibbs state.

In order to estimate how close the reduced densitymatrix r ( )tR obtained in the rotating frame, see
equations (10) and(11), is to the effective Floquet–Gibbs state, equation (21), we employ the trace distance

r rD = -∣ ( ) ( )∣ ( )[ ] t tProb Tr . 23t R
EFG

The trace distance provides an upper bound to the accuracy of expectation values of a systemobservable Ô,

r r- D∣ ( ˆ ( )) ( ˆ ( ))∣ ˆ ( )[ ]O t O t OTr Tr Prob , 24tR
EFG  

where Ô  is the operator normof Ô.

4. Conditions for the realization of the effective Floquet–Gibbs states

As argued in the introduction the Floquet–Gibbs state can be realized evenwhen condition (i) and/or (iii)
become broken. In this sectionwe elaborate further on the conjecture for the alternative conditionswhen
conditions (i) and (iii) are violated. The breaking of these conditions requires a careful consideration of the
various timescales governing the systemof interest, driving field, and the heat bath.When condition (i) is
broken, the systemmay heat up due to the resonance with the drivingfield, and hence the timescale for heating
theat becomes finite. However, under the high-frequency driving field the heating process simultaneously excites
multiple sites and acquires extremely long times to occur [19, 38–41]. Thus, if t theat relax , it is expected that
the resonant heating is suppressed by the dissipation due to the heat bath so that a violation of condition (i)will
not affect the realization of the effective Floquet–Gibbs state.

The other timescales are the period of the driving fieldT and the inverse of the cutoff frequency w-
c

1. In order
to understand the connection between these timescales and condition (ii)we transform the totalHamiltonian
into the rotating frame, by using the unitary transformation, equation (15),

l= + +( ) ( ) ( ) ( )H t H t H H t , 25R
S
R

B I
R

where ( )H tI
R is given by

=( ) ( ) ( ) ( )†H t V t H V t . 26I
R

I

The periodicmodulations of the interactionHamiltonian ( )H tI
R excites the fast harmonicmodes of the heat

bath, whose frequencies are close tomultiples of the driving frequency.Hence, the response of the system to this
field-enforced bath dynamics can affect the asymptotic state and induce deviations from the effective Floquet–
Gibbs form.However, if w Wc  , it is expected that the excitations induced in the heat bath due to the driving
areweak, such that it does not largely affect the asymptotic state of the system. Alternatively, when the condition
(iii) is imposed, ( )H tI

R becomes time-independent in the rotating frame and thus it cannot excite the resonant
modes in the bath.
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Overall, the restrictive conditions (i) and (iii), due to the above reasonings, are replaced by conditions which
do not severely limit the systemor the driving field. These new conditions for the emergence of the effective
Floquet–Gibbs state can be summarized as,

(1) t t ;heat relax

(2) =[ ( ) ( )]H t H t, 0ex 1 ex 2 for any t1 and t2;

(3) w Wc  or =[ ( )]H H t, 0I ex .

We emphasize that condition (ii)≡ (2) remains as it is due to its less restrictive nature.

5. Spin chainmodel

In order to probe the idea of effective Floquet–Gibbs state, we use as a testbed a quantum spin-1 2 chain being
subjected to a strong high-frequency driving, see the sketch infigure 1,

x= +( ) ( ) ( )H t H H t , 27S 0 ex

å å å= - +
= =

-

+
=

( )H h S g S S h S , 28z
i

N

i
z

i

N

i
x

i
x

x
i

N

i
x

0
1 1

1

1
1

å= W
=

( ) ( ) ( )H t t Scos . 29
i

N

i
x

ex
1

Here h handz x are constant components of themagnetic field acting along z-and x-directions, respectively, and
g is the coupling between neighboring spins. In addition, there is a time-periodic component of thefield acting
along x-direction, introduced through the term ( )H tex . Thismodel describes a quasi-one-dimensional Ising
ferromagnet [49] or a chain of interacting superconducting qubits [50]. Throughout this workwe use the
following set of parameters: = = =N g h h h6, 0.75 , 0.7z x z , and keep the x W =( ) 2 3fixed. These set of
parameters fix thewidth of the energy spectrumof D =H hto 7.6 z0 0 . This allows us to study the regimewhen
the frequency of the drivingfield W is smaller thanD 0 and thus condition (i), see section 1, is violated.We
employ three different values for driving frequency, i.e., W = h h4.2 , 4.6z z , and h5.0 z . These values are all
smaller thanD 0 , but larger than the characteristic frequency of a single spin.We choose the truncation
frequency, w trunc, to be equal to 10hz , and have verified thatD [ ]Prob t has converged by varying the truncation
frequency up to 15hz (see figure 1 of supplementarymaterial available at stacks.iop.org/njp/18/053008/
mmedia).

Figure 2 depictsD (equation (22)) as a function of the truncation order n. The deviation initially decreases
with n but then, after reaching aminimum, it increases again. Theminimumdetermines the value of neff . From
hereon for notational simplicity wewill suppress the explicit dependence on neff and implicitly assume the
values =n 13, 14, and16eff for driving frequencies W = h h h4.2 , 4.6 , and 5.0z z z , respectively.

At W = h4.6 z we observe the resonance effect (see the next section), which appears as an avoided crossing
for a pair of quasi-energies. Infigure 3we plot the pair of the quasi-energies in resonance. The inverse of the
quasi-energy gap at the avoided crossing represents the heating timescale theat [46].

The quantummaster equation, introduced in section 2, requires information about the nature of the bath in
terms of the correlation function described in equation (7). To specify the function, we follow the standard
prescription and consider a heat bath consisting of a set of independent harmonic oscillators [1, 2]. The heat bath

Figure 1.A spin chain subjected to a time-periodicmagnetic field being coupled to an environment. Each spin site is connected to an
independent heat bath. The baths have the same properties and are all kept at the same inverse temperatureβ.
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is described by aHamiltonian

åå= +
a

w a

=

a

a

a a( ) ( )H x , 30
i

N
p

m

m
iB

1
2 2

2i
2 2

where a ax pandi i
are canonical variables of theαth oscillator in the ith heat bath, and wa am and are themass and

frequency of the oscillator, respectively. The sumover spin site i indicates that each of the spins is connected to
an individual heat bathwhich is non-interacting and uncorrelatedwith any other bath [51].

Figure 2.DeviationΔ, equation (22), versus the truncation order n, for the spin chainmodel, equations (27)–(29). Three values of the
driving frequency, W = h4.2 z ( ), h4.6 z ( ), and h5.0 z ( )* were used in simulations, while keeping the ratio x W = 2 3 fixed.
Arrows indicate the effective truncation order =n 13eff ( W = h4.2 z ), 14 ( W = h4.6 z ) and 16 ( W = h5.0 z ).

Figure 3.The pair of quasi-energies (blue squares) that lead to the resonance effect versus driving frequency W hz . The quasi-
energies show an avoided crossing around W = h4.6 z .
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By use of equation (1)we set the system-bath interactionHamiltonian HI,

åå= Ä + +
a

a
a

=

( ) ( )H c x a S a S a S , 31
i

N

i
x

i
x y

i
y z

i
z

I
1

where the scalar set ( )a a a, ,x y z determines whether condition (iii) (refer section 1), =[ ( )]H H t, 0I ex , is satisfied
or not. The baths are characterized by a spectral density that we choose to be of theOhmic form

åw d w w gw= - =
a

p
w a

-a

a a

w
w( ) ( ) ˜ ( )J e . 32c

m2

2

c

Throughout this workwe have explicitly used the parameter l as a dimensionless parameter to indicate the
strength of the system-bath coupling. The actual dissipation strength is g l g= ˜2 . Thus the timescale for
relaxation is given by t g= -

relax
1, which is controlled by l2. For simplicity fromhereonwewill only vary the

parameter l2 and set g =˜ hz . In order to probe the dependence of timescales that lead to the emergence of the
effective Floquet–Gibbs state in section 6we present the dependence ofD [ ]Prob t on the system-bath coupling
strength l2. Herewe show that the effective Floquet–Gibbs state of the spin chainmodel appears in the regime
t theat relax (condition (1) of section 4). Section 7 shows the dependence ofD [ ]Prob t on the cutoff frequency wc

and in this case the effective Floquet–Gibbs state emerges in the regime w Wc  (condition (3) of section 4).

6. Asymptotic states: dependence on dissipation strength

In this sectionwe discuss the asymptotic solutionswhen condition (i) (refer section 1) is violated.We set the
system-bath interactionHamiltonian HI, equation (31)with = = =a a a1 and 0x y z , to a form that commutes
with ( )H tex , i.e.,

åå= Ä
a

a a

=

( )H c x S . 33
i

N

i i
x

I
1

This choice satisfies condition (iii), see section 1, and hence allows us to focus on the effects offinite dissipation
of strength l2, see equation (1), especially when condition (i) is violated.We fix the cutoff frequency
w = h100 zc . As far as only condition (i) is concerned, the value of the cutoff frequency does not play a crucial
role (it is, however, related to condition (iii), whichwe address in the next section). The inverse temperature of
the heat baths is set at b = -h1 z

1.

Figure 4.The dependence D º D [ ]Prob Prob 0 , equation (23), on the system-bath coupling (squared) l2 (dissipation strength) for
three values of the driving frequency, W = h4.2 z ( ), h4.6 z ( ), and (*h5.0 z ). There is a resonance (see text) for W = h4.6 z ,
which is responsible for a strong deviation from the effective Floquet–Gibbs state in theweak-coupling limit. The deviation decreases
upon the increase of the coupling strength. The cutoff frequency, equation (32), w = h100 zc . Other parameters are same as in
figure 2.
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Figure 4 depicts the dependence of the trace distanceDProb, equation (23), as a function of l2. As shown in
figure 2 of the supplementarymaterial, available at stacks.iop.org/njp/18/053008/mmedia, the trace distance
is independent of t and hencewe suppress the super-script [ ]t and plotD º D [ ]Prob Prob 0 as a representative.

The values of lD = -Prob for 102 6 are nearly identical to those obtainedwithin the RWA.Wefind that for
the driving frequency W = D h4.6 , Probz reduces as the system-bath coupling increases. This indicates that
finite dissipation can push the asymptotic state closer to the effective Floquet–Gibbs state. The large deviation in
theweak-coupling limit originates from the resonance effect, i.e., when the energy gap between two eigenvalues
of the effective FloquetHamiltonian is in resonancewith the driving frequency. The resonance is not observed
for two other values, W = h h4.2 and 5.0z z , hence in these cases the asymptotic densitymatrix can be
reasonably approximatedwith equation (21).

In order to further probe into the asymptotic effective Floquet–Gibbs state, we calculate the populations,

f r f= á ñ∣ ( )∣ ( )P 0 , 34k k k
R

where f ñ∣ k is an eigenstate of the effective FloquetHamiltonianwith eigenvalue, Ek. Infigure 5, we plot the
distribution for W = h4.6 z (the resonance case) and two values of the coupling strength,
l l= =- -10 and 102 2 2 6. For theweak coupling casewe observe two energies of the effective Floquet
Hamiltonian in resonancewith the driving frequency W.

For stronger coupling the resonance is completely suppressed and the distribution of populations is close to
the Boltzmann distribution. This suppression of resonance effect has been previously observed in the diabatic
basis [46], wherein the authors found that the diabatic basis leads to a diagonalized formof the asymptotic state.
This occurred onlywhen the dissipation strength exceeds the quasi-energy splitting observed at the avoided
crossing (see infigure 3). For the strong coupling case infigure 5we linearlyfit the log dependence of the
probability to yield the exponent beff which is smaller than the temperature of the bath, i.e.,
b b= < =- -h h0.946 1z zeff

1 1. This observation is in agreement with the previous results obtainedwithin the
RWA [20, 23]. In theseworks the ‘effective temperature’ b=T k1eff B eff has also been found to be higher than
the actual temperature of the heat bath. Themechanismbehind the ‘effective temperature’, although very
intriguing, is beyond the scope of this work.

7. Asymptotic states: dependence on the cutoff frequency of the heat bath

Based on the conjecture in section 4, in this sectionwe analyze the transition to the effective Floquet–Gibbs form
under the variations of the cutoff frequency of the bath.Nowwe drop condition (iii), and address the general

Figure 5.The populations Pk of the eigenstates of the effective FloquetHamiltonian of the driving frequency W = h4.6 z and two
values of the coupling, l = -102 6 ( ) and l = - (◦102 2 ). In case of l = -102 6 there are two eigenstates resonantly coupled by the
driving field. Their populations deviate strongly from the Boltzmann distribution. Solid black line corresponds to the Boltzmann
distributionwith b b= < =- -h h0.946 1z zeff

1 1. Other parameters are same as in figure 4.
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case where the interactionHamiltonian, equation (31)with = = =a a a1 and 0x y z , does not commutewith
the drivingHamiltonian, i.e. ¹[ ( )]H H t,I ex 0.Namely, we use the following interactionHamiltonian:

åå= Ä +
a

a a

=

( ) ( )H c x S S . 35
i

N

i i
x

i
y

I
1

In this case too the inverse temperature of the heat baths is set to b = -h1 z
1. It is worth noting here that

throughout this workwe have neglected the counter-term that appears in the Zwanzig–Caldeira–Leggettmodel
[3, 52–54]. In the present choice of the system-bath interactions, the counter-termplays no role since it is
proportional to +( )S S Sori

x
i
x

i
y2 2 that cause a constant shift in the systempotential.

Figure 6 presents the dependence ofD º D [ ]Prob Prob 0 on the cutoff frequency for different values of the
driving frequency at l = -102 2. Similar to the last sectionwe find thatD [ ]Prob t is time-independent as shown in
thefigure 2 of the supplementarymaterial, available atstacks.iop.org/njp/18/053008/mmedia.When the
cutoff frequency is large, w » W( )h100 zc  , the deviation of the asymptotic state from the effective Floquet–
Gibbs state is large, owing to the violation of the condition (iii). On the other hand, for small cutoff frequency,
w Wc  , the asymptotic state is well described by the effective Floquet–Gibbs state, equation (21).

Figure 7 presents the dependencies of lD º D [ ]Prob Prob on0 2 for the cutoff frequency w = h0.4 zc . The
dependencies for three values of W exhibit behavior similar to that presented infigure 4. The resonance present
for W = h4.6 z is still present, and it is responsible for the deviation from the Boltzmann distribution in the
limit of weak coupling, l - 102 4. The increase of the system-bath coupling suppresses the resonance, and the
distribution of the diagonal elements of the asymptotic densitymatrix approaches the Boltzmann distribution;
see inset infigure 7. Therefore, we conclude that all the three conditions stated in section 4 ((1), (2), and (3)) are
mutually independent and crucial for the existence of the effective Floquet–Gibbs state. It should be noted here
that even in this ideal situation the effective Floquet–Gibbs formpresents an approximation and is not exact as in
the case of a time-independent system veryweakly coupled to a heat bath.

8. Conclusion anddiscussion

Dissipation plays a leading role in shaping of the asymptotic state of a periodically driven quantum system even
in the limit of weak but finite coupling to a heat bath. If certain conditions aremet, this state is characterized by a
densitymatrix of the effective Floquet–Gibbs form, equation (21). These conditions are specified by the relations
between characteristic timescales of the three constituents, that are the system, the bath and the periodic driving
field. Namely, (1) the dissipation rate of the system (controlled by the interactionwith the heat bath)must be

Figure 6.The difference D º D [ ]Prob Prob 0 , equation (23), as a function of the cutoff frequency wc, of the spectral density of the heat
bath, equation (32), for three values of the driving frequency, W = h4.2 z ( ), h4.6 z ( ), and (*h5.0 z ) at l = -102 2. Gray stripe
marks the interval w Î [ ] h 4.2, 5zc .
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higher than its heating rate (controlled by the interactionwith the driving field) t theat relax , (2) the time-
dependent part of the systemHamiltonian should commutewith itself at different times =[ ( ) ( )]H t H t, 0ex 1 ex 2 ,
and (3) the frequency of the driving field should bemuch larger than the cutoff frequency of the bath spectral
density w W =[ ( )]H H tor , 0c I ex . Condition (1) guarantees that the resonance transitions between the
energy states of the effective FloquetHamiltonian are suppressedwhile condition (3) insures that the external
driving cannot stimulate excitations inside the bath. Condition (2) is not restrictive and is obeyed inmost cases.
We validated the theorywith the realization of the effective Floquet–Gibbs state for the case of a non-integrable
spin chain and conclusively demonstrated that our above stated conjecture holds.

On theway tofind the effective Floquet–Gibbs states wemet an intriguing phenomenon that is the existence
of an effective temperature different from the actual temperature of the heat bath. This phenomenonwasfirst
observedwhen studying thermodynamics of an ac-driven dissipative single-particle system, a quantum
nonlinear oscillator [23]. In this work the appearance of effective temperaturewas related to the existence of the
‘regular’ and ‘chaotic’ Floquet states, defined in the framework of the semi-classical eigenfunction hypothesis
[55]. How this could be interpreted in the case ofmany-body quantum systems andwhat is the effect of
alternative expansion schemes [56] remain as open issues.
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